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a. Chosen number of PCs 

 

We will show the results of each method using different number of PCs on different dataset in the 

Fig.1 below. And from the figure below we can easily draw some conclusions as well as witness the 

competitiveness of our method. Considering the trends of these curves and the number of the train ing 

data points in each dataset, we can choose the number of each dataset. (mfeat-factor:40, A R:60, 

ORL:60, COIL:40, Yale:30) 

 

(a) mfeat-factor (40, 40)                 (b) AR (160, 60)  

 

    (c) ORL (160, 60)              (d) COIL (80, 40) 

 

   (e) Yale (60, 30) 



Fig. 1 (a), (b), (c), (d), (e) give the DR performance of compared methods with varying principal components of each dataset. 

The x-axis is the number of principal components, and the y-axis is the error rate yielded by the nearest -neighbor classifier after 

using DR methods. (Digits in the parentheses respectively represent the number of training data and the chosen number of 

principal components) 

 

b. Description 

 

Due to of the lack of space as short paper, we omit the necessary deduction steps in the manuscript. 

Instead, we show the necessary deduction steps and partial experimental results of kernelized version 

as follows. 

According to[5], the original space X can be mapped into a higher dimensional space F  through a 

nonlinear mapping function Φ which can be induced from a corresponding kernel  ,k   :  

(1) Φ: X → F  

x→ Φ(x) . 

Then the average-case within-class scatter matrix 
wS  in the space F is defined as: 
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and while the worst-case between-class scatter matrix ijS
as: 
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mean of 
kC . 

tS is the total scatter and
bS  is the average between-class scatter. 

Now let     1 , , nX x x    ,  1, , mM m m  , 
1
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n

   be the n n  identity matrix 

where 1n
 is an 1n  column vector of all ones,  1, , mD diag n n   be a diagonal matrix whose 

 ,i i  element is the number of data points in class i, E an n m  indicator matrix whose  ,i j  element  

equals to 1 if 
ix  is from class j and 0 otherwise, ijL  an 1m  column vector with ith element being 1, 

jth element being -1, and the others all equaling to 0. Then it is easy to see that 1M XED   where 1D

denotes the inverse of matrix D if D is nonsingular and the pseudo-inverse otherwise. 

From the definitions of
wS and ijS

, we can rewrite them in matrix fo rm as: 
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and 

(5)  1 1T T T

ij ij ijS X ED L L D E X     .                             



Thus we can formulate a nonlinear form of WSAC by changing the projection matrix as =W XA , then our 

method can be formulated as  

(6) 
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where TK XX   . As a result, we can get the nonlinear form of WSAC for whichit  can be optimized  

similarly. 

 

c. Experiments 

 

It needs to mention that in the original works [2,3], respectively involving HLDA and WLDA, such 

two DAs were not kernelized and just compared  with other linear DA methods including LDA. 

Consider this fact, thus we just also compare the remaining three kernerlized  methods, i.e. kernel LDA, 

kernel MMC and kernel WSAC. In this experiment, we follow your suggestion to adopt the Gaussian 

kernel  
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   , n being the number of 

training points and 0 2S  being a scale parameter. We follow the same experiments settings on the 

image datasets to the previous ones. From the results in the Table I, we can draw similar conclusions to 

those in linear versions: our method still retains its competitiveness. 

 

Table I. AVERAGE TEST ERROR OF DIFFERENT LDA-BASED METHODS (STANDARD DEVIATIONS ARE IN PARENTHESES). THE 1ST AND 

2ND PERFORMANCES ARE DENOTED IN BOLD AND UNDERLINED RESPECTIVELY. THE VALUES OF S WHEN EVERY METHOD GETS THE 

BEST RESULT ARE ALSO GIVEN IN THE TABLE. 

 Kernel LDA Kernel MMC Kernel WSAC 

ORL 0.0837(0.0220), S=1.5 0.0944(0.0229), S=0.3 0.0581(0.0189), S=1.5 

COIL 0.2028(0.0376), S=1.5 0.2025(0.0257), S=0.3 0.1465(0.0265), S=1.5 

Yale 0.2248(0.0530), S=1.8 0.2695(0.0266), S=0.5 0.1986(0.0329), S=1.5 
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