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Eye localization has gained a wide range of applications in face recognition, gaze estimation, pose
estimation, expression analysis, etc. However, due to the high degree of appearance variability of eyes in
size, shape, color, texture and various ambient environment changes, this task is challenging. During the
last three decades, numerous techniques have been developed to meet these challenges. The goal of this
paper is to categorize and evaluate these algorithms in a comprehensive way. We focus on the overall
difficulties and challenges in real-life scenarios, and present a detailed review of prominent algorithms
from the perspective of learning generalizable, flexible and efficient statistical eye models from a small
number of training images. In addition, we organize the discussion of the global aspects of eye
localization in uncontrolled environments, towards the development of a robust eye localization system.
This paper concludes with several promising directions for future research.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As one of the most salient facial features, eyes, which reflect the
individual's affective states and focus attention, are one of the
most important information sources for face analysis. Efficiently
and accurately locating the eyes positions in a given face image is
therefore essential to a wide range of face-related research efforts,
including face alignment, face recognition, gaze estimation, pose
estimation, expression analysis, etc., and has gained increasing
attention from both the academic and industrial communities in
the last three decades.

However, the task of accurate eye localization is challenging due
to the high degree of eye's appearance variability. This variability
may be caused either by intrinsic dynamic features of the eyes or by
ambient environment changes. In particular, the following factors
have significant influence on the states of the eyes:
�
 Facial expression variations: both the shape and appearance of
the eyes are sensitive to the change of various expressions. For
example, laughing may cause the eyes to close completely, and
screaming may largely deform the shape of the eyes as well.
�
 Occlusion: in real application scenarios, the eyes are frequently
occluded by hair, sunglasses, and myopia glasses with black
frames.
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Pose: the appearance of the eyes differs between different
camera-object poses (e.g., frontal, profile, upside down).
Furthermore, it is possible that one eye is completely occluded
in a profile face.
�
 Imaging condition and quality: ambient environment factors,
such as lighting (varying in spectra, source distribution, and
intensity), may change the appearance of the eyes in different
ways. Moreover, the commonly seen factors in the real world,
such as low resolution, blurring or detailed texture missing,
may also lead to poor image quality. These cause great
challenges to any eye localization algorithms.

These challenges are illustrated by the Labeled Face in the Wild
(LFW) [42] database. As Fig. 1 shows, poor image quality and great
appearance variations are the typical characteristics of images
under the uncontrolled application scenarios. These factors pose
great challenges to the existing eye localization techniques. Riopka
and Boult [85] give a comprehensive eye perturbation sensitivity
analysis, and their empirical evidence shows that the accuracy of
eye localization has a significant effect on face recognition accu-
racy. Similar observations have also been made by many other
authors [72,16,45,89], which urge the need for developing robust
and accurate eye localization techniques in real-life scenarios.

Eye localization is closely related to but different from several
tasks, such as eye detection, eye tracking, gaze estimation and
blink detection. The purpose of eye detection is to determine the
existence of eyes in an input image and, if any, find their positions.
Eye localization, however, requires a much more accurate
t and efficient eye localization in real-life scenarios, Pattern



Fig. 1. An illustration of the great challenges of eye localization under the uncontrolled conditions (LFW) [42], from left to right: variations in occlusion, pose, lighting,
expression, and blur.
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prediction of the eye positions (usually with an error margin of a
few pixels). Eye localization is generally treated as a subsequent
fine tune step after eye detection. In eye tracking, another
coordinate, i.e., time, is taken into account, and the redundant
information between neighboring frames is usually explored to
facilitate eye localization heuristically. Gaze estimation aims to
infer individual focus attention by analyzing the pupil position in
the eye socket. In blink detection, instances where the eye opens
and closes are analyzed across the image sequence so as to
estimate the individual's physical states (e.g., fatigue, active). The
performance of these applications can be benefited from robust
eye localization.

Numerous methods have been proposed for eye localization
during the last three decades. Recently Campadelli et al. [14]
surveyed several typical methods for eye localization under con-
trolled conditions and proposed an objective performance evalua-
tion criterion. Hansen and Ji [37] reviewed current progress in
video-based eye detection and tracking techniques. However, it
remains to be seen whether the state-of-the-art eye localization
techniques perform well under uncontrolled conditions. As illu-
strated in Fig. 1, the problem of eye localization in real-life
scenarios is much more challenging than that in controlled
conditions, and is far from being resolved.

The major contribution of this paper is to give a comprehensive
and critical survey of the ad hoc methods addressing these
challenges, which we believe would be a useful complement to
[14] and [37]. To be self-contained, some traditional methods for
eye localizations covered in [14,37] are included in this work as
well but due to the inherent complexity of eye localization in the
wild, contrary to the previous works, we pay special attention on
the problem of learning generalizable, flexible and efficient statis-
tical eye models from a small number of training images, and the
related topics such as the feature extraction and representation are
discussed under this point of view. In addition, we organize the
discussion of the global aspects of eye localization in uncontrolled
environments, towards the development of a robust eye localiza-
tion system (cf. Fig. 11), which in our opinion is a very important
topic in practice but mostly ignored in previous studies.

In the following sections we first review state-of-the-art
methods for eye localization and focus on the machine learning
and computer vision techniques which are successfully applied to
this problem. In Section 3, we investigate how the reviewed
methods may be integrated in the development of a robust eye
localization system, and several practical issues which have a
critical influence on the system performance are also discussed in
this global perspective. In Section 4, we discuss a few issues
concerning performance evaluation. Finally, we conclude this
paper with a discussion of several promising directions for eye
localization in Section 5.
Please cite this article as: F. Song, et al., A literature survey on rob
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2. Localizing eyes in a single face

In this section, we review the existing techniques for eye
localization. We broadly classify them into three categories based
on the information or patterns that are used for model building.
Note that some methods are at the overlapping category bound-
aries, such case will be discussed further at the end of this section.
�

us
Measuring eye characteristics: this type of method exploits the
inherent features of eyes as facial components, such as their
distinct shapes and strong intensity contrast. Some context-
related features such as the characteristics of the facial region
between two eyes and the eye corner may also be useful. Due
to the peculiarity of the eye features, eye localization can be
performed by simply measuring such characteristics. However,
reliable measuring is possible only under good imaging
conditions.
�
 Learning statistical appearance model: this type of method tries
to extract useful visual features from photometric appearance,
based on which eye model is then learned from a large set of
training images. The collected training data should cover
representative variability of eye appearance.
�
 Exploiting structural information: this approach explores the
spatial structure of interior components of eyes or the geome-
trical regularity between eyes and other facial features in the
face context. The structural information cannot be used alone
and is usually integrated in a statistical eye model to improve
its stableness against complicated uncontrolled conditions.

