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Abstract

The performance of many computer vision and machine
learning algorithms critically depends on the quality of the
similarity measure defined over the feature space. Previ-
ous works usually utilize metric distances which are often
epistemologically different from the perceptual distance of
human beings. In this paper, a novel non-metric partial
similarity measure is introduced, which is born to automat-
ically capture the prominent partial similarity between two
images while ignoring the confusing unimportant dissimi-
larity. This measure is potentially useful in face recognition
since it can help identify the inherent intra-personal simi-
larity and thus reducing the influence caused by large varia-
tions such as expression and occlusions. Moreover, to make
this method practical, this paper proposes an automatic
and class-dependent similarity threshold setting mechanism
based on the maximal margin criterion, and uses a Self-
Organization Map-based embedding technique to alleviate
the computational problem. Experimental results show the
feasibility and effectiveness of the proposed method.

1 Introduction

Similarity measure has attracted much attention of re-
searchers from diverse areas such as computer vision, ma-
chine learning and pattern recognition during the past few
years [6, 14, 16]. Actually, the underlying similarity mea-
sure has great impact on the performance of many learning
algorithms such as clustering algorithms and nearest neigh-
bor classifiers. Therefore, how to choose a “good” similar-
ity measure is one of the key concerns of these algorithms.

This paper focuses on the problem of modelling similar-
ity for direct face image matching. Face image matching
algorithms seek to identify a target image from a large face
database with maximal similarity to a given probe face im-

age [21]. The success of such a task critically depends on
the quality of the similarity measure defined over the image
space. Euclidean distance is the most widely used similar-
ity measure. However, face images are generally assumed
to span a low-dimensional nonlinear manifold in a high-
dimensional space [4] and therefore, to obtain a good gen-
eralization performance, the prior defined Euclidean dis-
tance is not always appropriate. This is particular true if the
given face database contains complex intra-personal varia-
tions caused by illuminations, occlusions and expressions.

In fact, metric distances such as Euclidean distance is
subject to the rigid constraints of metric axioms (i.e., self-
similarity, symmetry, triangle inequality), and several recent
studies have shown that these metric axioms are epistemo-
logically invalid for perceptual distance of human beings
[14, 16] and not so suitable for robust pattern recognition
[6]. As indicated by Jacobs et al. [6], the changeful face im-
ages cannot be matched into a metric feature space without
large distortions in the distances between them. Therefore,
non-metric distance functions seem to be a natural choice
for robust face image matching, which is the main concern
of this paper.

Non-metric distances can be developed by part-based
methods, which uses image patches and has the inherent
advantage of capturing local statistical relationships among
specific pixels in an image. Popular part-based methods in-
clude NMF (Non-negative Matrix Factorization) [8], ICA
(Independence Component Analysis) [2], Local Probabilis-
tic Subspace [9, 10], etc. These methods are shown to be
successful in dealing with face images with complex intra-
personal variations.

In this paper, we present a novel part-based non-metric
distance learning method. The idea can be best illustrated
by Figure 1, where many observers will find that both the
person and the horse are similar to the centaure, but the per-
son and the horse are not similar to each other. A reason-
able explanation is that when comparing two images, we



Figure 1. An illustration of the intuition of par-
tial similarity judgments.

human beings tend to “focus on the portions that are very
similar and are willing to pay less attention to regions of
great dissimilarity” [6]. In other words, in contrast to dis-
similar portions, similar portions are more important and
play the dominant role in the process of image matching.
This observation implies that the similar portions may carry
highly discriminant information for robust image compari-
son. Capturing such information, therefore, is of great im-
portance to classification under high-dimensional settings.

In light of these observations, a goal of this paper is to
design a mechanism to support the partial similarity mea-
surement. Based on a local dissimilarity representation of
face images, we propose a partial similarity measure that
can automatically capture the significant partial similarity
between two face images while ignoring the unimportant
dissimilarity. By this way, we can evaluate the perceptual
distance between face images more accurately, and lower
the influence of appearance variations presented in images.

By partial similarity, we mean that the similar regions
of the face images will be accentuated in the process of face
matching. Thus, how to definesimilar regionsbecomes the
critical issue of the proposed method. This paper addresses
this problem with a maximal margin-based learning crite-
rion, making the similarity threshold setting become auto-
matic and adaptive in nature.

