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a b s t r a c t

Recent work has shown the advantages of using high level representation such as attribute-based
descriptors over low-level feature sets in face verification. However, in most work each attribute is coded
with extremely short information length (e.g., ‘‘is Male’’, ‘‘has Beard’’) and all the attributes belonging to
the same object are assumed to be independent of each other when using them for prediction. To address
the above two problems, we propose a discriminative distributed-representation for attribute descrip-
tion; on the basis of this description, we present a novel method to model the relationship between attri-
butes and exploit such relationship to improve the performance of face verification, in the meantime
taking uncertainty in attribute responses into account. Specifically, inspired by the vector representation
of words in the literature of text categorization, we first represent the meaning of each attribute as a
high-dimensional vector in the subject space, then construct an attribute-relationship graph based on
the distribution of attributes in that space. With this graph, we are able to explicitly constrain the search-
ing space of parameter values of a discriminative classifier to avoid over-fitting. The effectiveness of the
proposed method is verified on two challenging face databases (i.e., LFW and PubFig) and the a-Pascal
object dataset. Furthermore, we extend the proposed method to the case with continuous attributes with
promising results.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Recently, there has been growing interest in using middle-to-
high level feature descriptors for face representation. One typical
example is the attribute descriptors [1–9]. N.Kumar et al. [3,4] have
recently shown that using the outputs of a series of component
classifiers with each tailored to some particular aspects of the hu-
man face images, called visual attributes, they are able to achieve
close to state-of-the-art performance of face verification on the
challenging Labeled Faces in the Wild (LFW) [10]. This result is
interesting in several aspects. Firstly, the number of features used
in their work is very small (i.e., only 73 attributes), which means
that it provides a very economical but powerful way to describe
faces. This is in sharp contrast with the commonly used low-level
features in image description, such as pixel values, gradient direc-
tions, scale-invariant feature transform (SIFT) [11], where usually
thousands of features are needed. Secondly, the attribute
descriptor is user-friendly in that its meaning is understandable
to human beings (everyone knows what ‘‘white male’’ means)
while the meaning of most previously mentioned low-level fea-
tures is less intuitive to us. Last but not least, such a descriptor is
generalizable and sharable, which makes it particularly suitable
for such problems as zero-shot learning [12,13] or between-class
transfer learning [2,14].

However, in most work each attribute is coded with extremely
short information length (e.g., using binary code such as ‘‘is Male’’,
‘‘has Beard’’) and all the attributes belonging to the same object are
assumed to be independent of each other when using them for pre-
diction. The one-bit information length of attribute coding makes
the representation less stable, and could bring trouble to many
interesting subsequent processing tasks, such as modeling the sim-
ilarity between attributes. Actually, research in the field of cogni-
tive discovery has shown the usefulness of the relationship
between feature sets. For example, Bhatt and Rovee-Collier [15]
experimentally showed that infants as young as three months of
age gain the capability to encode the relations among object
features, and use such a feature configuration for general object
recognition. However, traditionally one of the major challenges
in modeling the feature configurations lies in the huge number of
low-level features (e.g., the dimension of a 100� 100 face image
is as high as 10;000 using the gray-value features). In addition, it
rstand.
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is very difficult for a human being to understand what exactly such
a big feature configuration mean. Fortunately, both aforemen-
tioned problems can be addressed by the attribute descriptors
due to its high level and compactness in object description. Indeed,
despite the partial success of using attribute descriptors by treating
them statistically independent of each other [1,3,4,16] or condi-
tionally independent given the class label [2], recent work has
shown that it is beneficial to exploit the relationship between attri-
butes under various contexts [5,17–19]. Some of them will be dis-
cussed in the next section.

In this work, we propose a discriminative distributed-represen-
tation for attribute description; on the basis of this description, we
investigate how to model the similarity relationship between attri-
butes and how such relationship could be exploited to improve the
performance of face verification. The idea of distributed represen-
tation was first introduced by Hinton [20], and successfully applied
in statistical language modeling [21]. In this work, we develop a
new distributed representation for each individual attribute by
taking the information of subject identification into account. The
method is inspired by the vector representation of words in the lit-
erature of text categorization, and the meaning of each attribute is
embedded into a high-dimensional vector in the subject space (cf.
Fig. 1). Such a representation allows us to model the similarity be-
tween attributes in a much stable and reliable way. In particular,
we construct an attribute-relationship graph based on the distribu-
tion of attributes in the subject space, which effectively encodes
the pairwise closeness relationship between any two attributes.
For example, a ‘‘male’’ attribute is highly related to such attributes
as ‘‘wearing necktie’’, ‘‘bushy eyebrows’’, ‘‘beard’’, and so on (cf.
Fig. 9). To exploit such information for prediction, we integrate
the attribute-relationship graph into a linear classifier to constrain
the searching space of its parameters, based on the assumption
that similar attributes should have similar weights. This is helpful
to avoid over-fitting and improve the generalization capability of
the learned classifier. The uncertainty in attributes responses is
also taken into account in the final model.

This journal paper builds on the earlier conference work [22]. In
this extended version, we extend above ideas and merge them into
a single framework, which works for both discrete and continuous
attributes. The effectiveness of the proposed methodology is
empirically verified with encouraging results on two large-scale
face databases, one object classification dataset and several UCI
data sets. In what follows, we first review the related work in
Section 2 and then present the proposed method in Section 3.
Extensive experimental results are given in Section 4. Finally, we
conclude this work in Section 5.
2. Related work

Recently, attribute-based representation has been extensively
researched in and beyond the field of face recognition [3,4],
Fig. 1. The overall pipeline of the proposed algorithm. Each attribute descriptor is fi
representation, which are then used to construct an attribute graph. The graph is finally
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including object recognition [5,9,23], scene understanding [18,24],
image retrieval [25,26], activity analysis [27–29], and shows special
advantages in active learning [30–32], transfer learning [2,12,14]
and zero-shot learning [13]. Since this work is mainly about
attribute representation and modeling their relationship, in what
follows, we will not go into the details on how to extract attributes
and apply them in various applications, but first give a brief
discussion on how to define attributes and then focus on the related
work on building the relationship between attributes.

