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Abstract—Label noise is a common phenomenon when labeling
a large-scale dataset for supervised learning. Outlier detection is
a recently proposed method to handle this issue by treating the
outliers of each class as potential data points with label noise
and remove them before training. However, this approach could
lead to high false positive rate and hurt the performance. In
this paper, we propose a novel and effective method to deal with
this issue by combining the strength of outlier detection and
reconstruction error minimization (REM). The main idea is add
a second verification step (i.e., REM) to the outputs of outlier
detection so as to reduce the risk of discarding those points
which do not fit the underlying data distribution well but with
correct label. Particularly, we first find the outliers in each class
by a robust deep autoencoders-based outlier detector, through
which not only did we get candidate mislabeled data but also a
group of well-learned deep autoencoders. Then a reconstruction
error minimization based approach is applied to these outliers to
further filter and relabel the mislabeled data. The experimental
results on MNIST dataset show that the proposed method could
significantly reduce the false positive rate of outlier detection and
improve the performance of both data cleaning and classification
in the presence of label noise.

Index Terms—label noise, outlier detection, robust deep au-
toencoder, reconstruction error minimization

I. INTRODUCTION

A large-scale dataset with good annotation is the founda-
tion of supervised learning algorithms. As collecting such a
reliable dataset by expert manual labeling are often expensive
and time-consuming, nowadays some simple and convenient
alternative methods are commonly adopted, such as retrieving
keywords from the web like WebVision dataset1, or using
crowd-sourcing platforms like Amazon Mechanical Turk2.
However, these non-expert methods may result in a dataset
with various degree of label noise. As a consequence, the
classification performance of a system trained with such data
may be deteriorated [1]. Moreover, due to the extra uncertainty
caused by the label noise, the complexity of underlying models
would generally be increased to account for such noise, which
means that more samples are needed for effective learning [2].
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To reduce the influence of label noise, cleaning the dataset
is a natural way. Some methods clean the mislabeled data by
directly using outlier detection techniques like Local Outlier
Factor (LOF) [3] or One-Class Support Vector Machines (OC-
SVM) [4] where they treat the data with noisy labels as outliers
in their corresponding class. However, not all of the outliers are
the mislabeled data. For example, according to the definition
of outliers, ’An outlier is an observation which deviates so
much from the other observations as to arouse suspicions that
it was generated by a different mechanism’ [5], a sample in a
boundary region of a class may meet the definition but is not
necessarily contains label noise.

Based on this idea, in this paper, instead of treating outliers
as data points with label noise, we only consider them as
candidate mislabeled data, and use another step to verify
whether they are really with incorrect labels. To this end, we
proposed a novel and effective method to reduce the effect
of label noise, by combining outlier detection techniques with
minimum reconstruction error. Specifically, we first partition
the dataset based on their labels, and then use a state-of-the-
art outlier detection method based on robust deep autoencoder
(RDA) to detect the outliers in each subset, and treat them
as candidate mislabeled data. Finally, we use a reconstruction
error minimization based method to further verify such candi-
dates by checking whether they can be reconstructed well by
their corresponding class.

The remaining part of this paper is organized as follows. In
Sect. II, the related work about solving label noise problem
is briefly reviewed. The proposed pipeline of our method is
introduced in Sect. III. In Sect. IV, we show and analyze
various experimental results compared with the state-of-the-
art methods. In Sect. V, we conclude the paper.

II. RELATED WORK

In the literature of solving label noise problem, there are two
main approaches, which are label noise cleaning methods and
label noise robust methods respectively. Traditionally, cleaning
dataset is a major and direct way for this. Those methods
first try to find out data with noisy labels and then filter or
relabel them to get a cleaner dataset. Some methods learn a
complementary classifier and treat the misclassified data as
label noise data [6], [7]. However, the misclassification based



cleaning methods sink into a chicken-and-egg dilemma where
the misclassification analysis relies on a good classifier while
a dataset with label noise may get a poor classifier. Another
work is proposed in [8] where they introduce human expert to
check the suspicious data from the support vectors of SVM,
since the support vectors contain almost all of the mislabeled
data. A further work tries to reduce the number of suspicious
data to be checked based on active learning [9]. Although
expert based methods work well in practice, it is impossible or
hard to get human expert in some particular scenes. From this
point of view, the proposed method can correct the mislabeled
data automatically.