In addition, to improve the computational efficiency, an
SOM (Self-Organization Map [7])-based embedding strat-
egy is employed. Experimental results show that the
SOM can not only embed the facial portions into a low-
dimensional space faithfully, but also filter out the possible
noise at the same time, resulting in an encouraging enhance-
ment to the proposed method.

The rest of this paper is organized as follows. Section 2
briefly reviews some related works. Section 3 describes the
proposed partial distance measure. Section 4 introduces the
SOM embedding. Section 5 describes how to learn the sim-
ilarity threshold with the maximal margin criterion. Section
6 reports on the experiments. Finally, Section 6 concludes.

2 Related Works

Non-metric distances have attracted attention from re-
searchers in the field of face recognition. Bayesian method

[12] and kernel-based method [20] are two representative
works along this direction. The former uses a probabilistic
measure of similarity based primarily on a Bayesian anal-
ysis of image differences, while the latter seeks to find a
non-linear transformation of the similarity between two im-
ages in the input space such that the class boundaries more
likely become linear in the transformed space.

In the field of machine learning,metric learninghas be-
come very hot during the past few years [1, 19]. Most works
seek to formulate the metric learning problem as some kind
of mathematical programming problem, with the hope of
finding the optimal parameters that minimize some cost
function. Xing’s method [19] and the Relevant Component
Analysis (RCA) distance [1] are representative works. Both
employ extra information (e.g., equivalence constraints) to
learn the similarity between samples. Note that their op-
timal criteria are based on the whole training set, which
forces a relatively strong constraint on the data set, thus in-
creasing the complexity of the optimization problem.

All the aforementioned methods do not take the spatial
structure of image data into account. A most recent work
which explicitly considers this problem is the so-called IM-
age Euclidean Distance (IMED) [18], where the spatial in-
formation of pixels in an image are exploited. Our work
differs from the above work in both the ways of face image
representation and the optimization method taken.

3 The Proposed Partial Distance Measure

The overall framework of the proposed method is shown
in Figure 2. To enable partial similarity capturing, both the
training face images and the probe image are localized into
sub-blocks in the same way at first. Then, all the obtained
sub-blocks are embedded in a pre-trained SOM topological
space, where a nearest neighbor search is executed using
the proposed partial distance measure, and the training face
image reporting the smallest distance is selected to give the
final identity.

Among all the possible definitions of local facial region,
perhaps the simplest is the one that defines local facial re-

Figure 2. Overall framework of the proposed
method.



gion as a rectangle or sub-block in the image. In particular,
each face image is partitioned intoK (= dima/dimb) non-
overlapping sub-blocks with equal size, wheredima and
dimb are the dimensionalities of the whole image and each
sub-block, respectively. For simplicity and efficiency, each
sub-block is represented as a local feature vector (LFV) by
concatenating the pixels of the sub-block. Such a gray-
level-based local feature representation has been proven to
be helpful in both face detection [17] and face recognition
[15].

3.1 Local Pairwise Dissimilarity Matrix

After defining the sub-blocks of face image, we construct
the local pairwise dissimilarity matrixD between a probe
faceq and every facexi in the training setT. Denote the
sub-blocks ofq andxi as{qk}K

k=1 and{xk
i }K

k=1, respec-
tively. Thus, the component at thek-th row andi-th column
of D is dki = d(qk,xk

i ), which is the local pairwise dis-
tance between thek-th sub-blocks of the probe face and the
i-th training face. Although from the holistic view, face im-
ages span a non-metric manifold, it is usually assumed that
the neighborhood of local patches of face images can be
well approximated by metric distance. Hence we have:

dki = d(qk,xk
i ) = ‖qk − xk

i ‖p (1)

where (‖ · ‖p is theLp-norm defined on the LFVsqk and
xk

i with p ≥ 1).Then the dissimilarity matrix is:

D(q, T ) =




d(q1,x1
1) · · · d(q1,x1

N )
d(q2,x2

1) · · · d(q2,x2
N )

...
...

...
d(qK ,xK

1 ) · · · d(qK ,x1
N )


 (2)

whereN is the total number of training faces inT. This ma-
trix plays an important role in our method. Actually it con-
tains all the information needed for the subsequent recogni-
tion task. In terms of the similarity approaches, this matrix
can be regarded a local dissimilarity representation of the
data.