2.1. Attribute definition

To use the attributes, we have to define them firstly. Attribute
definition is the process of deciding which visual qualities should
be used for depicting the objects or events. Most attributes are
manually specified with respect to different application scenarios.
These attributes are usually semantically understandable and can
be seen as concepts in natural language. The specified attributes
are then extracted from the images based on some low-level fea-
tures. In this way, attribute can be thought of as a high-level rep-
resentation which incorporates human understandable concepts
into the machine learning process in a reasonable way.

Although attribute description is mostly intuitive, building a
suitable taxonomy of attributes for a particular task is not easy.
In [3], the authors proposed to describe each face with 73 attri-
butes (cf. Fig. 2), which can be roughly categorized into four types:
(1) appearance description of key facial parts, such as the shape,
size and style of the nose, mouth, eyes, eyebrow, jaw, and hair;
(2) high-level semantic features like gender, age, and ethnicity;
(3) specification about imaging conditions, e.g., lighting, expres-
sion, posture, accessory, and the environment; and (4) personal
specific traits like bald, goatee, and attractiveness. In [9], by sur-
veying multiple online cataloges, the authors produced 26 com-
mon attributes to describe clothing, covering 6 patterns, 11
colors, and 6 miscellaneous characteristics such as wearing the
necktie or the scarf, and the collar or the placket presence. Patter-
son and Hays [33] gave a comprehensive discussion on attribute
definition, discrimination and predictive power of attribute in the
context of scenes description.

2.2. Attribute relationship exploitation

We now review how to model and exploit the relationship be-
tween attributes. As mentioned before, this is not trivial because
an attribute is usually simply represented as a binary bit to denote
its presence/absence. Despite this, there is some work which ex-
ploit various types of attribute relationship in different contexts
to improve the performance of prediction.

In [19], the concept of binary attribute was introduced to de-
scribe the spatial relationship between a pair of attributes corre-
sponding to two image segments respectively. Such relationship
was shown to be very effective in describing simple geometric
rst projected into a common subject space to obtain a high-dimensional vector
exploited to regularize the objective of a linear SVM-based face verifier.

attributes for improved face verification, Comput. Vis. Image Understand.
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Fig. 2. Illustration of the 73 attributes descriptors used for face verification [4] (The figure is best viewed in electronic form).
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patterns like stripes. In [5], Wang and Mori exploited more general
relationships between attributes to improve the performance of
object recognition. Particularly, they treated the correlations
among attributes as augmented feature sets in the latent SVM
framework [34]. However, one unwelcome consequence of this is
that the number of possible combinations between attributes
grows quadratically with the number of attributes. To address this
issue, they had to simplify the undirected graph that encodes the
attribute correlations to a tree by keeping only highly related attri-
butes while pruning others. Recently, Parikh and Grauman [18]
proposed the relative attribute descriptors to model the relative
strength of disagreement among instances for each attribute,
which resulted in a user-friendly way for object description. Using
this method, for example, you do not have to describe explicitly
whether a man is smiling when it is difficult to make such judg-
ment, but only need to say that his expression is roughly between
smiling and not smiling. In [17], even higher-order relationship
between attributes was explored. They built for each attribute a
regressor from all the other attributes responses and used the out-
put of each regressor as the corresponding attribute value. In this
way, the attribute response is ‘‘denoised’’.

Our method is different from the aforementioned ones in sev-
eral ways. Firstly, all the above methods have shown its effective-
ness in their particular contexts, e.g., object category recognition
[19,5] or scenario analysis [18], but little work addressed the ques-
tion of whether this is true in face verification as well, which is ex-
actly what we do in this work. Secondly, our way to model the
attribute relationship is different from all the above methods,
though it is closer to [5]. In particular, instead of learning a pair-
wise relationship between attributes independently as in [19,18],
we try to model an attribute-relationship graph based on the
understanding of the meaning of the attributes in a more general
context of subjects to whom each attribute belongs (see Section 3.1
for more details). Finally, in contrast with previous work [18,5]
where relationships among attributes are used as feature sets to
augment the input of classifiers, we exploit attribute relationship
to improve the generalization capability of the classifier in a more
straightforward way, i.e., by using it as a prior constraint on the
searching space of model parameters.

In the field of machine learning, the graph-based prior is com-
monly adopted to control the model complexity of the learner. A
typical example is the Laplacian SVM method proposed by Belkin
et al. [35]. In their method, an instance-graph is organized to con-
strain the label value of neighboring instance, based on the mani-
fold assumption that similar instances should have similar labels.
Our method is similar to this, but instead of constructing an
instance-graph, we build an attribute-relationship graph. One
advantage of the attribute-graph is that its complexity is
Please cite this article in press as: F. Song et al., Exploiting relationship between
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controllable since its size does not grow with the number of in-
stances as in [35] but only with the number of attributes, and
the latter is usually not too large in practice as mentioned before.
Furthermore, our graph is not meant to constrain the output space
of instances but the searching space of model parameters, based on
a simple idea that similar attributes should play similar roles in the
learned classifier.

In this sense, our method can also be thought of as a mecha-
nism to automatically regularize the coefficients of the linear
classifier using graph-based prior knowledge, and hence is related
to many norm-based (e.g., L2 or L1 norm) regularization methods
in machine learning. Among them, our method is most related to
those group-lasso-like methods commonly seen in the multi-task
learning literature [36–38], where some groups of coefficients
survived while other groups are forced to be quiet during optimi-
zation. However, there is no any within-group regularization
except sparsity is imposed in those methods, while, in our meth-
od, we do not intend to cancel the contribution of any single
coefficient but emphasize that the consistency between
coefficients is of importance.
3. The approach

In this section, we give a detailed description of the proposed
approach, whose overall pipeline is presented in Fig. 1.
3.1. Modeling the attribute relationship

Assuming that we are given a set of M attribute descriptors
A ¼ fAi 2 f0;1ggM

i¼1 for each face image. Although the meaning of
each attribute is clear to human beings (see Fig. 2), the way to rep-
resent each attribute as a binary code might be too simple from the
respect of subsequent processing. Therefore, we still need to find a
method to properly represent each attribute in a richer manner so
that they are computationally convenient to support the advanced
inference.

