
Label-denoising Auto-Encoder for Classification
with Inaccurate Supervision Information

Dong Wang
Department of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics
#29 Yudao Street, Nanjing 210016, P.R.China

Email: dongwang@nuaa.edu.cn

Xiaoyang Tan
Department of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics
#29 Yudao Street, Nanjing 210016, P.R.China

Email: x.tan@nuaa.edu.cn

Abstract—Label noise is not uncommon in machine learning
applications nowadays and imposes great challenges for many
existing classifiers. In this paper we propose a new type of
auto-encoder coined label-denoising auto-encoder to learn a
representation for robust classification under this situation. For
this purpose, we include both the feature and the (noisy) label of
a data point in the input layer of the auto-encoder network, and
during each learning iteration, we disturb the label according
to the posterior probability of the data estimated by a softmax
regression classifier. The learnt representation is shown to be
robust against label noise on three real-world data-sets.

I. INTRODUCTION

In the ideal machine learning settings, a model with good
generalization capability could be learnt if a sufficient number
of labeled samples are available. However, this is rarely the
case in real world applications, since the labels have to
be obtained through huge amount of efforts with manually
labeling or scientific experiments. To handle this problem,
researchers have proposed many learning paradigms such as
semi-supervised learning [1], transfer learning [2], multiple-
task leaning [3] and so on. One basic idea behind these
approaches is trying to bridge the gaps between unlabeled
data or labels from other domains and the learning target
such that the problem of insufficient label information could
be alleviated. Despite the partial success in some fields, such
connections are commonly built on a few assumptions that
are hard to be verified (e.g., the clustering assumption, the
manifold assumption), which prevents their wide applications
in practice.

Recently, new techniques which allow us to obtain large
amounts of label information cheaply have become available,
such as crowdsourcing [4], harvesting data with weak labels
through web searching [5], and so on. One major advantage
of this type of methods is that it essentially relaxes the
assumptions made by the aforementioned methods on the
distribution of the obtained labels.

One limitation of these label acquiring techniques, how-
ever, lies in the fact that the label information obtained tends
to be noisy while the performance of most commonly used
classifiers such as SVM and logistic regression relies crucially
on the correctness of this, although they usually have built-
in mechanisms (e.g., regularization term) to tolerate some
degree of data noise. But in general data noise is different
from label noise in that data noise usually only causes a small

move within the its neighborhood region in the feature space,
while label noise could make an unpredictable large move
to a random region. For example, the situation that a label
flips from class i to j actually means that the corresponding
data point jumps from the region of the j’s class to that of
the i’s class. For SVM, boosting or other classifier whose
loss function grows monotonously with the value of negative
sample margin, this could result in an arbitrary large penalty.

Many works have been devoted to solve this problem
recently and they can be roughly divided into three categories.
The first type - perhaps the most intuitive type among them
- is to pre-precess the data such that the data points whose
labels are likely to be noise will be removed before feeding
to classifier training [6] [7]. These methods could suffer from
the disadvantage that some data points with clean labels could
be removed as well.

Instead of removing these data points completely, the
second type of methods tries to estimate the probability of their
labels being noised and warns the classifier about this. The key
issue here, therefore, is how to identify those suspicious points
confidently. For this, in [8] a probabilistic model of a kernel
Fisher Discriminant is presented in which an EM algorithm
is proposed to update the probability of the data point being
incorrectly labeled. This EM-type algorithm has inspired many
later methods in which the true but unknown label of each data
point is treated as latent variable and its posterior given the
current label is estimated in a probabilistic framework [9] [10].
It has also been applied to learn robust distance metric using
noisy labels [11]. Alternatively, a multiple instance learning-
based method is proposed in [12] to cope with label noise, but
it essentially has to estimate the most correctly labeled positive
samples in a bag. Some heuristic strategy can also be adopted.
For example, [13] takes boosting to detect the incorrect labels
based on the observation that those data are likely to have a
big weight.