Based on the above notations, we define the global dis-
tanced(q,xi) between the probe faceq and the training
imagexi as:

d(q,xi) =
K∑

k=1

dki =
K∑

k=1

d(qk,xk
i ) (3)

That is, the global distance is approximated by the sum of
the local pairwise distances. Here for simplicity and without
loss of generality, we useL1-norm to calculate the local
pairwise distances.

3.2 Partial Distance Measure

If we were given an appropriate thresholdτ , the set of
local pairwise distances{dki}K

k=1 can be divided into two
subsets:

S = {k|dki ≤ τ, k = 1, . . . , K} (4)

F = {k|dki > τ, k = 1, . . . , K} (5)

SandF are called thesimilar subset anddissimilarsub-
set, respectively. Note that by the definition, two sub-blocks
can be regarded as similar even though they have relatively
big distance (e.g., withdki close toτ ), which could be help-
ful for improving the generalization ability. Based on these
notations, we can rewrite Eq. 3 to:

d(q,xi) =
K∑

k=1

dki =
∑

k∈S

dki +
∑

k∈F

dki (6)

That is, the global distance between two face images is
equal to the linear sums of the local pairwise distances be-
tween similar portions and dissimilar portions. Further-
more, Eq. 6 can be generalized as:

d′(q,xi, τ) = β
∑

k∈S

dki + (1− β)
∑

k∈F

dki (7)

whereβ ∈ [0, 1] is a parameter controlling the weight of
similar and dissimilar portions in similarity measuring.β
can be set based on statistics of the similar and dissimilar
portions. Let|S| and|F | denote the number of similar and
dissimilar sub-blocks, respectively. Then,β can be set as:

β = min(1,
|S|
|F | ) = min(1,

|S|
K − |F | ) (8)

Clearly,β is in [0, 1] and asβ approaching 1, similar por-
tions will play a more important role in the global distance
calculation. Indeed, the value ofβ is solely controlled by
the number of similar portions|S|, which is in turn deter-
mined by the underlying threshold.

In our implementation, for simplicity, the pairwise sub-
block distance is discretized into an integer as follows:

I(dki) =
{

1, dki ≤ τ
0, dki > τ

(9)

Accordingly, Eq. 7 is rewritten to:

dp(q,xi, τ) = β
∑

dki≤τ

I(dki) + (1− β)
∑

dki>τ

I(dki)

= β
∑

dki≤τ

I(dki) (10)

That is, the distance between two faces completely de-
pends on the weighted number of similar sub-blocks. Hence



the namepartial distance(PD). Note that the weighting co-
efficientβ implicitly takes the possible influence of the dis-
similar portions into account.

Finally, the subject identification can be executed ac-
cording to the nearest neighbor rule using the partial dis-
tance defined above:

label(q) = arg min
i=1...N

(dp (q,xi, τ)) (11)

wherelabel(q) is the label of an unknown faceq.

3.3 Properties of the Proposed Measure

The partial distance defined above has some interesting
properties that are desired in face image matching. First, it
automatically selects the most similar portions between two
faces for comparison, which actually makes the complex
intra-personal distribution being more compact.

Second, by definition, a distance measure is a metric dis-
tance if it satisfies the metric axioms, i.e, non-negativity,
self-similarity, symmetry, and the triangle inequality [14].
If any one of the above conditions is violated, the concerned
distance measure is called non-metric distance. It is obvi-
ous that both the non-negativity and symmetry are satisfied
by the proposed partial distance. However, it is not trans-
missive, i.e., it violates the triangle inequality (transitivity
should be followed from the triangle inequality [6]). This
occurs mainly because different sub-blocks can make con-
tribution in different comparisons. As for the centaure ex-
ample shown in Fig. 1, similar sub-blocks between the per-
son and centaure and these between the horse and centaure
are different. This suggests that the triangle inequality may
violate the perceptual similarity of human beings.

Moreover, the proposed partial distance doesn’t satisfy
the self-similarity axiom as well. That is, two face images
may havezeropartial distance even if they are not identi-
cal. This looks surprising at first glance since it implies that
given a probe faceq, its nearest neighbor may not neces-
sarily be itself. But note that in reality, the requirement that
only identical objects would yield a zero distance may be
too strong. Actually, in face recognition, there are rarely
two absolutely identical face images even from the same
person. Therefore, it seems that allowing two face images
with slight deformation to be recognized as the same could
be a better strategy, since this potentially increases the pos-
sibility of finding the correct matching for a given face. This
property turns out to be a major difference between the pro-
posed partial distance and any metric distance measures.