One commonly used trick in computer vision for this purpose is
to think of each face as a document which is described by words
(attributes) [24,39]. Although this analogy between word and attri-
bute is not so perfect, it makes it possible to borrow a great amount
of ideas from textual analysis to represent the meaning of the attri-
butes. One particular way we choose is the so-called featural rep-
resentation [40], which is proven to have explanatory value by
representing the word meaning as featural primitives.

To construct such featural primitives, we use the subjects avail-
able in the training set and call the space spanned by these subjects
space (see Fig. 1). Hence for K subjects, we have a subject space
attributes for improved face verification, Comput. Vis. Image Understand.
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with K dimensions and the meaning of each attribute is repre-
sented as a high-dimensional vector in the subject space, with each
entry representing whether the corresponding subject owns such
an attribute. For several images of the same subject, the value of
the corresponding entry is accumulated and then normalized by
the total number of images of the subject.

After projecting all the attributes into the subject space, we may
model their relationship based on the distribution of each attribute
in an information theoretic framework. In particular, we first com-
pute the point-wise mutual information IðAi; yjÞ of each attribute Ai

with each subject yj, which are then collected as another vector
AKi,

AKi ¼ ðIðAi; y1Þ; IðAi; y2Þ; . . . ; IðAi; yKÞÞ ð1Þ

where IðAi; yjÞ is defined to be,

IðAi; yjÞ ¼ log2

pðAi; yjÞ
pðAiÞpðyjÞ

ð2Þ

After this, correlated information encoded by M attributes and K
subjects is organized as the following matrix (Eq. (3)), based on
which, the attribute graph can be constructed by treating each
row as a node.

y1 � � � yj � � � yK

A1 IðA1; y1Þ � � � IðA1; yjÞ � � � IðA1; yKÞ
A2 IðA2; y1Þ � � � IðA2; yjÞ � � � IðA2; yKÞ

..

. ..
. ..

. ..
. ..

. ..
.

Ai IðAi; y1Þ � � � IðAi; yjÞ � � � IðAi; yKÞ

..

. ..
. ..

. ..
. ..

. ..
.

AM IðAM; y1Þ � � � IðAM; yjÞ � � � IðAM; yKÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð3Þ

Before proceeding, we briefly discuss how to calculate the mu-
tual information in Eq. (2). There are three statistics involved, i.e.,
pðAi; yjÞ, representing the probability of co-occurrence of the attri-
bute Ai and the person yj; pðAiÞ and pðyjÞ, representing the proba-
bility of occurrence of the attribute Ai and the person yj

respectively. They are empirically evaluated using the Maximum
Likelihood Estimation (MLE) method through the training set, as
follows,

pðAi; yjÞ ¼
number of images of person yj with attribute Ai

number of images of person yj

pðAiÞ ¼
number of images with attribute Ai

total number of images

pðyjÞ ¼
total number of images of person yj

total number of images

ð4Þ

To improve the reliability of the MLE estimation for subjects
with only a few face images, we use the Laplace smoothing strat-
egy [41], i.e., merely adding a constant to each count.

Finally, the attribute graph is built by computing the similarity
between two attributes nodes through commonly used similarity
measures such as Cosine similarity or Heat Kernel,

sij ¼
AKT

i AKj

kAKik � kAKjk
or sij ¼ e�

1
rkAKi�AKjk2

2 ; i; j ¼ 1;2; . . . ;M ð5Þ

In our implementation, the Heat Kernel is adopted, and a brief dis-
cussion on the choice over the two similarity measures is given in
Section 4.3.2. Also note that the size of our attributes graph depends
only on the number of attributes but is independent with the num-
ber of subjects or the number of images.
Please cite this article in press as: F. Song et al., Exploiting relationship between
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3.2. Exploiting the attribute-graph model

Given a set of training data D ¼ fxi; yig
N
i¼1, our goal is to estimate

the posterior of the model parameter w. With the criterion of
maximum a posteriori probability (MAP), we have pðw j DÞ /
pðD j wÞpðwÞ, where pðD j wÞ is the likelihood while PðwÞ is the
prior on the distribution of w. This formulation has an equivalent
form,

logðpðw j DÞÞ ¼ logðpðD j wÞÞ þ logðpðwÞÞ þ c ð6Þ

where c is a constant. According to this, MAP criterion is equivalent
to minimize the total energy of the likelihood model and the prior
model. In this work, we use the linear SVM as our base classifier.
With the hinge loss, the objective energy function of linear SVM is,

min
w

XN

i¼1

maxf0;1� yiðwT xi þ bÞg þ k1

2
wT w ð7Þ

Note that although it is a linear model, it may still face the risk
of over-fitting since it works in a high-dimensional space and the
number of training samples is small. To further control the com-
plexity, we use the attribute-graph as one of the prior constraints,

min
w

X
sijðwi �wjÞ2 ð8Þ

where w ¼ ðw1;w2; . . . ;wMÞ are the model parameters and sij is de-
fined in Eq. (5). Using the standard spectrum technique, we con-
struct the Laplacian matrix L of the attribute-graph as L ¼ D� S,
where D is a diagonal matrix with Dii ¼