As for label noise robust methods, they try to make the
mislabeled data less harmful to the model rather than cleaning
them. Avoiding overfitting techniques are introduced to make
the classifier not too sensitive for training set, such as robust
loss functions [10] and ensemble learning [11] which can only
suit for simple cases. On the other hand, some methods are
particularly designed for label noise problem using various
robust optimization methods [12], [13]. However, these are
mainly supervised methods in which the effect of each data
point on the postulated model is carefully controlled by design
but at the risk of reduced learning efficiency.

III. THE PROPOSED METHOD

A. Pipeline for Reducing Label Noise

The overall proposed pipeline for reducing label noise
consists of two main steps:
• Outlier detection with robust deep autoencoder (RDA)

For training data with label noise, we first partition these
data based on their corresponding labels. Then a robust
deep autoencoder is trained to detect outliers in each
group. Finally, we obtain the outliers and the learned
autoencoder for each group.

• Reconstruction error minimization (REM) classifier
Based on the well-learned deep representation by autoen-
coders, a reconstruction error minimization (REM) based
classifier is used to further get the label noise data from
outliers while relabeling them.

B. Outlier detection with robust deep autoencoder (RDA)

The proposed pipeline is based on outlier detection tech-
niques and most outlier detection methods (such as one class
SVM [14], one class neural network [15] and etc.) can be
naturally adopted. Here one of the state-of-the-art outlier
detection methods, i.e., the robust deep autoencoder (RDA)
[16], is chosen to detect the outliers. Suppose that we have a
dataset X where each row represents an entry, and some of
the entries are outliers. The main idea of RDA is to split X
into two parts X = LD + S, where LD is the interpretable
part that can be well reconstructed by deep autoencoder and
S denotes the outliers which are difficult to reconstruct. The
target function can be defined as follows:

min
θ,S
||LD−Dθ(Eθ(LD))||2 + λ||ST ||2,1

s.t.X − LD − S = 0.
(1)

where Eθ(·) and Dθ(·) denote the encoder and decoder of an
deep autoencoder, l2,1 norm for ST is used as a row sparse
regularized item, and λ is the balance factor. Moreover, we
treat the j-th sample as an outlier if ||S(j, :)||2 equals to zero.

As for training the target function, back-propagation and
proximal gradient are used to optimize ||LD−Dθ(Eθ(LD))||2
and ||ST ||2,1 respectively. To combine the two parts, Alternat-
ing Direction Method of Multipliers (ADMM) [17] and R. L.
Dykstra’s alternating projection method [18] are used. For a
more specific algorithmic process can be seen in [16] which
is not the focus of this paper.

C. Reconstruction error minimization (REM) classifier

After outlier detection by RDA in each class, not only the
outliers in each class are picked out which are regarded as
candidate label noise data, but also we get the K well-learned
deep autoencoder < Eθi(·), Dθi(·) >, i = 1, 2, · · · ,K. Since
the autoencoder can be seen as a template for the correspond-
ing class which reflects the characteristics of each class to a
certain extent, we utilize this kind of information to further
filter the true label noise data from outliers.

Particularly, for an outlier x detected by RDA, we first
predict its label ytrue by simply calculating the reconstruction
error on each deep autoencoder and then assign it to the class
which has the minimum reconstruction error, as follows:

ytrue = argmini=1,2,3...,K ||Dθi(Eθi(x)− x||2. (2)

The reconstruction error is a good indictor to distinguish real
mislabeled data from other outliers (e.g., data in the boundary
region of its own class), as data points from a class tend to
get a lower reconstruction error from its own class than from
other classes.