Table 1 summarizes algorithms and representative works for
eye localization within these three categories. Below, we discuss
the motivations and general approaches of each category, and then
give a review of specific methods followed with a discussion of
their pros and cons.
2.1. Measuring eye characteristics

The idea of this line of research is to explore the distinct
inherent features of eyes by treating eyes as a special facial feature
by itself. Many eye-specific characteristics are ready to use in
practice, such as the shape of the eyes and the intensity contrast
between the eye white and the pupil. Once founded, these
characteristics could be very reliable indicators of eyes. However,
under the uncontrolled conditions, the measured characteristics
tend to be less reliable, which may result in great performance
loss. In addition, some characteristics, such as bright spot for
infrared eye images, depend heavily on extra hardware devices
and usually require active human cooperation.
t and efficient eye localization in real-life scenarios, Pattern
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2.1.1. Shape characteristics
Fig. 2 gives a typical shape model of eyes consisting of four

major components: eyelids, the eye white, the iris and the pupil.
Each of these components has a special geometric shape, e.g.,
elliptical shape for eyelids, circular shape for the iris and the pupil.
Generally, there are two ways to represent these shapes, i.e.,
continuous or discrete. The representative work of the continuous
shape model is Yuille et al.'s deformable model [111], while Active
Shape Model (ASM) [19] represents the eyes in a discrete way.

In particular, Yuille et al. [111] built a parameterized deformable
model which gives a continuous mathematical formulation of the
shapes involved. More than that, their model takes into account
the relevant features such as peaks and valleys of the accumulated
intensity in the regions bounded by shapes. They have to search
Fig. 3. Using projection function to locate the x-coordinate of

Fig. 2. Yuille et al.'s shape

Table 1
Categorization of the popular approaches for eye localization.

Approach Representative works

Measuring eye
characteristics

Shape and intensity
contrast

Deformable model [110], circular shape of the
pupil [78,46]
Dark eye center [27,114], pupil centered outward
gradient field [53,99,97]

Context information of
eyes

Facial region between-eyes [50], eye corners
[103,58,94]

Active eye localization Localization and tracking for infrared eye images
[117,116]

Learning statistical
appearance model

Bayesian model Bayesian model [22]
Multi-scale LBP feature based [55]

AdaBoost model Discriminant feature based AdaBoost [101]
2D Cascaded AdaBoost [77]
Bayesian criteria based AdaBoost [67]
Probabilistic cascade [109]

Filtering model Average of Synthetic Exact Filters (ASEF) [10]

Exploiting structural
information

Active shape model [19], implicity shape model [62],
enhanced pictorial model [92]

Please cite this article as: F. Song, et al., A literature survey on rob
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through a large continuous parameter space which covers almost
all reasonable shape variations to fit the model to a testing image.

For a good fitting in practice, two factors are of importance
[111,103,58] : (1) the distinctness and flexibility of the shape
model, i.e., the model should expressive enough to explain large
reasonable variability of shape while suppresses impractical
deformations; (2) a properly initialized template. In [17,21,18],
model parameters are redesigned to improve the discriminant and
flexibility of deformable model, while others [103,58] propose to
improve the quality of the initialization by localizing eye corners
first. Despite these improvements, deformable models still suffer
from their large search space and their dependence on good image
quality and good initialization.

Another way to model the eye shape is to construct a statistical
model for all the allowable shapes based on a series of discrete
landmarks on the eyes. The Active Shape Model (ASM) [19]
is the representative, which will be discussed in more detail in
Section 2.3.

Besides building a global shape model for eyes, it is possible to
learn different local shape models for different eye components,
e.g., for the pupil and the iris. In [78], Hough transform was
utilized to detect the circle shape of the eyes, and [46] proposed a
neural network-based method with a compact circular perception
fields for eye localization.

Since eye corners are less vulnerable to the changes of eye
states, they are sometimes used to improve the initialization
accuracy of the deformable model [103,58,47] (cf. Fig. 4). For
example, [47] presented a local Hough voting based method for
face alignment, using the spatial constraints imposed by the stable
facial components to guide the search of other facial points.
2.1.2. Intensity contrast characteristics
The intensity distribution pattern of eyes is another useful cue

for eye localization. For open eyes, the intensity contrast between
eyes components such as the pupil, the iris, the eye white, and the
eyelids is strong, while the gray intensity at the pupil region is
usually much lower than that of iris and eye-white (cf. Fig. 3).
Intensity patterns like these are commonly used as the heuristic
evidences for the existence of eyes [114].
the eye corners and the y-coordinate of the eyelids [114].

model of eyes [110].

ust and efficient eye localization in real-life scenarios, Pattern
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Typical methods to measure such patterns include Variance
Projection Function (VPF) and Integral Projection Function (IPF)
[27], both of which are adopted in General Projection Function
(GPF) [114] under a unified architecture for accurate eye localiza-
tion. These projection functions actually estimate the global inten-
sity distribution around the coarse eye region. However, in some
real-world applications, the global intensity distribution might be
deteriorated by noisy light spots of iris. To address this, [65]
proposed to accumulate locally smoothed version of pixel intensity,
which tends to be more stable compared to the global one.

Alternatively, Wang et al. [99] developed a facial landscape
navigation technique for eye localization, in which the interested
intensity pattern (a pit at the eye center surrounded by hillside) is
searched in a 3D terrain surface manifold of the face. In a similar
method, gradient patterns [53] instead of intensity patterns are
calculated around the eye region and served as the template for
eye matching.

2.1.3. Context characteristics
When the shape or intensity characteristics of the eyes cannot

be reliably measured, the context characteristics are very useful for
eye localization. This is because eyes in the face context usually
have stable relationship with other facial features in terms of both
appearance and structure distribution. Therefore, one may exploit
this prior knowledge to locate the positions of the eyes in the
Bayesian framework. For example, Kawato and Ohya [50] proposed
an eye tracking system through quickly localizing the ‘between-
eyes’ region.