The third type of methods tries to directly improve the
robustness of the classifier against label noise, using various
robust loss functions, training methods, or combining different
base classifiers. In [14], a binary random variable is introduced
to indicate if the label of current example is correct, based on
which a stochastic programming problem is casted to learn the
multiple kernel classifier, while [15] use truncated hinge loss
for outlier reduction in SVM, since label noise usually results
in outliers. Recently, [16] proposes a strategy to improve
the robustness of SVMs based on a simple kernel matrix



correction, and [17] build a robust classifier taking into account
the detected inconsistencies of the labels.

Our method is different from the above works in that we
aim to learn a high level representation from the data with label
noise for later robust classification. To this end, we propose
a new type of auto-encoder method coined label-denoising
auto-encoder. In particular, we feed both the training samples
and their labels to the input layer of the network and try
to reconstruct them both at the output layer. Inspired by the
well known denoising auto-encoder [18], which corrupts the
input feature with artificial noise, but instead of doing this
on the data feature, we disturb the input label to its nearby
labels according to some pre-estimated probability during each
iteration. Like denoising auto-encoder, this can be thought of as
a robust mechanism embedded into the learning process which
effectively ”denoises” the label noise. The learnt representation
is shown to be robust against label noise on three real-world
data-sets.

The remaining parts of this paper are organized as follows:
In section II, we give a brief account on the auto-encoder
neural network, and the proposed method is detailed in section
III. The experimental results are presented in Section IV and
we conclude the paper in section V.

II. BACKGROUND

In this section, we first give a brief account on the auto-
encoder neural network and its variant - denoising auto-
encoder, which is closely related to the current work.

A. Auto-encoder Neural Network

An auto-encoder is a three-layered neural network, which
is commonly used to learn a nonlinear feature representation
from unlabeled data [19], [20], [21]. It can also be fine tuned to
make the learnt representation more suitable for classification
using labeled data after the unsupervised stage is finished
by replacing its decoder layer with an output layer for label
prediction [22].

The basic auto-encoder consists of an encoder and a
decoder, whose weights can be trained with backpropagation
[23], by setting the target values to be equal to the inputs.
In particular, for an input matrix X , the active vector of its
hidden layer can be denoted as H = S(W1X + b1), where
W1 is the connection weight between input layer and hidden
layer, b1 is the bias to the hidden layer, and S is a nonlinear
transform function (e.g., the sigmoid function). The output
vector X̂ is therefore calculated as X̂ = S(W2H + b2),
using the connection weights W2 between the hidden layer
and output layer and output bias b2. The learning objective
function is:

min‖X̂ −X‖2 + λ‖W‖2 (1)

After training, the network can reconstruct the input data
through hidden units, and the feature representation given by
the hidden layer compactly models the information of input
data. Note that the use of nonlinear transformation allows it to
capture complex relationship within the data.

B. Denoising Auto-encoder

The denoising auto-encoder [18] proposed by Vincent et al.
is a well-known variant of auto-encoder, which corrupts input
x before feeding it into the auto-encoder, while constraining
the network to faithfully reconstruct the original input (without
corrupting). This yields the following objective function:

min
∑
x∈D

Ex̃∼q(x̃|x)L(x, g(f(x̃))) (2)

where g and f are decoder and encoder respectively, L is some
loss function, and x̃ is the disturbed version of x (according to
the distribution q(x̃|x)). In general this can be implemented by
sample it from a Gaussian noise, i.e., x̃ = x + ε, ε ∼ N(0 ; σ2I).
This method actually imposes a regularization to the network
such that it will behave more robustly when dealing with a
future data point with data noise. But the degree to corrupt x
should not be too much, because this may lead to overfitting.
So we usually restrict x̃ to lie in the nearby region of x.

III. THE PROPOSED METHOD

In this section we detail the proposed method for handing
label noise data.

A. The Motivations

The goal of an ordinary classifier with clean label y is to
learn a mapping f from data x to its label, i.e., f(x) = y.
However, in the situation when the given label ỹ is noisy, this
can not be done since we don’t know the true label y. One way
to surrogate this is to treat the true but known label as a latent
variable and estimate the posterior probability given the data x
and noisy label ỹ, i.e., p(y|ỹ, x), by warping this in a maximal
likelihood framework [8], [9]. However, the accuracy of this
estimation depends strongly on the capability of the underlying
probabilistic model and the quality and size of the data at hand.