P
jsij. With these notations,

it is well-known that Eq. (8) can be reformulated as wT Lw, and we
add this to the standard SVM objective function,

min
w

XN

i¼1

maxf0;1� yiðwT xi þ bÞg þ k1

2
wT wþ k2

2
wT Lw ð9Þ

Sometimes the uncertainty in the attribute response is available
to us (e.g., [3]), and we may take this into account. Suppose that we
are given the accuracy pi of each attribute classifier. We organize
them as a diagonal matrix P with Pii ¼ e�pi , based on the intuition
that the less accurate the attribute classifier the more punishment
it should receive. By adding this to Eq. (9), we have,

min
w

XN

i¼1

maxf0;1� yiðwT xi þ bÞg þ k1

2
wT Pwþ k2

2
wT Lw ð10Þ

To the best of our knowledge, this modification to the linear
SVM is novel, with advantages of flexibility and scalability as sta-
ted in Section 2. This objective is a usual quadratic programming
problem with linear inequality constraints. The corresponding dual
form is given by,

min
a

1
2

XN

i¼1

XN

j¼1

aiajyiyjx
T
i ðk1P þ k2LÞ�1xj �

XN

i¼1

ai

s:t: 0 6 ai 6 1; i ¼ 1;2; . . . ;N

XN

i¼1

aiyi ¼ 0

ð11Þ

Such kind of optimization problem can be solved with many
off-the-shelf methods either in primal form or in dual form. In
our implementation, we use the Mosek Optimization Toolbox
[42] as the solver for the primal problem. To set appropriate values
for k1 and k2, we have to consider (1) trade-off between regulariza-
tion terms and the loss term and (2) trade-off between the two reg-
ularization terms. For these purposes, we set k1 þ k2 ¼ c and
k1=k2 ¼ r, and then do the grid search on c and r through cross
validation. Typical parameter values selected on the validation
attributes for improved face verification, Comput. Vis. Image Understand.
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data set are k1 ¼ 0:16 and k2 ¼ 0:8, where the larger value of k2

emphasizes more importance of the attribute correlation
constraint.

We also consider the kernel version of the formulation in Eq.
(11). In particular, we first perform a Cholesky factorization to ob-
tain ðk1P þ k2LÞ�1 ¼ RT R. Then, the dual form in Eq. (11) is rear-
ranged as follows.

min
a

1
2

XN

i¼1

XN

j¼1

aiajyiyjðRxiÞTðRxjÞ �
XN

i¼1

ai

s:t: 0 6 ai 6 1; i ¼ 1;2; . . . ;N

XN

i¼1

aiyi ¼ 0

ð12Þ

Finally, we replace the inner product of Rxi and Rxj in Eq. (12)
with any qualified kernel function KðRxi;RxjÞ.

It should be noted that this method for kernelization is a com-
promise because the embedded kernel functions may not com-
pletely depend on inner products in feature space but the term
ðk1P þ k2LÞ�1 as well. Actually, due to the existence of this term,
we have w ¼

Pn
i¼1aiyiðk1I þ k2LÞ�1xi, which means that the repre-

sentation theory may not be satisfied in the original input space.
But by transforming the input space with R and letting x̂i ¼ Rxi,
we can show that ŵ ¼

Pn
i¼1aiyix̂i, which could be served as a good

starting point of kernelizing (from the transformed space).

3.3. Extensions to continuous attributes

We also investigate the possibility to extend our method to
more general scenarios where the values of attributes are continu-
ous (in this case the attributes can also be called features). For
example, in the famous iris data set [43], each instance is described
by four continuous attributes, describing the sepal length, the sepal
width, the petal length, and the petal width in centimeter respec-
tively. In this case, it will be pointless to project each attribute va-
lue onto a subject space (or class space) but it is still meaningful to
exploit the relationship between attributes to control the notorious
overfitting. As mentioned before, the benefit of exploiting the rela-
tionship between features in the general machine learning tasks is
less studied, which is exactly the purpose of this section.

In particular, we propose several strategies (as follows) to mod-
el the relationship between attributes (features) when they are
continuous, then build the attribute (feature)-graph as in Sec-
tion 3.1, which is finally used as a penalty term in the linear
SVM (Eq. (9)).

3.3.1. Mutual Information (MI)
The first method we explored is the mutual information method

since it measures the information content of each individual
feature x with regard to the output class y. We approximate the
MI value Iðx; yÞ for each feature based on the Parzen window
estimation [44], and then use it to evaluate the similarity between
features (cf. Eq. (5)). The obtained feature relationship graph is
finally plugged into the classifier (Eq. (9)) for regularization.

3.3.2. Conditional Class Variance (Var)
Estimating mutual information for continuous data is known to

be complicated, and it is desirable to find some efficient way to
approximate it. In some regard, the point-wise mutual information
summarizes the information from the normalized class-condi-
tional distribution,1 which inspires us to evaluate the relationship
between an individual feature and a class label through estimating
the distribution pðx j yÞ by projecting the feature x onto the class y.
1 IðAi; yjÞ / PðAi; yjÞ=PðAiÞPðyjÞ ¼ PðAi j yjÞ=PðAiÞ.
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We model the distribution pðx j yÞ as a 1D Gaussian Nðu;r2Þ, then
the variance r2 can be used as a good indicator of the uncertainty.
In particular, the large variance value may indicate an unstable rela-
tionship between the feature and the class label; in contrary, the
lower value may indicate short description length for the feature
to encode the class. Therefore, we simply use the variance value as
the representation of the corresponding feature, and in this way,
each feature is represented as a K-dimensional vector with each en-
try being the r2

k for class k. After this, we calculate the desired fea-
ture relationship graph using Eq. (5).

3.3.3. Relief (Relief)
Another way to construct the feature graph is based on the

importance of each feature. This can be evaluated in different ways
(with or without taking label information into account, see [45]),
but to our knowledge, they have not been used for feature graph
construction. Relief [46] is one of the most successful representa-
tives of them, which assigns a weight to a particular feature based
on the large margin criterion. We use the feature weights obtained
from the Relief algorithm to compute the similarity between fea-
tures and impose the constraint that features with similar weights
should play a similar role in the classifier.

