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a. Chosen number of PCs

We will show the results of each method using different number of PCs on different dataset in the
Fig.1 below. And from the figure below we can easily draw some conclusions as well as witness the
competitiveness of our method. Considering the trends of these curves and the number of the training
data points in each dataset, we can choose the number of each dataset. (mfeat-factor:40, AR:60,
ORL:60, COIL:40, Yale:30)
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Fig. 1 (a), (b), (0), (d), (e) give the DR performance of compared methods with varying principal components of each dataset.
The x-axis isthe number of principal components, and the y-axis isthe error rate yielded by the nearest-neighbor classifier after
using DR methods. (Digits in the parentheses respectively represent the number of training data and the chosen number of

principal components)
b. Description

Due to of the lack of space as short paper, we omit the necessary deduction steps in the manuscript.
Instead, we show the necessary deduction steps and partial experimental results of kernelized version
as follows.

According to[5], the original space X can be mapped into a higher dimensional space F through a

nonlinear mapping function ® which can be induced froma corresponding kemel k (-,-) :

(1) &:X->F
X— D(X) .
Then the average-case within-class scatter matrix S” in the space F is defined as:

SP=5°-s¢

@ =%(i(@(x»—@(xj))(cb(xi)—<1><x,-))T -3, (m, —m)(m, —rﬁ)]’

i=1 k=1
and while the worst-case between-class scatter matrix SS’ as:
_ _ _ _\T
@) sj =(m-m;)(m-m),
where M :[Zd)(xi )]/n is the mean of the whole dataset and m, :(ZX o P(x, ))/nk is the class
i=1 G €k

mean of C,. S is the total scatterand S, is the average between-class scatter.

Now let X =(®(x,).....®(x,)), M =(m,....m,), H, =In—l1n]; be the nxn identity matrix
n
where 1 is an nx1 column vector of all ones, D =diag(n,,...,n,) be a diagonal matrix whose

(i,i) element is the number of data points in class i, Ean nxm indicator matrix whose (i, j) element

equals to 1if x is fromclass jand 0 otherwise, L; an mx1 column vector with ith element being 1,

jth element being -1, and the others all equaling to 0. Then it is easy to see that M = XED™ where D!
denotes the inverse of matrix D if D is nonsingular and the pseudo-inverse otherwise.

Fromthe definitions of S’ and S, we can rewrite them in matrix formas:

1
n

@) Sp = x( (H, —HnEDlETHn)jXT

and

5) S =X(ED L L,D'E")X".

ij —ij



Thus we can formu late a nonlinear form of WSA C by changing the projection matrixas W=XA , then our
method can be formulated as
. T -1 TH-1eT
max J(A)= min _Tr(A K(EDL,LDE )KA)

i jeNp i<

(6)

’

st. Tr(ATK(l(Hn—HnED1ETHn)jKA)31
n
where K = XX . As a result, we can get the nonlinear form of WSAC for whichit can be optimized

similarly.
c. Experiments

It needs to mention that in the original works [2,3], respectively involving HLDA and WLDA, such
two DAs were not kernelized and just compared with other linear DA methods including LDA.
Consider this fact, thus we just also compare the remaining three kernerlized methods, i.e. kernel LDA,
kernel MMC and kernel WSAC. In this experiment, we follow your suggestion to adopt the Gaussian

2 n
kernel k(xl,x2)=exp[—w] , Where o’ =%Z(xi = X; )T (xi —xj) , N being the number of
o

2
i,j=1
training points and 0 < S <2being a scale parameter. We follow the same experiments settings on the
image datasets to the previous ones. From the results in the Table I, we can draw similar conclusions to
those in linear versions: our method still retains its competitiveness.

Table I. AVERAGE TESTERROROF DIFFERENTLDA-BASED METHODS (STANDARD DEVIATIONSARE INPARENTHESES). THE 1STAND
2ND PERFORMANCES ARE DENOTED IN BOLD AND UNDERLINED RESPECTIVELY. THE VALUES OF S WHEN EVERY METHOD GETS THE

BESTRESULTARE ALSO GIVEN IN THE TABLE.

Kemel LDA Kemel MMC Kemel WSAC
ORL 0.0837(0.0220), S=15 0.0944(0.0229), S=0.3 0.0581(0.0189), S=15
COIL 0.2028(0.0376), S=15 0.2025(0.0257), S=0.3 0.1465(0.0265), S=15
Yale 0.2248(0.0530), S=1.8 0.2695(0.0266), S=0.5 0.1986(0.0329), S=15
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