4 Embedding with SOM

It is evident that the direct calculation of pairwise dis-
tances in the input space is computationally expensive. A

feasible solution is to map, or embed the local facial vectors
into a low-dimensional embedding space such that [5]: (1)
the distances of the embedded vectors approximate the ac-
tual distances, and (2) the dissimilarity matrix computation
can be performed in the “less expensive” embedding space.

In this paper, Self-Organizing Maps [7], one of the most
efficient and effective techniques that can meet the above
two requirements simultaneously, is adopted. More specif-
ically, after localizing the images, an SOM network is
trained and used to project all the LFVs onto a quantized
lower-dimensional space, in which the dissimilarity matrix
(Eq.2) is then calculated.

In the proposed method, most of the time cost goes to
the computation of the local dissimilarity matrixD with
complexity ofO(dimbKN). Note that this is equal to the
computational complexity of the standard nearest neigh-
bor rule, i.e.,O(dimaN), sincedima = dimbK. Due
to the SOM embedding, the computational cost is actually
reduced toO(2KN). On a machine with 800MHz pro-
cessor and 512MB RAM, after using the SOM-embedding
scheme, the proposed method generally runs about 10 times
or more faster than before.

5 Learning Similarity Threshold with the
Maximal Margin Criterion

The proposed method involves an important parameter
which needs to be adjusted, i.e., the similarity threshold
τ (Eq.4). This threshold defines the minimal acceptable
distance between two sub-blocks, and all the pairwise sub-
blocks with distances below the threshold are considered to
be similar to each other.

Intuitively, a good threshold should be class-dependent
in nature, i.e., different thresholds should be used for differ-
ent persons (classes). In order to ensure a low generaliza-
tion error, the threshold should also assign a training face
images to the correct class with high confidence, which is
related tomargin. However, in most large margin practice,
such as RCA [1], the margin over the whole training set
is optimized, which is a relatively strong constraint on the
cost function, potentially increasing the complexity of the
optimization problem. This paper does not require all the
similar samples be clustered tightly. Instead, the margin of
each class is optimized separately, one for each time. Such a
local strategy not only makes the optimization task become
easier, but also allows to obtain a series of optimal class-
dependent thresholds, one for each class. The overall effect
is that the samples from each class are closely clustered,
respectively.

Formally, letyi denote the class label of the training sam-
ple xi. The index set of the training samples belonging to
the c-th class isHc = {i|yi = c, i = 1, . . . , N}, and the
index set of the samples from other classes isHc = {i|yi 6=



c, i = 1, . . . , N}. Then, the training set of thec-th class is
denoted asXc = {xi, i ∈ Hc}with size|Hc|. Furthermore,
denote the threshold of thec-th class asτc.

The optimization for τc involves a Leave-One-Out
(LOO) validation strategy onXc. First, fetch one sample
xi ∈ Xc as the validation sample, and all the remaining
samples in the training setT as prototypes. Then, try to la-
bel the validation sample using the partial distance under a
given thresholdτc (with Eq. 11). Suppose the classification
result isLOO(xi, τc), then the average margin of thec-th
class can be defined as:

mc(Xc, τc) =
1
|Hc|

∑

i∈Hc

{1 (LOO (xi, τc) = yi)

[min
j∈Hc

dPD(xi,xj , τc)− min
j∈Hc
j 6=i

dPD(xi,xj , τc)]}
(12)

where1(u) is the indicator function which takes 1 ifu is
true and 0 otherwise. Eq. 12 says that if a training sam-
ple xi, i ∈ Hc is correctly classified in the Leave-One-Out
validation, then the classification confidence is the margin
between the nearest training sample of other classes (the
first term) and the nearest prototype (exceptxi itself) of the
c-th class (the second term). Clearly, only positive values of
mc(Xc, τc) denote correct classifications, and the larger the
value, the higher confidence the classification.

Eq. 12 is then used as the cost function to be optimized
in the training phase and its output is the so-needed class-
dependent similarity thresholdτ∗c .

Maximizing a margin function like Eq. 12 is generally
difficult. Here a straightforward greedy search strategy is
employed. That is, since the degree of similarity ranges in
[0, 1] (0 denotes totally dissimilar and 1 the highest similar),
the range of[0, 1] can be can greedily searched to approxi-
mate the optimal solution. More specifically, the interval of
[0, 1] is discretized into(h+1) candidate values, denoted by
τcandidate = [0, 1

h , 2
h , . . . , (h−1)

h , 1], whereh is the param-
eter that controls the threshold searching granularity and is
set to 100 in this paper. Then, the candidate value maxi-
mizing Eq. 12 is deemed as the best approximation to the
optimal thresholdτ∗c .