2.1.4. Active infrared lighting characteristics
One of the most effective ways to deal with the lighting

changes is the active near-infrared (NIR) imaging techniques, due
to the fact that under the active IR lighting, the pupil and iris will
show different illumination properties. In particular, the pupil
Fig. 4. Corners locat

Fig. 5. Eyes examples under acti
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usually has a larger reflection rate than the iris, resulting in a
bright spot at pupil position. This bright spot is a good indicator of
the pupil and can be used for eye localization [117,116] (cf. Fig. 5).
In practice, a near-infrared light source with a wavelength from
780 to 880 nm will meet the requirements of most in-door
application scenarios. Due to its robustness against visible lighting
changes, this method has been widely used in driver fatigue
detection and face recognition [64]. It should be mentioned,
however, that there exist several conditions (restrictions) that
must be satisfied to ensure good performance, such as opened eye
states and the on-axis light, together with NIR imaging hardware.
Li et al. [64] observed that although active NIR makes the
appearance of the eyes robust to different lighting conditions in
general, the glasses and eye states may cause trouble for precise
eye localization (cf. Fig. 5), and they proposed a tree-structured
detector to carefully address this issue [64].

2.1.5. Discussion
In this section, we summarized several major eye localization

methods which measure different characteristics of eyes, including
the shape, strong intensity contrast, context information, and
active NIR lighting characteristics. It is worth noting that most of
these, except the active NIR technique, are developed at the early
stage of eye localization research and their own limitations
become more pronounced under the complicated uncontrolled
conditions where the characteristics may not be reliably measured
any more. To deal with this problem, most recent eye localization
methods resort to more advanced statistic methods. This is the
main topic of the next section.

2.2. Learning statistical appearance model

In contrast to aforementioned methods where eye-characteristics
with intuitive visual meanings are measured, methods reviewed in
ed for eyes [58].

ve near-infrared lights [64].

ust and efficient eye localization in real-life scenarios, Pattern
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this section focus on statistical models using photometric appearance
features extracted from cropped eye patches. The appearance based
methods potentially use more information than those based on
eye-characteristics, since the image content of eye patches contains
both information about eye-characteristics (e.g., eye shape) and other
relevant information that may be ignored or not easy to be
measured. These lead to a more robust technique.

In what follows, we will first review the various appearance
feature sets and then go on to review the statistical models built
upon them.
2.2.1. Appearance features extraction and representation
To build a reliable statistic appearance model, one has to decide

at first where and how to obtain a proper appearance representa-
tion. Most methods extract appearance features from a small patch
image of eyes. Some subtle but important considerations are
needed here. For example, how large should the patch be? Should
it cover the pupil, the iris, and the eyelids only, or should it cover
much context like the eyebrow? Unfortunately, most current
discussions on these topics are empirical in nature. Intuitively, a
relatively larger eye patch contains more discriminative informa-
tion and thus tends to reduce the risk of false positive, but this will
be at the cost of losing generalization capability as they will be less
likely to be good representatives of eyes. In [108], it is shown that
incorporating the eyebrow into the eye patch leads to better
localization performance on FERET [82] and YALE [7] face data-
bases. But in general, a cross validation procedure is recommended
to search the best suitable setting [22].

Given an eye patch, several visual feature sets, from middle to
high level, can be extracted from it. Each feature set is simply a
transformation of a set of neighboring raw pixel values, designed
to be invariant to certain changes. Since no single feature descrip-
tor will satisfy all the needs, selecting the ones to use in practice is
mostly application-driven and the factors that need to be taken
into account mainly include: (1) the invariance properties it
provides, e.g., to lighting changes or to variations in scale,
orientation, and other affine transformations; (2) the information
encoded and the discriminability preserved; (3) the computational
efficiency. The first criterion helps to clarify which kind of
change one wishes to compensate for after preprocessing the
Fig. 6. Illustration of feature sets for eye patterns. From left to right: color image (best v
vertical directions), Local Binary Patterns, and Gabor features (four directions and one s
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patches. The second one is essential to the subsequent statistical
modeling/processing, while the third one concerns the computa-
tional aspects of the feature set.

Popular feature set descriptors include those in frequency
domain, e.g., Harr wavelets features, Gabor features, and those in
the spatial domain, especially various gradient-based features,
such as Local Binary Patterns (LBP, [2]), Scale Invariant Feature
Transform (SIFT [66]) and Gradient Location-Orientation Histo-
gram (GLOH [73]). Some of them are illustrated in Fig. 6. We are
not aware of any comparative work concerning the effect of
different feature sets on the task of eye localization, but in the
more general context of computer vision, Mikolajczyk and Schmid
[73] reviewed some recently developed view-invariant local image
descriptors and experimentally compared their performance. They
found that GLOH [73] and SIFT [66] are the two best performed
descriptors among others in their settings.

In [55], the authors presented a method based on the multi-
scale LBP feature sets for eye localization in low and standard
definition content (see [51] with multi-scale Gabor feature sets).
In general LBP feature [2] is good at coding the details of
appearance and texture, whereas Gabor features encode global
shape and appearance over a range of coarse scales. Both repre-
sentations are rich in information and computationally efficient
and hence are widely used in the field of facial analysis. It is worth
mentioning that eye localization is a complex task for which it is
useful to include a lighting normalization stage before feature
extraction and combine multiple types of feature sets [91].

The multi-scale method used in [55] is helpful to alleviate the
problem of choosing the right patch for eye representation by
properly fusing multi-scale context information. A similar idea is
adopted in [107], where a pyramid of dictionaries is offline built at
multiple scales (see Fig. 7). For online localization, the dictionaries
are sequentially applied from the largest scale to the smallest one.
This fitting procedure, however, involves solving an l1 problem and
is generally time consuming.

Besides usual feature descriptors which directly apply certain
linear or nonlinear transformations on the given eye patches,
recently there has been a trend to construct feature sets statisti-
cally [101,76,13,106,16,88]. Usually these feature sets are obtained
by embedding the aforementioned middle-level feature sets into
another feature space with desired properties (e.g., compact,
iewed in the electronic version), gray intensity, gradient images (in horizontal and
cale).

ust and efficient eye localization in real-life scenarios, Pattern



Fig. 7. Examples of multi-scale dictionaries [107].

Fig. 8. Wavelet decomposition and feature selection for hierarchical SVM eye model [13].
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discriminative, etc.). These welcome properties are introduced by
learning from training examples either discriminatively or gen-
eratively. For example, in [101] the authors presented a method
which learned an optimal discriminant feature space from training
data by minimizing the empirical Bayes error using nonparametric
discriminant analysis. Since the learned feature space is tuned to
highlight the contrast between the positive eye samples and the
false ones, it is expected to be able to characterize eye patterns
better. In [76], the authors proposed an energy-based framework
to jointly perform discriminative feature sets learning and eye
localization, in which the parameters of statistical feature sets are
optimized to maximize the generalization performance of an SVM
classifier. Similarly, [13] proposed to group different sets of
features hierarchically and built a cascade of SVM classifiers on
them (see Fig. 8).