3.3.4. Principal Component Analysis (PCA)
If we arrange the training data with an N � d matrix X, where N

is the number of samples and d is the number of features for each
sample, then, in principle, we can evaluate the similarity between
two features by taking each column of X as some kind of represen-
tation for the corresponding feature and then invoking Eq. (5).
Alternatively, we can do this by removing the noise first. In partic-
ular, we decompose the covariance matrix R as R � AKA0, where A
is a d� q matrix whose columns are the first q orthonormal eigen-
vectors with the largest eigenvalues of the matrix R. Then each row
of A gives us a more compact and more robust feature representa-
tion, which is then used for similarity evaluation.

3.3.5. Linear Discriminant Analysis (LDA)
This is similar to the PCA method in spirit, except that super-

vised label information is used to guide the evaluation of the
importance of each feature for classification. In particular, we use
the Fisher criterion to find out the most discriminative projection
directions from the training data, and the importance of each fea-
ture is then evaluated according to the magnitude of the compo-
nents of the discriminant vector, which is finally fed into Eq. (5)
to construct the feature graph.

4. Experiments

We illustrate the effectiveness of our methods by presenting
experiments on two large-scale face databases with attributes
annotated: LFW [10] and PubFig [4]. To verify the performance of
the proposed method on the tasks beyond face recognition, we also
present experimental results on the a-Pascal object recognition
dataset [1] and UCI data sets. We divide the results into two sec-
tions, the first focusing on face verification and object recognition,
and the second on more detailed issues about the proposed attri-
bute-graph regularized SVM classifier itself, e.g., parameter set-
tings and its applications in general machine learning tasks.

4.1. Data sets

To verify the effectiveness of the proposed method, we conduct
a series of experiments on two typical real-world face databases
with attributes annotation. The first is the Labeled Face in the Wild
(LFW) database [10], which is a de facto standard database to test
attributes for improved face verification, Comput. Vis. Image Understand.
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Fig. 3. Illustration of sampled images of the twenty object classes in the a-Pascal dataset [1].
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the performance of face verification system under the uncon-
strained conditions. The collected face images are full of typical
features of unconstrained conditions including great variations in
pose, expression, lighting, occlusion and image resolution. The sec-
ond is the Public Figures (PubFig) Face Database [3], which is sim-
ilar in spirit to the LFW database, but is much deeper (more images
per person) than LFW. Thanks to Kumar et al. [3], the attribute
descriptors of face images in both databases are publicly available
through the internet, and there are totally 73 facial attributes for
each face, and we will use these directly as the high-level represen-
tation for each face throughout the experiments, see Fig. 2 for more
details.

To test the performance of the proposed method in the general
attribute-based object recognition task, we also perform experi-
ments on an object recognition dataset, i.e., a-Pascal [1]. This data-
set contains 20 object classes in all (see Fig. 3) with the number of
objects from each category ranging from 150 to 1000. A list of 64
attributes is designed to describe a-Pascal objects, along with
9751 dimensional basic features on each image to facilitate attri-
bute extraction.

To evaluate the effectiveness of the extended feature-graph reg-
ularized SVM algorithm in the case of continuous attributes, we
test them on eight popular UCI data sets, retrieved from the UCI
Machine Learning Repository.2 These data sets include the sonar
(sonar), the Johns Hopkins university ionosphere (iono), optical rec-
ognition of handwritten digits (digits), SPECTF heart (heart), Spam-
base (spam), Hill-Valley (vally), and Breast Cancer Wisconsin
Prognostic (wpbc). For the digits data set, we choose to distinguish
the number ‘8’ from ‘9’ due to its difficulty.
4.2. Experimental settings

For face verification experiments, in Kumar et al.’s original pa-
per [3,4], an SVM with RBF kernel is used as the classifier. The input
for this classifier, however, involves two parts, one is the absolute
difference between the attribute features of two face images to be
verified, i.e., j Ai � Aj j, while the other part is the bitwise product of
these two attributes, i.e., AiAj. Although adding the second part in-
creases the performance by about 2%, in our experiment, we do not
use this since it is not so natural for us – commonly we do not take
the product of two feature vectors as new features since this will
double the dimension of the input vector. Indeed, the focus of this
paper is not to find a new way for feature extraction but to see
whether exploiting the relationship between attributes could im-
prove the performance of face verification. For the above reasons,
we use the scheme of ‘j Ai � Aj j + Linear SVM’ as our baseline
2 http://archive.ics.uci.edu/ml/index.html.
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classifier and replacing it with RBF–SVM only slightly improves
the performance (about 0.4%).

We also compared our method with the strategy of [5], where
the relationship between attributes is encoded by a max-span-
ning-tree and is used as augmented feature sets for the training
data. For better performance, in our implementation we augment
the original feature sets with the product of correlated attributes
and named this approach ‘Augm.Fea.’.

For object recognition experiments, we follow the protocol pro-
posed in [1]. Specifically, we first use the provided base features to
train a set of across category attributes predictors, based on which,
20 object classifiers are trained using the one-vs-all multi-classifi-
cation framework. The predicted object label is estimated accord-
ing to the maximum response of the trained 20 object classifiers.
Considering the skewed distribution of the number of samples over
object classes (for example, the ‘‘people’’ class has more samples
than other classes), we report both the overall accuracy and mean
accuracy per class. In all the experiments, the linear SVM is
adopted as in [1].