Before that, however, the components of the dissimilar-
ity matrixD (Eq. 2) should be turned into similarity in order
to ensure that every component is in[0, 1]. For this purpose,
a soft normalization method is used in this paper.

Finally, after the similarity thresholds for all the classes
have been learned, the face recognition process can be exe-
cuted. For a testing face, the partial similarities between it
and every training samples are computed under the thresh-
olds of each class. Then, a standard majority voting strat-
egy is used to fuse the obtained intermediate results, and the
winner class identifies the testing face.

6 Experiments

6.1 Data and Experimental Setting

Two face databases with large intra-personal variations
are used in the experiments, i.e., AR [11] and ORL [3].

The AR face database contains over 4,000 color face im-
ages of 126 persons’ faces (70 men and 56 women), includ-
ing frontal view faces with different facial expressions, il-
luminations, and occlusions (such as sun glasses and scarf).
There are 26 different images per person, taken in two ses-
sions (separated by two weeks), each session consisting of
13 images. In our experiments, a subset of 2,600 images
from 100 different subjects (50 men and 50 women) were
used. Some sample images for one subject are shown in
Figure 3. Before the recognition process, each image was
cropped and resized to66× 48 pixels and then converted to
gray-level, which were processed by a histogram equaliza-
tion algorithm.

Figure 3. Sample face images taken in the
same session for one subject in the AR
database.

The ORL face database contains 400 images of 40 per-
sons, and each person has 10 different images. The face
images contain significant intra-personal variations caused
by rotation, expression and sample size. All images are
grayscale and normalized to112× 92 pixels, and the gray-
level values of all images are rescaled to[0, 1]. Some sam-
ple images are shown in Figure 4.

Figure 4. Sample face images for one subject
in the ORL database.

The default experimental setting is:
(1) For AR database, the first 7 images per person taken

in the first session were used for training, and the remaining
19 images per person were used for testing. In other words,
we used 700 training samples and 1900 testing samples in
total. The default image partition size is3×4 pixels and the
SOM map size is94× 23.



(2) For ORL database, the first 5 images per person were
used for training and the remaining 5 images per person for
testing. The default sub-block size is4 × 4 and the SOM
map size is106× 17.

(3) For both database, the threshold search granularityh
is set to 100.

6.2 Comparison with Other Distance
Measures

One goal of our experiments was to assess the relative
performance of the proposed partial distance as a distance
measure in face recognition. To this extent we evaluated
the nearest neighbor classification using the proposed par-
tial distance, and compared its performance to the nearest
neighbor classification using other distance measures.

In particular, four PCA-based non-metric distance mea-
sures, the IMage Euclidean Distance (IMED), the Relevant
Component Analysis distance (RCA), and the traditional
Euclidean distance (EU) were chosen for comparison. For
RCA distance, since the training set is fully labelled, its
chunklets correspond uniquely and fully to the classes. The
four PCA-based non-metric distance measures include sim-
plified Mahalanobis (SM), weighted angle-based distance
(WA), modified squared Euclidean distance (SE) and angle-
based distance between whitened feature vectors (AW). De-
tailed description of these four distance measures can be
found in [13]. According to [13], these four distance mea-
sures achieved the best recognition results among 14 dis-
tance measures compared in the context of PCA transfor-
mation.

The results are shown in Figure 5. Figure 5 reveals that
the proposed partial distance measure (PD) significantly
outperforms all the compared distance measures consis-
tently on both databases. In particular, the top 1 recogni-
tion rates of PD on ORL and AR are 97.0% and 74.6%,
respectively, while the best results yielded by the compared
distances are 91.5% and 45.8%, respectively. These obser-
vations suggest that the proposed partial distance can help
filter those over-deformed local facial regions, thus making
the robustness against large intra-personal variations be im-
proved.

6.3 Comparison with State-of-the-Art
Face Recognition Techniques

In another series of experiments, we compared sev-
eral state-of-the-art face recognition techniques with the
PD-based method. The compared algorithms include the
Bayesian method, two kernel-based methods (KPCA and
KFLDA), and three popular subspace/manifold algorithms
(Eigenface, Fisherface and Lapalacianface). The bench-
mark algorithm was the direct template matching method
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Figure 5. Comparing PD with other 7 distance
measures on ORL (top) and AR (bottom).