Compared to common feature descriptors, the major advantage
of statistic-based feature sets lies in their stableness in handling
uncertainty of image data, but at the cost of more computational
efforts and of the needs for plenty of representative training data
to ensure good performance.
2.2.2. Statistical appearance models
Even armed with a proper feature representation which

accounts for certain variability associated with target occurrences,
one still needs to build a final classification stage that can handle
residual variability and learn effective models from relatively few
training samples. This section describes some popular methods for
this purpose.

Popular classifiers are constructed in either a generative or a
discriminative way [8]. The generative methods try to recover the
class conditional probability distribution of eyes and use it to see
how likely a testing patch is generated from it. Due to the high
dimensionality of eye patches, the conditional density is best
estimated on a lower dimensional manifold, which can be found
using manifold learning methods like Locally Linear Embedding
(LLE) or Principal Component Analysis (PCA) [81].

Generative methods: a successful generative method is the
probabilistic PCA model for object representation proposed by
Moghaddam and Pentaland [74], in which the training samples are
first projected into their column space using PCA, then a Gaussian
density is estimated there to model the class conditional distribu-
tion of positive samples. Evergingham and Zisserman [22]
extended this idea to include non-eye model pðxjeÞ. Then the
prediction of a new patch x can be performed by looking at the
Please cite this article as: F. Song, et al., A literature survey on rob
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margin (or log-likelihood ratio) between the outputs of the two
models given x : llrðxÞ ¼ log pðxjeÞ−log pðxjeÞ, where both eye
model pðxjeÞ and non-eye model pðxjeÞ are assumed to be Gaus-
sian. Even though more complicated generative model, e.g.,
Gaussian Mixture Model, could be applied, this simple method
yields very good localization performance on several databases
consistently, which clearly illustrates the power of generative
methods in this challenging task. To ensure accurate distribution
estimation, however, a relatively large number of labeled training
samples are desired.

Discriminative methods: on the other hand, discriminative
methods aim to find the discriminant function between eye and
non-eye classes directly, in the form of decision surface, separating
hyperplane, or threshold function. In this way, the problem of eye
localization boils down to a binary classification problem. Typical
classifiers for this include Support Vector Machine (SVM)
[22,93,92], AdaBoost [98,101,112,67], neural networks [86], and
so on. Among others, SVM is widely used in practice due to its ease
of use and its good generalization capability [93,92]. However, in
many cases a good generalization performance is only guaranteed
with enough number of support vectors coupled with nonlinear
kernel function, which may significantly increase the computa-
tional costs and memory when testing. However for certain
specific kernels, the computation could be made very efficient
[71] as well as the training method [70]. Alternatively, it is possible
to adopt an efficient branch-and-bound optimization strategy to
reduce the number of matching without sacrificing the accuracy of
classifiers [59].

Another way to achieve a good tradeoff between accuracy and
efficiency is the boosted cascade of features [98,67,101,77,
112,106], which adopts the ‘coarse-to-fine’ strategy to select a
bunch of discriminative features and use them to construct more
powerful classifiers increasingly. The testing step is very efficient
since each level of the cascaded classifiers consist of a linear
combination of a few simple weak classifiers and only those
patches with high likelihood will be passed on for further
examination. To enable reliable feature selection, sometimes the
candidate patches are set to include both eyes [112,67]. To deal
with the problem of eye localization in low quality face images,
[109] introduced a quality adaptive cascade that works in a
probabilistic framework (P-Cascade), which allows all image
patches to contribute to the final result with some probability.

Optimizing the localization accuracy: compared to generative
methods, discriminative methods are more efficient in exploiting
different types of visual features from samples without assuming
ust and efficient eye localization in real-life scenarios, Pattern
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any dependence between them, but they may not behave so
robustly against the problem of probability drifting as their
generative counterparts. The reason for this is that for the
discriminative methods only the area of decision boundary is
important while the interior distribution of each class is comple-
tely ignored by the model. Evergingham and Zisserman [22]
compared several classifiers including both generative and dis-
criminative ones and found that the simple Bayesian classifier
outperforms several discriminative methods including SVM and
AdaBoost method. One possible explanation for this is that the
discriminative methods are sensitive to small localization errors in
the ground truth [22]. Moreover, since the objective of the
discriminative method is set to optimize the classification accuracy
rather than localization accuracy, the trained classifier may not
give the maximal response at the right object location.

There are several approaches to address this problem. The
simplest one is to explicitly tell the classifier which training
examples are confusing, i.e., they look like but are actually not
the target of interest. This can be done by the careful construction
of the negative set. Those examples can either be sampled around
random points in the iris neighborhood specified beforehand [76],
or be generated in a boosting fashion by identifying them using
the current classifier [92].

Another natural way to explicitly incorporate the positions of
the eyes is to formulate the task of localization as a regression
rather than a binary classification problem. In this setting, the
training data are given by a set of input images and their
corresponding eye positions, and the goal is to learn a regressor
which maps from the input image to the predicted eye position (in
some invariant coordinate system, cf. [61]).

Different regression methods can be adopted according to how
to specify the eye localization. In [10], each training image is
assigned a correlation image which is synthetically generated with
a bright peak at the center of the target (e.g., the left eye) and
small values everywhere else. This correlation image gives not
only the locations of the eyes but also the corresponding desired
response to be regressed. The regression is implemented by
producing a correlation filter that exactly transforms each input
image to its correlation image (see Fig. 9). The localization is
performed by correlating a test image with the learned filter and
selecting the global maximum in the correlation outputs.
This testing procedure is very efficient without resorting to the
time-consuming sliding window search. A similar method is
adopted by Hefin et al. [38]. To deal with the ambiguity from
multiple peak responses, they warp the face image using the
candidate response pairs and select the one that leads to a face
image with best quality [38].
Fig. 9. Illustration of the ASEF method: The image fi is an image in the training set
and gi is the corresponding desired filter output. A correlation filter hi is produced
by in the Fourier domain that exactly transforms fi to gi. The final correlation filter is
produced by taking the average of many Exact Filters [10].

Please cite this article as: F. Song, et al., A literature survey on rob
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The above filter methods implicitly learn a regression model for
eye localization. Alternatively, as proposed in [22], one can directly
construct a linear regression model in the Hilbert space from an
input image to its eye localization, i.e., a 2D coordinates in the
image. To ignore the irrelevant variation, a square region centered
at the mean over the training images of the ground truth eye
positions is extracted for regressing. This method is shown to work
better than SVM and AdaBoost-based methods, especially on the
uncontrolled WWW images [22].