For experiments on the UCI datasets, we evaluate the perfor-
mance on each data set following the standard protocol whenever
possible (e.g., the specified splitting of the training set and test set
for datasets 8vs9, heart, and valley), otherwise 2/3 randomized
data are for training and the remaining 1/3 for testing (details
are shown in Table 1), and report performance with the mean
and standard variance on ten repeats of such a random process.
4.3. Experimental results

4.3.1. A toy problem
Before presenting the normal experimental results on the task

of face verification and object recognition, we think that it will
be useful to gain some intuitive understanding about the behavior
of our algorithm. Therefore, we give some visualization of the
learned classifiers on a simple two-dimensional toy data set. The
toy data set D is generated by imposing an approximate linear rela-
tionship between two dimensions, i.e., y ¼ a � xþ �, where
� ¼Nð0;1Þ is one-dimension Gaussian noise, and a controls the
degree of correlation between the two dimensions (we set
a ¼ 0:8). Two groups of data are generated according to this model,
as denoted with red circles and blue asterisks respectively in Fig. 4.

We can think of the two dimensions of the toy data as attributes
with a strong correlation and due to this, they should have similar
weights from our model (cf. Eq. (9)). In Fig. 4, we illustrate geomet-
rically the weights learned before (W1) and after (W2) imposing
the attribute-graph regularization on the linear SVM. It can be seen
that the normal vector of the separation line after regularization is
driven to a position more paralleling to the line of x� y ¼ 0. So
what’s benefit of it? For this, we compare the sum of the sample
attributes for improved face verification, Comput. Vis. Image Understand.
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Table 1
Detailed experimental settings for the UCI data sets. For each data set, the number of
attributes ðNatrÞ, the number of training samples ðNtrÞ and the number of test samples
ðNteÞ are listed respectively.

sonar iono 8vs9 heart spam valley wpbc secom

Natr 60 33 64 44 57 100 33 353
Ntr 138 234 554 80 333 606 130 134
Nte 70 117 562 187 167 606 64 66
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Fig. 4. The comparison of the learned separation lines of our method and the
baseline.

Table 2
Comparative performance of our methods (and its kernelized version) and the
baseline, i.e., linear SVM (L.SVM), and comparing algorithm, i.e., linear SVM with
augmented features (L.SVM + Augm.Fea. [5]), on the LFW and the PubFig database.
(Bold values indicate the best results.)

L.SVM L.SVM + Agum.Fea. [5] Ours Ours (kernelized)

LFW 83.4 ± 0.5 84.6 ± 0.6 85.5 ± 0.6 85.9 ± 0.6
PubFig 76.7 ± 0.9 77.6 ± 0.8 78.6 ± 0.8 78.8 ± 0.8
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margins of the two separators, and the results show that our model
gets a score of 239.2, much larger than 187.3 of the traditional lin-
ear SVM. This indicates that our model has a better chance to
achieve better generalization capability.
4.3.2. Face verification results
4.3.2.1. AUC comparison. Following the standard LFW evaluation
protocol, Fig. 5(a) gives the overall performance of the proposed
algorithm compared to the baseline. In particular, the AUC (Area
Under the ROC Curve, the larger the better) value of our method
is 0.925, compared to 0.913 of the baseline method [4] and 0.922
of the ‘Augm.Fea.’ approach [5], indicating that the proposed
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Fig. 5. Comparing overall ROC curve of our method with Kumar et al. [4] an
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method is effective in exploiting the attribute relationship to en-
hance attribute-based recognition. Seen from the Fig. 5(b), the
overall behavior of the compared algorithms on the PubFig data-
base is consistent with that on LFW, and again our method per-
forms best among the three in terms of the AUC value.
4.3.2.2. Accuracy comparison. Table 2 gives the overall performance
comparison. We can see that both our method and the method of
[5] consistently outperform the baseline on the two databases. This
clearly demonstrates the benefit of exploiting the attribute-rela-
tionship. Specifically, on the LFW, the average performance using
our method is 85.5 ± 0.6%, compared to 83.4 ± 0.5% of the baseline,
showing more than 2% advantages. While the average performance
for the method of [5] is 84.6 ± 0.6%, with nearly 1% advantage over
the baseline. Similar observation can be made on the PubFig data-
base. It is worth mentioning that the performance of our method is
comparable to the state-of-the-art results of 85.2% in [4], without
using more advanced techniques of feature combination. Kernel-
ization only slightly improves the performance to 85.9 ± 0.6% on
this (highly nonlinear) database.

Fig. 6(a) details the comparative performance on each of the ten
cross-validation test sets defined in [10]. It can be seen that our
method and the method of [5] perform much better than the base-
line, and our method performs best among the three. It should be
noted that although both our method and the method of [5] exploit
the relationship between attributes to improve performance, the
specific strategy for achieving this goal is different. In particular,
we mainly use this as a prior for model regularization to reduce
overfitting, while the method of [5] explores attribute-relationship
as augmented features for face representation. However, the latter
method may face the difficulty of high dimensionality – actually,
the dimensionality of the feature space in [5] could be nearly twice
as much as that in our method after augmenting all the pairwise
features, which significantly increases the complexity of the model.
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To handle this issue, one has to sparsify the full data matrix of pair-
wise attribute-relationship as did in [5], but useful information
may be lost in this procedure, as well. By contrast, with our strat-
egy of model regularization, the information of the full attribute-
relationship graph can be exploited without imposing extra diffi-
culties. In addition, the introduction of subject space (cf., Fig. 1)
in our method actually integrates the useful discriminative infor-
mation into the model. We believe that the above factors are help-
ful to explain the performance difference between our method and
the method of [5]. Despite this, with 72 pairs of attribute-relation-
ship as augmented features, the method of [5] does perform better
than ours on the second set of the LFW and the seventh set of the
PubFig.
4.3.2.3. Results analysis. To understand how the two main compo-
nents of our algorithm (i.e., using attributes relationship and accu-
racy of attribute classifiers, respectively) contribute to the final
performance, in Fig. 7 we illustrate the effect of removing each of
them in turn while leaving the remaining component in place
(the comparison is thus against our full algorithm, not against no
Please cite this article in press as: F. Song et al., Exploiting relationship between
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knowledge about these two aspects). In general, each component
is beneficial, and the results are cumulative over the two, but
the benefits are much greater from exploiting the attribute
relationship.