(1NN with L2-norm). In the experiments, 98% informa-
tion in the sense of reconstruction was kept in the PCA sub-
spaces for all the compared methods. For LDA-like meth-
ods (KFLDA, Fisherface and Lapalacianfaces), (C-1) pro-
jectors were extracted, whereC was the number of total
classes. For the two kernel-based methods, Gaussian and
polynomial kernels with fine-tuned parameters were tried
and the best results were presented.

Table 1 shows the comparison results. Clearly the PD-
based method significantly outperforms the direct template
matching method and other compared algorithms. These
results indicate that although those most current algorithms
compared here could yield good performance, their perfor-
mance still critically depends on the proper estimation of
the similarity relationship between face images in the input
space. When the intra-personal variation in a database be-
comes complex, the reliability and accuracy of those algo-
rithms may be seriously affected. The experimental results
reported here also reveal that using local patches without
selection could not yield good performance, which verifies
that the the superior performance of the proposed method is
due to the use of the non-metric similarity measure.

For further validation, we detailed the experimental re-



Table 1. Comparing the recognition rates (%) of the PD-based method with state-of-the-art face
recognition techniques.

Kernel-Methods Subspace/Manifold Methods
Dataset PD Bayesian KPCA KFLDA Eigenface Fisherface Lapalacianface 1NN
ORL 97.0 82.0 87.0 84.5 88.5 81.5 83.0 90.0
AR 74.6 52.8 36.3 46.6 34.3 52.9 47.8 39.9

Table 2. Comparing the recognition rates (%) of the PD-based method with state-of-the-art face
recognition techniques on face images with large variations. (S1: images taken at the first session,
S2: images taken at the second session.)

sults on AR in Table 2 by showing the robustness against
expression, illumination and occlusions. Table 2 clearly
shows the strength of the proposed method.

6.4 Comparison with Other Part-Based
Techniques

We also compared the PD-based method with other part-
based face recognition techniques, such as NMF [8] and
Martinez’s method [9, 10], on AR. NMF learns localized
features that can be added together to reconstruct the whole
image. However, the learned parts are still represented as
high-dimensional vectors in the input space. Martinez ex-
plicitly modelled the subspace for each local parts with a
parametric model. He found that the recognition accuracy
can be improved by incorporating the motion estimation
process in the model [10]. In this series of experiments, we
used the neutral faces as prototypes, and faces with different
expressions (i.e., happy, angry and screaming) for testing.
The recognition rates for images of each kind of these facial
expressions are shown in Figure 6. It can be found that the

proposed method performs better than both the compared
methods consistently on all the expressions.
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Figure 6. Comparing the recognition rate (%)
of the PD-based method with NMF and Mar-
tinez’s method on expression variations.



6.5 Effect of Different Sub-block Sizes

Here we take a brief discussion on the influence of sub-
block size on the recognition performance. The choice of
the sub-block size reflects a balance between generalization
and specialization. Generally, as the sub-block gets smaller,
the degree of generalization grows higher but the degree of
specialization becomes lower. So, the block size should be
neither very big nor very small.

In order to verify this statement, we partitioned the orig-
inal ORL face images with different sizes from smaller to
larger and then ran the PD-based method on them. The
sub-block sizes are4 × 4, 8 × 4, 16 × 4, 4 × 23 and their
corresponding recognition performances are 97.0%, 96.5%,
92.5%, 92.0, respectively. These results indicate that a rel-
atively smaller size is preferred in practice than a relatively
larger one. However, a too small block size may also be
harmful due to the noise it may introduce. Considering the
image size (112×92), a block size of4×4 is not very small
but1× 1 is really too small to get a good performance.

7 Conclusion

The main contribution of the paper is the proposal of
learning a non-metric partial similarity measure with the
maximal margin criterion for robust face recognition. This
method simulates the basic visual information processing
mechanism of human beings, and potentially allows us un-
derstand better the hidden semantic similarity among intra-
personal face images. Moreover, to make the method prac-
tical, we propose to use the SOM-based embedding tech-
nique to deal with the computational problem. Future work
includes studying the general applicability of the proposed
method, beyond the field of face recognition.
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