Moving forward with this line of research, Blaschko and
Lampert [9] proposed a general object localization method which
specifically optimizes localization accuracy within a large margin
regression framework. In particular, instead of representing the
positions of the eyes as 2D coordinates, a bounding box around the
eye region, which is regarded as a more flexible and useful
structure to be regressed in the output space, is adopted. With
the help of joint kernel map, the training procedure is formulated
under the framework of structured predicting [4]. This method is
shown to boost the accuracy of object localization and has the
potential to handle partial detections by properly evaluating the
usefulness of image regions that contain portions of the object.
Besides structured regression, Gaussian process can also be used
for the purpose of object localization in general and eye localiza-
tion in particular [44].

2.2.3. Discussion
In this section, we have summarized the motivations and

popular techniques of appearance-based methods. Incorporating
the feature extraction methods and advanced statistical techni-
ques, appearance-based model can effectively explore a wide
range of appearance variations of the eyes, and achieves good
generalization ability on unseen eye images. However, it is still
useful to consider the eye characteristics-measuring-based meth-
ods and the appearance-based methods under the same frame-
work, and such a hybrid method is a promising direction for
localizing eyes' positions under uncontrolled conditions. We will
explore such a possibility in the next section.

2.3. Exploiting structural information

Unlike photometric appearance features which capture the
visual aspects of the eyes, the spatial topological features char-
acterize the pattern of the eyes in a different way. In particular, the
eye consists of components such as eyelids, iris and pupil, and
these components have regular structural relationships. Such
structural features are less affected by environmental conditions
than appearance features. And clearly, the two types of features (i.
e., appearance and structural features) are complementary to each
other in depicting eye patterns. Since the eye is relatively smaller
than the face, it is also convenient to model eyes structural
features in the face context.

Pictorial Structure Model (PS, [28]) is a typical method in the
line. The basic idea is to decompose an object as a set of parts and
then use a graph structure to model the topological relationship
between them. After a model like this is constructed, it can be
used to localize the object of interest by measuring the appearance
fitness and structural deformation simultaneously,

Ln ¼ arg min
L

∑
n

i ¼ 1
miðliÞ þ ∑

ðvi ;vjÞ∈E
dijðli; ljÞ

 !
ð1Þ

where miðliÞ is the similarity for part i at position li according to
appearance model, and dijðli; ljÞ measures the spatial structure
confidence for part i and part j located at position li and lj
correspondingly. The challenge is how to solve this energy
minimization problem efficiently so as to find the optimal
ust and efficient eye localization in real-life scenarios, Pattern



Fig. 10. Three examples from the training set showing the locations of the labeled features and the structure of the learned pictorial model [25].
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configuration of parts positions Ln. For this purpose, Felzenszwalb
and Huttenlocher [25] presented an efficient method to automa-
tically estimate the topological structure by simplifying the graph
structure as a tree and restricting the form of connections between
parts as a linear one rather than quadratic in the number of
possible locations for each part (Fig. 10). In a recent development
[26], they treat the locations of the parts as latent variables and
learn them in a discriminative framework. This essentially refor-
mulates the energy function of Eq. (1) by canceling the second
term and merging it within the appearance model in the first term
to make it more computational tractable. This method has been
successfully applied to the task of object detection although in
principle it can also be used for the problem of eye localization.

To this end, Tan et al. [92] proposed a method which enhances
the pictorial model in two aspects for the purpose of eye localiza-
tion. First, to avoid estimating the multi-modal distribution of eye
appearance under the complex real-life scenarios, a discriminative
method is used to substitute the simple generative model used in
[25]. This is in spirit similar to the latent SVM method in [26], but
the difference lies in that it is the label rather than the location of
each part that is treated as a latent variable in [92]. This helps the
model capture the meaning of each part (i.e., identifying them
respectively as eyes, nose, etc.). Second, an improved structural
description method is introduced to make it more robust against
affine transformations as rotation, scale and translation. This
method is tested on the challenging LFW data set [42] with
promising results. Campadelli et al. [15] also proposed to use the
information of other facial features (mouth in their case) as further
constraints to reduce the number of false positives. Their methods
are tested on several public databases (cf. Table 3).

Active Shape Model (ASM) [19] is another representative
method to model the structure information of an object. In ASM,
the shape of an object is described in terms of shape vector, which
is a set of coordinates of these landmark points arranged in a
predefined fixed order. The landmark points need to be manually
annotated, usually on the contour and the key components of an
object. ASM then uses these annotated training data to build a
statistical model, so as to guide an iterative search on a test image
for its shape vector which conforms to all the shape variations
possible for this particular type of object (e.g., face). This model is
suitable for locating multiple facial features simultaneously under
high image resolution.

One of the major advantages of structural methods lies in that
it provides a nice mechanism to infer the location of an object by
estimating the locations of its parts. Hough transform based
methods have been successfully adapted to this purpose recently
[61–63,5]. Implicit Shape Model (ISM, [62,63]) is a typical voting-
based structure model, in which the shape model is not explicitly
constructed but represented loosely in terms of a bag of patches.
Different from the usual bag of patches model, the key idea of ISM
is to maintain a spatial occurrence distribution for each visual
codeword, such that it can be used not only for the representation
of local appearance but also for casting votes for possible positions
of the object center as well. This Hough voting mechanism
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effectively bypasses the difficulty of optimization problem encoun-
tered in many structured methods (cf. Eq. (1)). Furthermore, it is
robust against partial occlusion and large appearance variations.
Recently, Barinova et al. [5] provided a new probabilistic formula-
tion for Hough voting and Lehmann et al. [61] interpreted Hough
voting as a dual implementation of linear sliding window detec-
tion, which leads to a fast implementation of ISM. Kozakaya et al.
[54] proposed to improve the stableness of voting space using the
dense sampling strategy.