In this paper, we adopted a surrogate strategy that directly
learn a mapping from the input to the possible nosy label
ỹ, i.e., f̂(x, ỹ) = ỹ. This looks ridiculous at the first sight
since a noisy prediction is useless. However, our goal is not
to use this mapping for final prediction but to learn a feature
representation H for x with possibly noisy label y, such that
H = g(x, ỹ), where g is the feature mapping function. In other
words, we do not directly reduce the gap between f̂ and f ,
which is very difficult, but to learn a robust representation such
that samples in each class could be more separable in the space
of H . This is possible since such a representation is learnt from
both the information from data features and labels - even the
label part is noisy, the data feature part (we assume it is clean
currently) still contribute to a reliable learning. Another way
to look at this idea is that, since the noisy label is not directly
used for the final decision making, we essentially reduce its
possible negative influence on the performance.

In what follows we detail our method, which involves a
preprocessing step followed by a training step.

B. Preprocessing for Label Noise

It has been shown that preprocessing is useful in handling
data with label noise [6] [7], but too much preprocessing may
be harmful since the data with clean label is likely to be filtered



-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4

(a) before preprocessing (b) after KNN (c) after preprocessing

Fig. 1. The effect of preprocessing: The training set is with 20% random label
noise. The data point with label noise is highlighted with green circle. Left: the
original data distribution and their labels; Middle: the same but preprocessed
by KNN rectification; Right: the final results after further preprocessed by
softmax regression restoration.

during the procedure. Actually, it is not easy to judge the
degree the data inclines to be noise. And even when a big
training set contains some label noise, it is accompanied with
more useful information than a small training set. Hence a
careful preprocessing scheme is needed.

In this paper, we use a two-stage preprocessing strategy by
a combination of KNN and softmax regression. In particular,
we first use a KNN method to roughly clean the data set, based
on the consideration that if the label of data is different from
most of its neighbors, it is likely that its label is incorrect.
Here we take a rather conservative strategy, i.e., only when
more than 80% of one’s K nearest neighbours have identical
labels and when these labels are different from the one under
consideration, we rectify its label to make it consist with those
of its neighbours.

We then train a softmax regression classifier using
the KNN-rectified data. For a training set {(xi, yi), i =
1, 2, ..., N}, yi ∈ {1, 2, ...,K}. Given a test input x, we
estimate the probability that p(y = j|x) for each class:

p(yi = j|xi; θ) =
eθ

T
j xi∑K

l=1 e
θTl xi

(3)

where θj is the parameter vector of the jth class. The model
is estimated by maximal likelihood method with L2 regular-
ization on the parameter vectors.

This serves two purposes: first, it assigns each sample
a probability of its label being close to its true label (i.e.,
p(yi = j|xi)), which will be used later for label disturbance,
and second, it provides us the information about where the
most confusing regions lie in the feature space. Since we don’t
trust the KNN’s rectifications in these regions (usually they are
close to the boundaries of softmax decision plane), we restore
these rectifications to the original labels. This can be done
by looking at the posterior probability of each data point and
the labels of those whose probability to its class is less than
a threshold will be restored if they are previously flipped by
the KNN rectifier. Furthermore, we can also use it to rectify
the labels with high confidence value (higher than 0.8, for
example).

Fig. 1 illustrates the effects of our preprocessing method.
It can be seen that most of the label noise in the dense region
is rectified by the KNN but those in the decision boundary
remains.

1 2 3 4 1

1 2 3 4 1 2 3

1 2 3

1

2

Fig. 2. The overall architecture of the proposed Label-denoising auto-encoder.
The bias nodes are not shown for clear presentation.

C. Label-denoising Auto-encoder

In this section we detail our proposed label-denoising auto-
encoder which aims to learn a robust feature representation de-
spite of label noise approximating the aforementioned function
f̂(x, ỹ) = ỹ.

Labels by themselves can also be regarded as a feature.
For example, if we label an object as a football, we know it is
round and has some pentagon or hexagon grids on its surface.
In this regards, label is essentially an abstraction of one class
of things. Considering this, we add it to the input layer of the
auto-encoder as an extra dimension of the data point.