Then, we determine whether an outlier is with label noise
or not by an indicator function:

I(x) =

{
1 y 6= ytrue

0 otherwise
(3)

where y is their initial label and ytrue is the predicted label
which is regarded as the true label. An outlier will be regarded
as a label noise data if y is not equal to ytrue. Note that we
can also regard the (2) as a classifier which can be used to
relabel the mislabeled data and classify the test data.

IV. EXPERIMENT AND RESULTS

A. Dataset and Evaluation Metrics

1) Dataset: In order to verify model performance, we
use MNIST dataset to conduct our comparative experiments.
MNIST dataset as a well-known digit dataset consists of 60000
training data and 10000 test data. Each image has 28 × 28
pixels. Since a training set with label noise is needed, we
inject label noise following the protocol introduced in [1]: 1)
randomly select instances per class and 2) flip the labels into
one of the other remaining labels. Note that only the training
set contains label noise, while the test set is clean.



(a) iForest (b) OC-SVM

(c) RDA (d) LN-RDA

Fig. 1. Performance of outlier detection for different models. The best F1-
score for these models from (a) to (d) are 0.36, 0.46, 0.64, 0.82.

2) Evaluation Metrics: Hereby, we use accuracy, precision,
recall, and F1-score as our evaluation metrics, which are
defined as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F1-score =
2 ∗ TP

2 ∗ TP + FP + FN
(7)

where TP , FP , TN , and FN are the true positive, false
positive, true negetive, and false negetive respectively.

B. Label Noise Cleaning

Hereby, we demonstrate the effectiveness of our proposed
method denoted as LN-RDA in label noise cleaning task.
Firstly, performance of mislabeled data detection is compared
with classical and state-of-the-art methods, which are Isolation
forest (iForest), one class SVM (OC-SVM), and robust deep
autoencoder (RDA).

Parameter settings for each model are shown as follows. For
iForest, the number of trees is 100 and fractions is set from
0.01 to 0.15. As for OC-SVM, we select RBF kernel function
for SVM and the same setting for fractions as iForest. Since
our proposed LN-RDA is based on RDA method, they have
the same setting for the model parameters of deep autoencoder
and the λ we choose is from 0.00035 to 0.00125.

The comparison of experimental results are shown in Fig. 1
where 5% label noise is added. It can be seen that our proposed
LN-RDA method gets the best F1-score among these methods.

(a) RDA (b) LN-RDA

Fig. 2. Label noise detection results for training data labeled ’4’. All the
outliers detected by RDA would be treated as data points with label noise,
indicated by a square, where a red square indicates a true positive (i.e., a data
point with label noise) while a green square indicates a false positive (i.e.,
a data point with correct label but are falsely identified as incorrect). One
can see that generally a outlier detection method would lead to lots of false
positives but our LN-RDA significantly reduces them.

Compared with the RDA method, LN-RDA has a higher
precision which shows that the minimum reconstruction error
criterion is effective for reducing the number of false positive
instances. A more intuitive improvement can be seen in Fig. 2.
As for the value of recall in LN-RDA, it is almost the same
as RDA, since it is restricted to the effectiveness of outliers
detection by RDA method.

Then we use the accuracy of relabeling the mislabeled data
as the overall result. We relabel the mislabeled data by (2)
as our cleaning result and compare it with several classical
models which are ICCN-SMO [19], TC-SVM [8], and ALNR
[9]. The hyper-parameters settings of these models are based
on corresponding papers. Note that these methods learn from
the annotation from human expert to relabel the mislabeled
data, while in this respect, our method is completely automatic
in the sense that we do not assume the existence of such
supervised information.

TABLE I
PERFORMANCE FOR RELABELING MISLABELED DATA ON MNIST

DATASET WITH 5% LABEL NOISE.