2.4. Discussion

In this section, we have reviewed major automatic eye localiza-
tion techniques which involve feature extraction, texture repre-
sentation, model training and optimization algorithm. In principle
the methods reviewed can be also used for related tasks
such as eye detection, eye tracking, gaze estimation and blink
detection aforementioned in Section 1. Nevertheless, it is worth
mentioning that extracting and representing task-specific feature
sets is extremely important for good performance. For example,
extracting motion-based features, which is not reviewed here
(but cf. [37]), is crucial to the task of eye tracking. On the other
hand, for a complex task like eye localization, it is difficult to
address all the variations using a single type of feature set or
localization method. Therefore, taking careful consideration about
the system architecture from a global view is extremely useful, and
we will discuss this further in the following section.
3. Towards the development of a robust eye localization
system

As mentioned in Section 1, the eye appearance and shape
signals are subject to many kinds of undesirable variations, and
any mismatch between the training and testing conditions may
dramatically decrease the performance of eye localization. Track-
ing this mismatch and related variations is the main focus of eye
localization research, and due to its complexity, it is often the case
that no single modality is enough. In this section, we first present a
global system architecture for eye localization (Fig. 11) and then
have a closer look at possible strategies to improve the robustness
of eye localization under this architecture.

3.1. The global system architecture for eye localization

Due to the complexity of the eye localization, it is better to use
a divide and conquer strategy to handle different variations at
different stages. Inspired by [24], we give a global architecture for
eye localization (see Fig. 11). Note that this is only to illustrate the
general pipeline for an eye localization task and it is possible to
instantiate different systems according to this architecture but not
all components are mandatory in a practical system. For example,
the pictorial structure model [25] and ASM model [19] do not rely
on a careful face normalization to build their shape model.
ust and efficient eye localization in real-life scenarios, Pattern



Fig. 11. A global system architecture for eye localization.

F. Song et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
As shown in Fig. 11, the architecture is roughly divided into
three components, i.e., face processing, feature extraction and
representation for eye model, and eye localization. The face
processing component can be thought of as a preprocessing stage
for eye feature extraction. Meanwhile, the problem of the accuracy
and efficiency tradeoff is essential for any practical eye localization
system. Finally, before the locations of the eyes are actually
outputted, some postprocessing which combines multiple search-
ing results of eye detectors needs to be done properly. Next we will
have a closer look at these issues.

3.2. Preprocessing methods

The goal of preprocessing stage is to facilitate the task of
feature extraction by removing noise information and narrowing
down the search region. The first step for this is to locate and
segment out faces from complex scenes with cluttered back-
grounds. Although this can be done by hand, in most cases a
modern face detector [98] will do it quickly and accurately. The
output of a face detector is a rough face region possibly with
different scales, rotations and lightings. Therefore it might be
useful to remove these variations from the acquired faces prior to
further analysis.

Handling pose variations: pose variations due to scale changes
and in-plane rotations are commonly handled by geometric
transformation. In many face recognition applications this is
performed based on the coordinates of some predefined land-
marks like eyes or the nose, which are unfortunately assumed to
be unknown in eye localization. Therefore warping methods which
do not rely on such information are preferred for eye localization.
In the ASM method [19], a set of face images are simultaneously
aligned using an iterative Procrustes algorithm which essentially
aims to find the best affine transformation under a least square
type criterion. Alternative normalization methods are based on the
information theory. In [41], the authors proposed an unsupervised
method for face alignment with no need of landmarks by looking
for a transformation for each face such that the empirical joint
entropy is maximized after transforming.

It is worth mentioning that the function of geometric normal-
ization method should not be overstated and there exist alter-
native ways for this purpose. For example, to handle scale changes,
one can scan the face images of different sizes by subsampling
instead of doing geometric normalization. In practice, out-of-plane
rotations with limited angle can be handled through geometric
normalization, but the problem of compensating missing
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information for distorted face due to large in-depth rotation is
quite difficult if no further prior knowledge is provided.

Image enhancement: pixel values are raw intensity features and
could be easily affected by illumination variations. Traditional
approaches for dealing with this issue can be broadly classified
into three categories: appearance-based methods, normalization-
based, and feature-based methods. In direct appearance-based
approaches, training examples are collected under different light-
ing conditions used to learn a global model of the possible
illumination variations, for example a linear subspace or manifold
model, which then generalizes to the variations seen in new
images [6,60]. Direct learning of this kind of model makes few
assumptions but it requires a large number of training images and
an expressive feature set, therefore it is seldom used in the
application of eye localization.

Normalization based approaches seek to reduce the image to a
more ‘canonical’ form in which the illumination variations are
suppressed. Histogram equalization is one simple example, but
purpose-designed methods often exploit the fact that (on the scale
of a face) naturally-occurring incoming illumination distributions
typically have predominantly low spatial frequency and soft edges
so that high frequency information in the image is the predomi-
nant signal (i.e., intrinsic facial appearance). For example, the
Multi-scale Retinex method of Jobson et al. [49] cancels much of
the low frequency information by dividing the image by a
smoothed version of itself. More recently, Gross and Brajovic
(GB) [33] developed an anisotropic smoothing method that relies
on the iterative estimation of a blurred version of the original
image. In [91], a signal processing approach motivated more by
bottom-up human perception than by Retinex theory is presented.
Overall, these methods are quite effective and efficient but the
problem of handling spatially non-uniform variations remains an
open problem.

The third approach extracts illumination-insensitive feature
sets directly from the given image. These feature sets range from
geometrical features [11] to image derivative features such as edge
maps [1], Local Binary Patterns (LBP) [90], Local Ternary Patterns
(LTP) [91], Local Phase Quantization (LPQ) [80], Distance Vector
Field (DVF, [3]), Gabor wavelets [102], and local autocorrelation
filters [35]. For instance, Nanni and Lumini [75] built a well
performed eye classification module based on multiresolution
LTP [91] and LPQ [80] descriptors. Yang et al. [108] designed a
‘Gabor-Eye’ representation for eyes which exploits the frequency
and direction sensitivity properties of Gabor feature sets. Qian and
Xu [84] selected some Gabor-transformed images to reconstruct
ust and efficient eye localization in real-life scenarios, Pattern
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an intermediate representation suitable for eye localization, in
which the signal of the eye region is enhanced and the influence of
lighting variations is reduced. To stabilize the Gabor filter direction
selection and increase the robustness to the accessories appearing
on the eye-and-brow region, Xiong et al. [104] present a method
based on the face tilt angle detection and adjustment techniques.
Alternatively, Crowley et al. [48] used the first and second order
Gaussian derivatives as filters to extract feature vectors which are
robust to chrominance variations of light.