Figure 2 illustrates a typical architecture of our Label-
denoising auto-encoder (LDAE). We use one single node to
represent a multi-class label in the input layer 1 and a 1-of-K
coding scheme for the output layer. As a result, compared to
the standard AE network, we simply add one label node to the
input layer and K label nodes to the output layers. A softmax
regression scheme is further adopted to estimate the accuracy
of the label’s reconstruction. The overall objective function of
the network is as follows,

minW,θ J(X,W ) + λJ(Ỹ , θ) + γ‖W‖2 + β‖θ‖2 (4)

J(X,W ) =

n∑
i=1

‖x̂i − xi‖2 (5)

J(Y, θ) = −
n∑
i=1

K∑
k=1

1{ỹi = k} · log ŷik (6)

where the matrix X denotes the training set with each sample
xi as its i-th row, 1() is an indicator function, ỹi and ŷi is
respectively the disturbed and reconstructed label of the i-
th sample. The k-th component of the i-th output label is
denoted as ŷik. Let S denote the sigmoid function, then the
reconstructed data feature vector x̂i can be estimated with,

x̂i = S(W2 × S(W1 × [xi , ỹi] + b1) + b2) (7)

Denote the parameter vector of the k-th category in the
output layer as θk, then the corresponding label ŷik is estimated

1Other coding schemes in the input layer (e.g., 1-of-K) are possible, but we
found that the current scheme leads to the best performance.



by,
ŷik = C × exp(θk × S(W1 × [xi , ỹi] + b1)) (8)

where C is a normalization constant such that
∑
k ŷik = 1.

Recall that in the above formulation, ỹi denotes a random
disturb on the original label yi. This is implemented by
sampling it based on a distribution given the current data point,
i.e,

ỹi ∼ p(j|xi) (9)

where p(j|xi) is a discrete distribution table containing the
posterior probability of the sample xi belonging to each
category. The table is obtained from our preprocessing stage
(c.f., E.q. 3).

The traditional backpropagation [23] can be used for op-
timization of Eq. 4. Note that there is a tradeoff term (λ)
involved here between two gradients concerning the recon-
struction of data and the reconstruction of label, respectively.
If λ is 0, this model degenerates to the standard auto-encoder.
If it is set to ∞, we get multi-layer neural network.

It is worthy mentioning that in the traditional deep learning,
the two processes are dependant but trained separately: firstly,
large amounts of unlabeled data are used to train the stacked
auto-encoder, and only on the second step, labeled data are
introduced to fine-tuning the previous network. The two steps
have different targets and the first step just provides a better
initialization. While in our work the two are learned simulta-
neously with feature learning serving as regularization for the
label reconstruction.

D. Discussions on the Label Disturbance

In our work, to get a label-robust feature representation,
we disturb the input of label to its nearby label region during
each iteration. In the denoising auto-encoder the input data is
corrupted with a small random driving it to its nearby region,
i.e., a small bias is added to each input feature. But in our
case, the nearby region of a label is not its nearby value in the
label space.

This issue is addressed by the softmax regression in our
method, in which the nearby region of a label is determined by
their posterior probability given the current data point. During
each iteration the label of each point is determined dynamically
according to this probability. As a consequence, the labels of
those data with high probability would be less likely to change.
This emphasizes that the label noise on the decision boundary
should receive more treatment.

This denoising process is much in common with the
process of de-noising autoencoder when coping with noise on
data feature, with the difference in that under the presence of
label noise we bring in the label robust mechanism through
training process. There are mainly three reasons that we are
very likely obtain more robust feature representation using our
methods: First, we take more information into account when
learning the representation; Second, we trained the model with
an united objective function including both data and its label as
illustrated by λ term of E.q. 4. In other words, even when one’s
label is mistakenly flipped, the feature learned from data can
also help to alleviate the influence of such errors. Finally, the
method effectively focuses on the most annoying label noises,

i.e., those on the boundary. To disturb them means that we do
not want to be always mislead by them and try to rectify them
to more confident ones, hence it can also be seen as a label
revising process.