Fig. 8 gives some illustration of face pairs which are incorrectly
recognized by the baseline classifier but correctly with our model.
In particular, each pair of images in the leftmost three columns are
respectively from the same subject but are misjudged as identity-
unmatched face pairs with high confidence by the baseline classi-
fier. However, our method does not make such mistakes. In the
rightmost three columns, we show three pairs of face images from
three different subjects, which are, unfortunately, incorrectly iden-
tified as identity-matched face pairs by the baseline classifier.
However, in all these three cases, our method makes the correct
decision. This shows that by taking the information of attribute
relationship into account, our method effectively improves the
generalization capability of the prediction model.

Fig. 9 lists some typical highly related attributes learned using
the method in Section 3.1 on the LFW database. These attributes
can be broadly divided into two categories: (1) with high semantic
correlation (shown in the yellow rectangle) and (2) with high sta-
tistical co-occurrence (shown in the green rectangle). We can see
that the learned attribute relationship is reasonable. For example,
the semantic concept of ‘‘male’’ has high co-occurrence with
male-specific attributes such as wearing the necktie, bushy eye-
brows, while with negative correlations with things commonly
used by females, such as lipstick, necklace, earrings. As another
example, we see that an ‘‘attractive woman’’ usually has ‘‘heavy
makeup’’ and being ‘‘youth’’. On the other hand, some concepts
only have weak semantic connections but otherwise show strong
co-occurrence property among them. As shown in the last row of
Fig. 9, ‘‘color photo’’ is a general property of images with ‘‘non-
baby’’, ‘‘non-sunglasses’’, etc., which essentially reflects the statisti-
cal characteristics of images of this particular database.

4.3.2.4. Influence of parameter settings. We then investigate the ef-
fect of attribute-graph regularization on the model parameters w.
Intuitively, the Laplacian constraint on the linear SVM (cf. Eq. (8))
will result in more consistent weights for highly related attributes
while leaving those less related untouched. In this way, the struc-
tures among attributes can be exploited. Fig. 10 gives the compar-
ative distribution of samples over the space of attribute-similarity
and weight-difference before (left) and after (right) the attribute-
graph regularization imposed (on the LFW database). It can be
clearly seen that indeed the weights of similar attributes tend to
attributes for improved face verification, Comput. Vis. Image Understand.
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Fig. 8. Illustration of three pairs of face images from the same subject respectively (the leftmost three columns) and three pairs from different subjects (the rightmost three
columns). All the six pairs are mistakenly identified by the baseline classifier but are correctly recognized by our method.

Fig. 9. Illustration of highly related attributes learned by our method on the LFW database. On the leftmost column, we show the typical semantic concepts in bold, and on
the right we list the attributes correlated to those concepts.
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Fig. 10. Comparative distribution of samples over the space of attribute-similarity and weight-difference: (a) Linear SVM and (b) our attribute-graph regularized Linear SVM.
Note the difference of distributions over the red region (bottom right of the plane) between (a) and (b). This figure is best viewed in the electronic form.
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be similar after regularization (cf. the bottom right area of the
plane in Fig. 10(b)).

We also study the influence of the dimensionality of the subject
space on the verification performance on the LFW database by
varying the number of subjects for the subject space and then mea-
suring the corresponding verification performance. In particular,
we obtain an average accuracy of 85.4 ± 0.06% over varying num-
ber of subjects (33, 60, 95, 155, 420, 606, 900). This shows that
the performance of the method is not sensitive to the subject space
size. Similar results are also observed on the PubFig database.
Please cite this article in press as: F. Song et al., Exploiting relationship between
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Finally, we investigate the influence of the two similarity mea-
sures (see Eq. (5)) on the face verification performance. As men-
tioned before in this work the Heat Kernel is adopted to evaluate
the similarity between attribute vectors, and the parameter r is
set to be the mean of the L2 distances of all the attribute pairs. This
setting leads to a verification accuracy of 85.5 ± 0.6% on the LFW
dataset. For comparison, we also test a version with a similarity
measure replaced with Cosine similarity, which yields a slightly
lower accuracy of 85.4 ± 0.6%. Fig. 11 gives the histograms of the
similarity values from the attribute-relationship graph using these
attributes for improved face verification, Comput. Vis. Image Understand.
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Fig. 11. Histograms of similarity values in the attribute-relationship graph using (a) Heat Kernel and (b) Cosine similarity, respectively, on the LFW dataset.

Table 3
Comparative performance of our method with the baseline method (L.SVM, [1]) on
the a-Pascal dataset. Following [1], both overall accuracy (%) and mean accuracy (%)
per class are reported. These results are based on two types of attribute data, i.e.,
supervised attribute annotations and the responses of learned attribute classifiers.
(Bold values indicate the best results.)

Learned attributes Annotated attributes

Overall Mean per-cls. Overall Mean per-cls.

L.SVM [1] 56.1 ± 0.94 37.4 ± 1.24 82.1 ± 1.04 74.9 ± 1.37
Ours 57.3 ± 0.74 40.6 ± 1.69 85.1 ± 0.85 75.1 ± 1.75
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two similarity measures, respectively. One can see from this figure
that the Heat Kernel seems to yield more ‘flat’ distribution of sim-
ilarity values (with entropy of 6.18 bits) than the Cosine similarity
(with entropy of 1.51 bits), due to the ‘normalization’ effect of r.

4.3.3. Object recognition results
Table 3 gives the overall experimental results on the a-Pascal

dataset. We can see that again using attribute relationship im-
proves the object recognition performance over the baseline meth-
od [1] consistently in terms of both overall accuracy and mean per
class accuracy. Actually, we see that using learned attributes in-
stead of ground truth attributes annotation as object representa-
tion leads to a significant deterioration in performance (see
Fig. 12). This highlights the needs to improve the accuracy of attri-
bute prediction.
Linear SVM Ours
30

40

50

60

70

80

90

100

56.1

82.1

57.3

85.1

 O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

Learnt attributes
Annotated attributes

Fig. 12. Comparative overall performance of our method and the baseline [1] on the
learned attributes and the ground truth attributes respectively, showing how the
uncertainty of attributes influences the final recognition performance.
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In addition, Table 3 indicates that exploiting the attributes rela-
tionship always improves the performance whether the attributes
are manually annotated. In particular, it can be seen that the pro-
posed method improves the overall accuracy of the baseline [1]
from 82.1% to 85.1% in the case of annotated attributes.