Shrinking search areas: narrowing down the search region is
helpful to improve both the efficiency and the effectiveness of eye
localization in general. The search region plays the role of
hypothesis space, reflecting the prior knowledge about the place
where the eyes are assumed to lie. The size is crucial in setting the
hypothesis space—a small one may simply not contain eyes and a
large one may lead to unnecessarily computational cost. Usually a
face detection operation is first performed to locate the face region
then a search window is put at the eye region based on knowledge
from the training set. This strategy works well in most cases, but
care must be taken when the location of the eye is unpredic-
table (e.g., being occluded due to pose variations). In the later
cases, expanding the search space to include the entire image
might be a better choice [10]. Alternatively, one may progressively
use different templates with different scales to narrow down the
search space. For example, in [29], a multi-view face detector is
first used to estimate the rotation state of the face, based on which
a coarse-to-fine strategy is further applied to locate brow-eye
regions and the eyes respectively.

In practice, some heuristics may be used to locate the search
window. The simplest one is based on the fact that eyes are almost
always lying in the upper part of a face and the intensity of eye
center always has lower contrast compared to its surroundings.
Such cues are very informative to give a coarse prediction of eye
positions [67]. Actually one can even try to learn the prior
distribution of coordinates of the eyes given a large number of
samples [55]. Another useful heuristic is that the eye regions have
low intensity, low red chrominance, and high blue chrominance,
when compared to the forehead region of the face. This heuristic is
commonly used to segment the eye region from the face image,
followed by some morphological operations (e.g., dilation and
erosion) to enhance certain interesting pixels of the eye region
[40,32,100]. Other eye features described in Section 2.1, such as
intensity contrast and edge map, can also be used to roughly locate
the eye region efficiently. In [104], candidate eye region is
extracted through the horizontal intensity gradient integral pro-
jection and Gabor filtering. Campadelli and Lanzarotti [12] uses a
man-made eye template to roughly locate 10 candidate eye
regions and selects the best one based on the symmetry condition
and majority voting methods.
3.3. Accuracy and efficiency tradeoffs

Localizing eyes from faces in real time is crucial to many
practical applications. The efficiency depends not only on the eye
prediction model but also on the search and matching strategy
applied. Sliding window technique is commonly used for object
detection, while the strategy of ‘coarse-to-fine’ is usually adopted
to achieve better tradeoff between accuracy and efficiency. To
solve the high accuracy and low complexity dilemma, and con-
sidering that most search regions are backgrounds, it is wise to use
discriminant model but with less complexity to quickly filter out
noise regions and use more complex model on most probable eye
regions. Campadelli et al. [13] build two cascading SVM classifiers
with different complexities and accuracies to achieve accurate eye
localization in coarse-to-fine way.
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On the other hand, more efficient eye model design is helpful.
In the above introduced cascading classifiers, the last level
classifiers usually have high accuracy but also have high model
complexity; the time cost is still expensive even evaluating in the
reduced search space. Many factors contribute to the complexity of
models and there are many ways to measure the complexity in
literatures, such as VC dimension and Minimum Description
Length (MDL), but it is generally agreed that the degree of
complexity increases with the number and magnitude of the
effective parameters involved. One way to achieve high accuracy
but with controllable complexity is to linearly integrate a few of
simple classifiers, as does in the AdaBoost framework for object
detection [98]. Similarly, [30] linearly combined a set of linear
SVMs, which are shown to have equivalent accuracy to nonlinear
SVM, but with less model complexity. Saragih et al. [87] extended
this idea to implement an efficient ASM model for facial feature
localization.

Recently, compress sensing techniques originated from the
field of signal processing are popularly applied to select the most
informative feature set and hence reduce the complexity of the
final model in object detection [105]. Others propose to use
machine learning methods like Fisher discriminant analysis and
SVM to extract/select discriminative feature sets so as to improve
the efficiency and effectiveness of eye localization [101,15].

The drawback of sliding windows technique is the huge size of
the search space. To overcome this, researchers try some interest-
ing ways that go beyond sliding window technique. For instance,
Lampert et al. [59] propose the Efficient Subwindow Search method,
which adopts a branch-and-bound scheme to find the global
optimum of the quality function over all sub-images, and runs in
linear time. This method has recently been extended in the
context of Hough voting for object localization [61]. On the other
hand, some methods are motivated by the efficient visual atten-
tion mechanism of human visual system. For instance, inspired by
the concept of visual routines [95], Huang and Wechsler [43]
proposed an eye localization method using navigational routines.
They automated the derivation of such routines using evolution
and learning, which effectively filters out unlikely eye locations
and limits the use of the more expensive classifier. Alternatively,
[34] implemented the attention mechanisms using the phase
spectrum information of Fourier transform. The Correlation filter
methods [68,69,10] effectively avoid exhaustively searching in the
image domain by taking advantage of the fact that the correlation
computation in the image domain is equivalent to element-wise
multiplication in Fourier domain.

3.4. Postprocessing methods

For those methods localizing eyes localization through detec-
tion [22,93,101,112,67], a postprocessing step is usually needed to
further evaluate the most probable eye positions or return feed-
backs to final decision. One reason for this is that they commonly
use a classifier like SVM or AdaBoost to find the best decision
boundary which discriminates the positive samples from negative
ones in terms of classification accuracy rather than optimizing the
objective to give highest score to the true object of interest at the
right position. Besides, the ground truth with small localization
errors may seriously mislead the learning procedure of classifier
[22]. Therefore, we should not over-interpret the output of the
classifier—it is just an indicator about whether or not eyes are
probably present at some positions, but not necessarily their exact
positions. Actually, due to the spatial dependence between candi-
date patches, it is very likely that the eye detector yields several
positive responses with similar scores in the vicinity of some
locations. Consequently, postprocessing like non-maximal sup-
pression is needed to remove such ambiguity. However, it is worth
ust and efficient eye localization in real-life scenarios, Pattern
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mentioning that unlike postprocessing in the general context of
object localization where multiple instances may exist simulta-
neously in one image, for eyes we know a prior that only one eye
exists in one search window.

One of the best known non-maximal suppression methods is
developed by Viola and Jones in their face detector [98], in which
highly overlapping detections are merged into one representative
face using a clustering algorithm. To this end, various heuristics
can be used to fine localization and false alarm dismissal. Garcia
and Delakis [31] interpreted the fine localization as a local search
procedure and proposed to accumulate evidences for positives in
the scale space, based on the observation that true objects usually
give a significant number of high positive responses in consecutive
scales, which is not often the case for negatives. However, in some
Hough voting methods (e.g., ISM [63], PRISM [61]) the searching
space is modeled as continuous rather than discrete, which makes
the searching become much more complicated. Many efforts have
been made to address this issue [63,61] as reviewed in the
previous sections.