E. Using the Label Denoising Autpo-encoder

After acquiring the features representations, we replace the
decoder layer of the auto-encoder with a softmax layer while
keeping the encoder layer fixed to train a classifier, then use
it to make prediction for an incoming data point.

This means, however, we have to feed a ’noisy’ label of
the test sample to the network to estimate its ’clean’ label (c.f.,
Figure 2). To do this, we may simply initialize its label with
a random value. Alternatively, we may use another classifier
(its particular implementation in this work is given in the
experimental section) to assign one label for it, which we call
pre-prediction. After this, the trained classifier can be used
to make the final prediction. The overall flow chart of the
proposed method is summarized in Algorithm 1.

Algorithm 1 The label-denoising auto-encoder method.
Input:

Training set: {(xi, yi)| i = 1, 2, ..., N} ;
Testing set: {(xi)| i = 1, 2, ..., N} ;
Parameters: K of KNN, the number of hidden units
n, the weight decay γ, the tradeoff parameter for label
reconstruction λ

Output:
The prediction y of the test data x
—————- Training Stage

1: Preprocessing: Use KNN to clean the data as described
in Section III-B. Then make a coarse classification by
softmax regression and record all the posterior probability
(E.q. 3);

2: Train a label-denoising autoencoder using the method
described in Section III-C.

3: Train an autoencoder classifier based on the learnt repre-
sentation using the training data.
—————- Test Stage

4: Do pre-prediction for the test data.
5: Make the prediction using the trained autoencoder classi-

fier;

IV. EXPERIMENTS AND ANALYSIS

To empirically validate the effectiveness of the proposed
approach we conducted experiments on artificial toy data and
real database: MINST, USPS and ORL database. In prepro-
cessing we set K of KNN to be 5, and use the baseline auto-
encoder (AE) + softmax classifier for pre-prediction. Note that
in what follows we don’t consider the probabilistic perturbation
of x [18] but only the label y is disturbed probabilistically.

A. Experimental Results on Artificial Toy Data

To create our toy problem, we sampled 500 examples from
two Gaussian distributions. We will focus on the label noises in
the decision boundary since those regions are the places where
label noise would be most likely to occur. In particular, we first
estimate each data’s posterior probability to its true class, and



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Experimental results on the toy data. The data point with label noise
is highlighted with green circle. (a) Feature space of auto-encoder (b) Feature
space of label-denoising auto-encoder.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
AE
Label−denoising AE

Ground Truth

Fig. 4. The decision boundary of different models on the toy data. The data
point with label noise is highlighted with green circle.

find those data points with posterior probability lower than 0.7
and flip their labels with a flipping probability of 0.8.

After this we use our label-denoising auto-encoder(LDAE)
to learn the features with the number of hidden units set to
be two. For comparison, we also train a standard auto-encoder
with the same setting. Fig. 3 gives the representation learnt
with the two models, respectively. One can see from the figure
that our LDAE model gives better feature projection in terms
of separability between two groups of samples. We then project
the boundary back to the input space. Since the dimensions of
the LDAE input space is 3, its boundary would be a curved
surface. To make a clear visualization we only take the 2
dimensions of data such that the two model can be compared
side by side. Fig. 4 gives the results. We can see that a biased
boundary is acquired through AE, but our LDAE yields a more
accurate boundary.

B. Experimental Results on the MINST Database

MINST [23] is a database of handwritten digits range from
0 to 9. The digits have been size-normalized and centered in
a 28 × 28 image. It has a training set of 60000 examples,
and a test set of 10000 examples. We random select 10000
data from training set to construct our noise set. For test set
we use the standard one defined by the evaluation protocol of
this dataset. The noise is injected randomly, i.e., changing the
labels randomly to other categories, with a noise level varying
from 10% to 70%.

Fig. 5(a) gives the results. We made several observations
from this figure: 1) Our method (’LDAE’) performs best
among the compared ones consistently across various noise
levels, and the ’softmax regression’ performs worst in this ex-
periment; 2) the KNN step has minor influence on this dataset
but it does not deteriorate the performance as well (’LDAE

without KNN’), possibly due to the conservative strategy we
adopted; 3) inputting the original (noisy) label y instead of ỹ
(’LDAE without label disturbance’) performs worse than using
disturbed label ỹ (’LDAE’), which shows that disturbing labels
helps to improve the robustness performance against noise; and
4) embedding label information in the feature representation
is useful (c.f., the performance difference between ’AE with
label embedded’ and ’AE without label embedding’).