Fig. 13 gives some typical highly correlated attributes learned
by our method. The revealed relationship between attributes can
be studied in different ways. Firstly, some attributes reflect a kind
of part-whole relationship. For example, ‘‘Furniture legs’’ belong to
some furniture which may have ‘‘Seat’’, ‘‘Back’’ and ‘‘Arms’’ as well,
while ‘‘Wheel’’ is related to a vehicle which has ‘‘Taillight’’ and
‘‘Side mirror’’, and ‘‘Nose’’ is an important part of a human’s body,
so are ‘‘Mouth’’, ‘‘Face’’ and ‘‘Hair’’. Secondly, we see that some hid-
den negative correlations between attributes are also revealed by
our algorithm. For example, ‘‘Furniture’’ usually do not have ‘‘Tail’’
and ‘‘Wool’’, ‘‘Snout’’ is not likely ‘‘Shiny’’, ‘‘Wing’’ and ‘‘Hair’’ are
mutually exclusive, etc. Finally, it is worth noting that ‘‘Snout’’
and ‘‘Nose’’ have similar semantic meaning, but they are usually
used to describe different animals; hence they have a different
set of correlated attributes accordingly. We emphasize that classi-
fiers may benefit from properly using such additional information.
4.3.4. Performance on continuous attributes
Fig. 15 summarizes the effects of using attribute-relationship

graph constraints, while Fig. 14 gives the detailed comparative per-
formance of different graph construction strategies on eight UCI
real-world data sets. In Fig. 14, each sub-graph corresponds to
one data set, and the horizontal axis indicates the graph construc-
tion strategies, while the vertical axis represents the performance
obtained accordingly. We can see that applying attribute-graph
constraints improves the recognition performance consistently
over all the data sets tested. In particular, Fig. 15 shows that the
average recognition performance of the baseline method (i.e., lin-
ear SVM without graph prior) is boosted from about 77.0% to a le-
vel of higher than 80.0% by the LDA induced attribute graph prior.
This improvement clearly indicates the benefits of incorporating
pairwise discriminant prior information into the model.

The second best performer is the MI-induced feature graph, and
it improves the performance by about 2.0% on average. Despite the
improvements of the remaining three graph construction methods
are not so evident as the previous two, in most cases they perform
better than the baseline method. As we can see from Fig. 14, the
var-graph gives very promising results on the inon and the heart
data sets; the Relief-graph brings good improvement on the sonar
and the spam data sets, while the PCA-graph outperforms all the
other methods on the heart data set. From these, we conclude that
it is helpful to take the relationship between attributes into
attributes for improved face verification, Comput. Vis. Image Understand.
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Fig. 13. Illustration of highly related attributes learned by our method on the a-Pascal dataset. On the leftmost column we show the typical semantic concepts in bold, and the
related attributes correlated to those concepts are listed on the right.

Fig. 14. Comparative performance of different attribute-relationship graphs on eight UCI real-world data sets. For datasets 8vs9, heart, and valley, we follow the standard
protocol for training and testing data splitting and hence no variance is reported.
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Fig. 15. Overall performance of different attribute-relationship graphs on the UCI
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consideration. Although the best way to do this is still under inves-
tigation and depends on the characteristics of the data sets on
hand, our experimental results indicate that LDA and MI induced
attribute graphs perform well in practice.
Please cite this article in press as: F. Song et al., Exploiting relationship between
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5. Conclusions and future work

In this paper, we give a novel method to model the relationship
between attributes, based on a discriminative distributed repre-
sentation for attributes. This effectively allows our classifier to ex-
plore the hidden correlation between attributes in a general
context of subjects. We show in this paper on the challenging face
verification and object recognition databases that the mined attri-
bute graph does reflect some real aspects of the semantic relation-
ship among attributes existed in the real world; furthermore, such
relationship is helpful to improve the accuracy and robustness of
the face verification/object recognition system.

We also extend this method to more general scenarios where
the values of attributes are continuous, and this leads to a new
attribute-graph regularized SVM algorithm, which essentially
opens a door to incorporate additional structural (or spatial) infor-
mation at the level of attributes into the classifier. The effective-
ness and feasibility of the proposed methodology are empirically
verified in several application domains, showing that it can im-
prove overall classification results, even when the available data
are limited.

Although we do not focus on the problem of attribute extraction
in this paper, our experiments on a-Pascal object dataset indicate
that the accuracy of extracted attributes could have a great impact
attributes for improved face verification, Comput. Vis. Image Understand.

http://dx.doi.org/10.1016/j.cviu.2014.02.010


12 F. Song et al. / Computer Vision and Image Understanding xxx (2014) xxx–xxx
on the final performance of an attribute-based recognition system
(cf. Fig. 12). For accurate attribute extraction, we have to decide
where to look at them. For example, Kumar et al. [4] performed a
greedy forward selection for each attribute to find out the most
discriminative local facial regions among the predefined nine re-
gions. Ferrari and Zisserman [19] proposed to tackle the uncertain
location of features by optimizing the likelihood ratio. Chen et al.
[9] exploited pose information for attribute extraction, and they
also considered the sensitivity of different attributes to different
feature types. Alternatively, attributes can be treated as a kind of
latent variables, and the task of attribute prediction simply boils
down to assign values to latent variables [5,25]. These latter meth-
ods actually get around the problem encountered in the former
ones, but the extracted attributes are less interpretable. Further
study on this will be the focus of our future work.
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