Methods ICCN-SMO TC-SVM ALNR LN-RDA
[19] [8] [9] (ours)

Time cost (s) 938.6 352.1 70.8 6.5
Accuracy (%) 65.47 95.45 94.10 98.06

Table I gives the accuracy and time cost. It can be seen that
although no human expert correction, our proposed method
achieves the best accuracy compared with other human expert
based methods. Moreover, since the relabeling process is
conducted by human expert in these comparison methods, our
model has the absolute advantage in time cost.

C. Classification in the Presence of Label Noise

In this section, we compare the classification performance
for test set when the training set contains label noise. In
the implementation of our proposed method, minimum recon-
struction error classifier is also used as shown in (2). Note



that we select the optimal λ which gets the best F1-score
in RDA for each class. Moreover, we train a normal deep
autoencoder in each class and classify the test data by the
proposed classifier. And we denote it as LN-DA which is used
as the baseline method. Besides these, we also compare our
method with two types of state-of-the-art methods, including
cleaning based methods (TC-SVM [8] and ALNR [9]) and
noise robust methods (L1-norm [20], BML [21], and RNCA
[22]). In addition, the performance of all compared methods
is based on the original implementation by corresponding
papers and the related hyper-parameters are selected by cross-
validation. We repeat thirty times for each experiment and
report the mean and standard deviation of the accuracy.

TABLE II
CLASSIFICATION PERFORMANCE (%) ON MNIST DATASET WITH

DIFFERENT LABEL NOISE.(THE ASTERISKS INDICATE A STATISTICALLY
SIGNIFICANT DIFFERENCE BETWEEN THE SECOND BEST METHOD AND

THE PROPOSED METHOD AT A SIGNIFICANCE LEVEL OF 0.05)

Methods Noise level(%)
0 5 10 20 30

TC-SVM 98.27±0.06 95.83±0.06 94.95±0.16 91.45±0.20∗ 84.43±0.27∗
ALNR 98.27±0.10 95.19±0.10 94.47±0.21 90.21±0.27 83.39±0.33
L1-norm 98.00±0.10 96.67±0.15 95.12±0.22∗ 89.78±0.31 81.39±0.49
BML 97.95±0.10 96.58±0.16 95.08±0.23 89.68±0.31 81.63±0.49
RNCA 98.15±0.11 96.73±0.17∗ 95.05±0.22 89.77±0.31 82.31±0.49
LN-DA 99.12±0.15 95.37±0.20 94.28±0.28 86.33±0.40 79.26±0.55
LN-RDA 99.04±0.11 98.06±0.18 96.24±0.25 92.50±0.37 86.39±0.50

Tabel 2 shows that our proposed method achieves the
best performance consistently at both low-level and high-level
noise compared with other methods, indicating the effective-
ness of the pipeline in dealing with label noise problem. When
the training set is clean, the baseline method LN-DA gets the
best classification accuracy which shows the minimum recon-
struction error based classifier is a suitable choice. However,
due to the effect of label noise, the performance of LN-DA
gets worse, especially in the high noise situation.

As for label noise cleaning methods, they achieve higher
accuracy compared to the baseline method, as they learn the
classifier using a cleaner training set. On the other hand,
label noise robust methods achieve better results at low noise
level compared with cleaning based methods. However, these
methods perform worse at higher noise levels, highlighting
the difficulty of obtaining reliable point estimation under the
high-level label noise.

V. CONCLUSION

In this paper, based on a simple but novel idea that outlier
detection can be regarded as a preliminary process for detect-
ing candidate mislabeled data, we proposed to use minimum
reconstruction error to further verify the truth of being con-
taminated of the detected data, as for a data point with correct
label, the likelihood being reconstructed with minor error by a
model of its own category would be much higher than a data
point with incorrect label. Various experiments on the MNIST
dataset show that our proposed method significantly reduce

the false positive rate for an approach that naively applying
an outlier detection algorithm to identifying the data points
with label noise. We also show that our method outperforms
several state-of-the-art methods in both data cleaning and
classification, in the presence of label noise.
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