To highlight the effectiveness of the proposed method to
embed label information in the feature representation, we
compare it with another mechanism which uses the label
information to adjust the network as well, that is, fine-tuning.
The major difference between these two methods lies in
that the fine-tuning is a two-step strategy which trains the
network unsupervisedly then use label information to fine tune
the learnt weights without changing the network architecture,
while in our method the architecture of AE is modified by
adding the label nodes in both input and output layer and the
weights are trained in one step.

Fig. 5(b) shows the performance on the MINST dataset.
One can see that if we don’t embed the label information in
the feature representation and simply use it in a fine-tuning
way, the performance will deteriorate very fast with increasing
amount of label noise injected. On the contrary, our method
without fine-tuning achieves the best performance especially
when the noise level is relatively high. This shows that the
fine-tuning procedure is not robust against label noise, possibly
due to the potential danger to reduce the quality of the learnt
feature representation with the inaccurate supervision.

C. Experimental Results on USPS Database

USPS is a database of handwritten digits range from 0 to 9.
We downloaded the USPS digit database from a public link2.
Each digit is resized to a 16 by 16 gray-level image. There are
1100 examples for each class. We randomly select 6000 of
them as training set and 3000 as test set. And the noise level
ranges from 10% to 70%. The number of hidden units here is
100. The preprocessing is performed before feature learning.
Fig. 5(c) gives the results. One can see that the proposed LDAE
method still performs best among the compared ones.

D. Experimental Results on ORL Database

The ORL database consists of 400 face images from 40
persons. For each person, there are 10 different gray scale
images with a size of 92 × 112. We set aside two images of
each individual (80 images in total) to make a pure data set to
which we won’t add noise. Then we then randomly choose 4
of each person to make a noisy training data set (160 images
in total). Therefore we have a training set consisted of 240
images (among them 160 images have noisy labels), and the
remaining 160 images are the testing data. The network has
100 hidden units.

In this dataset, we train a standard AE using all the
training data and then turn it into a classifier by replacing the
decoder layer with a softmax regression and train it using 80
clean training set. This is actually a standard semi-supervised
learning scheme (denoted as ”AE without label embedded” in

2http://www.cs.toronto.edu/ roweis/data/usps all.mat



10 20 30 40 50 60 70

75

80

85

90

Experiment on MINST

A
cc

ur
ac

y(
%

)

Noise Level(%)

softmax regression
AE without label embeded
AE with label embeded
LDAE without KNN
LDAE without label disturbance
LDAE

(a)

10 20 30 40 50 60 70
55

60

65

70

75

80

85

90

95
Experiment on MINST

A
cc

ur
ac

y(
%

)

Noise Level(%)

LDAE

AE + finetune 

LDAE + finetune

(b)

10 20 30 40 50 60 70
80

85

90

95
Experiment on USPS

A
cc

ur
ac

y(
%

)

Noise Level(%)

softmax regression
AE without label embeded
AE with label embeded

LDAE
LDAE without label disturbance

(c)

10 20 30 40 50 60 70 80
85

86

87

88

89

90

91
Experiment on ORL

A
cc

ur
ac

y(
%

)

Noise Level(%)

softmax regression
AE without label embeded
AE with label embeded

LDAE
LDAE without label disturbance

(d)
Fig. 5. Experiments results: (a) The performance of the label-denoising auto-encoder compared with baseline methods on the MINIST data set; (b) Performance
compared with usual finetuning on the MINIST data set; (c) Performance comparison of different models on USPS database with label noise; (d) Experiment
on ORL database.

Fig. 5(d)). The baseline softmax regression classifier is also
trained with clean data. Fig. 5(d) gives the results. One can
see that our proposed LDAE model outperforms this semi-
supervised AE significantly.

V. CONCLUSION

In this paper we proposed a feature learning method in the
presence of label noise, called label-denoising auto-encoder
(LDAE). The architecture of LDAE allows it to be trained with
noise labels together with the data features, which effectively
alleviates the influence of inaccurate supervision information.
We propose to optimize the model with dynamically disturbed
labels to prevent noisy labels from misleading the direction of
learning procedure. We show that the learnt feature represen-
tation is beneficial to the subsequent classification.

ACKNOWLEDGEMENTS

The authors want to thank the anonymous reviewer-
s for their helpful comments and suggestions. This work
was supported by the National Science Foundation of China
(61073112, 61035003, 61373060), Jiangsu Science Founda-
tion (BK2012793), Qing Lan Project, Research Fund for the
Doctoral Program (RFDP) (20123218110033).

REFERENCES

[1] F. G. Cozman, I. Cohen, M. C. Cirelo et al., “Semi-supervised learning
of mixture models,” in ICML, 2003, pp. 99–106.

[2] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–
1359, 2010.

[3] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple tasks
with kernel methods,” in Journal of Machine Learning Research, 2005,
pp. 615–637.

[4] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 1–4, 2006.

[5] A. Bergamo and L. Torresani, “Exploiting weakly-labeled web images
to improve object classification: a domain adaptation approach,” in
Advances in Neural Information Processing Systems, 2010, pp. 181–
189.

[6] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “A novel noise
filtering algorithm for imbalanced data,” in Machine Learning and
Applications (ICMLA), 2010 Ninth International Conference on. IEEE,
2010, pp. 9–14.

[7] S. Fefilatyev, M. Shreve, K. Kramer, L. Hall, D. Goldgof, R. Kasturi,
K. Daly, A. Remsen, and H. Bunke, “Label-noise reduction with
support vector machines,” in Pattern Recognition (ICPR), 2012 21st
International Conference on. IEEE, 2012, pp. 3504–3508.

[8] N. D. Lawrence and B. Schölkopf, “Estimating a kernel fisher discrim-
inant in the presence of label noise,” in ICML. Citeseer, 2001, pp.
306–313.

[9] C. Pal, G. Mann, and R. Minerich, “Putting semantic information
extraction on the map: Noisy label models for fact extraction,” in
Proceedings of the Workshop on Information Integration on the Web
at AAAI, 2007.

[10] J. Bootkrajang and A. Kabán, “Label-noise robust logistic regression
and its applications,” in Machine Learning and Knowledge Discovery
in Databases. Springer, 2012, pp. 143–158.

[11] D. Wang and X. Tan, “Robust distance metric learning in the pres-
ence of label noise,” in Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

[12] T. Leung, Y. Song, and J. Zhang, “Handling label noise in video clas-
sification via multiple instance learning,” in Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE, 2011, pp. 2056–2063.

[13] I. Cantador and J. R. Dorronsoro, “Boosting parallel perceptrons for la-
bel noise reduction in classification problems,” in Artificial Intelligence
and Knowledge Engineering Applications: A Bioinspired Approach.
Springer, 2005, pp. 586–593.

[14] T. Yang, M. Mahdavi, R. Jin, L. Zhang, and Y. Zhou, “Multiple kernel
learning from noisy labels by stochastic programming,” arXiv preprint
arXiv:1206.4629, 2012.

[15] Y. Wu and Y. Liu, “Robust truncated hinge loss support vector ma-
chines,” Journal of the American Statistical Association, vol. 102, no.
479, 2007.

[16] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines un-
der adversarial label noise.” Journal of Machine Learning Research-
Proceedings Track, vol. 20, pp. 97–112, 2011.

[17] C. Bouveyron and S. Girard, “Robust supervised classification with
mixture models: Learning from data with uncertain labels,” Pattern
Recognition, vol. 42, no. 11, pp. 2649–2658, 2009.

[18] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,” in
Proceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 1096–1103.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Cognitive modeling, vol. 1, p.
213, 2002.

[20] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural networks,
vol. 2, no. 1, pp. 53–58, 1989.

[21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[22] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
The Journal of Machine Learning Research, vol. 11, pp. 625–660, 2010.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.