The anthropometric measures are also frequently used for
postprocessing, due to the fact that the spatial structures between
two eyes and other facial features could pose rather strong (and
useful) constraints on the locations of the eyes. Actually, most of
the methods reviewed in Section 2.3 can be thought in this way—
they simply combine the task of eye detection and fine localization
into one single objective function. But many methods do perform
their postprocessing explicitly. In [112], the authors used an
AdaBoost detector to segment the eye region and then a fast
radial symmetry operator to finely locate the centers of the eyes.
However, this geometric constraint also implies that it can only be
used for open eyes. To leverage on the effectiveness of postproces-
sing, [93] relaxed the constraint criteria of the AdaBoost eye model
so as to generate more candidates for further verification. Instead
of using a single-eye patch, patches containing both eyes could be
utilized to train the SVM classifier as well [67], which implicitly
exploits the spatial dependence between two eyes. To eliminate
small spurious detected regions, Crowley et al. [48] used a
connected components analysis algorithm and computed the
bounding box around. Regions with a small bounding box are
eliminated.

Hamouz et al. [36] described a different method for postpro-
cessing by checking the consistency of candidates in a lower
dimensional space. In particular, they first transform all the data
into a canonical space and then find the best candidate there using
an SVM. The canonical space is trained with ground truth and
hence serves to encode the constraints about what the ‘good’
samples should look like. This idea is similar to that in ASM [19],
which recommends a better shape vector for face alignment in a
pre-learned shape space given the current fitness.
Fig. 12. Illustration of the influence of eye labels on face alignment. The ground
truth is defined as the center of the pupil (above row) and the center of the eye
(below) respectively.
4. Performance evaluation

In order to evaluate eye localization model objectively and
make a fair comparison among different methods, ideally perfor-
mance should be reported on the representative benchmark
database and follow a standard and reasonable experiment pro-
tocol. However, in reality many algorithms are evaluated in
different ways with variations in databases, measure metrics,
training samples, testing samples, etc., which makes it almost
impossible to directly compare eye localization results found in
the literature. Nevertheless, we still listed some of reported
performance in Table 3 for reference. Next we will review the
performance measure metric and the major face databases used
for evaluation.
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4.1. Measure metric

The design of the ground truth: the localization accuracy is
basically measured by the distance between the predicted position
and ground truth location of the eye. The ground truth is defined
as a representation of the agreed correct result of the ideal eye
localization method and forms the basis for all performance
comparisons among the methods to be evaluated. Therefore, the
design of the ground truth is crucial.

We note, however, that this is task-specific. Take the task of
gaze estimation for example. It would be reasonable to define the
ground truth as the center of the pupil. While in the task of
automatic face recognition, the procedure of eye localization
mainly serves to provide the anchor information for the subse-
quent geometric normalization. But under the side-looking gaze
direction while keeping frontal face pose, pupil positions will
deviate away from eye center. In this case face will be misaligned if
we still take pupil positions as reference points (see Fig. 12). What
is more, labeling pupils is error-prone under uncontrolled condi-
tions featured with closure eye states, poor image quality, glasses
reflection, and eye partial occlusion. In these cases it would be
better to take the actual center of the eye as its position.

Recently, Kostinger et al. [52] propose a method which defines
facial landmark positions based on a rigid 3D face model (see
Fig. 13). One advantage of this method lies in its capability to deal
with the variability due to face pose changes. It has been success-
fully used to label the centers of the eyes and other facial land-
marks on a large scale face database [52].

Localization error measurement: after defining the ground truth,
the next step is to measure the localization error. Among others,
most commonly used measurement is the normalized eye locali-
zation error proposed in [46], which is defined in terms of the eye
center positions according to

deye ¼
maxðdl; drÞ
∥Cl−Cr∥

; ð2Þ

where Cl and Cr are the ground-truth positions and dl and dr are
the Euclidean distances between the detected eye centers and the
ust and efficient eye localization in real-life scenarios, Pattern



Table 2
A list of data sources and tools related to eye localization.

Sources Links

Data and annotations
Low quality eye [109] http://www.cbsr.ia.ac.cn/users/dyi/

eyelocalization.htm
RPI ISL Eye Database http://www.ecse.rpi.edu/�cvrl/database/

database.html
AR, BANCA, FRGC1.0, FRGC2.0 http://lipori.di.unimi.it/download/gt.html
AR, BioID, XM2VTS, Talking
Face, PETS ICVS 2003

http://www-prima.inrialpes.fr/FGnet/html/
benchmarks.html

FERET http://www.itl.nist.gov/iad/humanid/feret/
feret_master.html

Cohn Kanade Database http://lipori.di.unimi.it/download/gt2.html
Annotated Facial Landmarks in
the Wild [52]

http://lrs.icg.tugraz.at/research/aflw/

IMM Face [79] http://www2.imm.dtu.dk/aam/datasets/
datasets.html

Code and toolBox
Hough transform [5] http://graphics.cs.msu.ru/en/science/

research/machinelearning/hough
Structured output regression [9] https://sites.google.com/site/

christophlampert/software
Pictorial structures [25,26] http://people.cs.uchicago.edu/�rbg/latent/
Enhanced Pictorial Model [92] http://parnec.nuaa.edu.cn/xtan/data/

eyedetector.html
Max-Margin Additive [70] http://www.cs.berkeley.edu/�smaji/

projects/add-models/
Fast Intersection Kernel [71] http://www.cs.berkeley.edu/�smaji/

projects/fiksvm/
Lighting processing [91] http://lear.inrialpes.fr/people/triggs/src/

amfg07-demo-v1.tar.gz
Landmark Localization [115] http://www.ics.uci.edu/�xzhu/face/
Eye+Mouth [15] http://homes.di.unimi.it/� lipori/download.

html
Annotation tool [96] http://cmp.felk.cvut.cz/�uricamic/

Fig. 13. The 3Dmodel used to define the centers of the eyes and other facial landmarks
[52].
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ground-truths. The definition shows that this measure is the worst
location results analysis standard, and the normalization term in
this formulation can eliminate unreasonable measurement varia-
tions caused by variations of face scales and image resolutions. In
practice, for eye detection, usually deyeo0:25 is required, but for
eye localization, deyeo0:05 or deyeo0:1 is more meaningful.

For the face under out-of-plane rotation, the two eyes distance
cannot reflect the actual face scale, and the normalized localization
error measurement may be biased. In such case more general
evaluation measures such as mean and variance could be used
[22]. Alternatively, depending on where the localization system is
used, the performance can also be evaluated by checking how well
the interested task is solved (e.g., in terms of the improvement on
the accuracy of face recognition [101]).
flandmark/
OCOFTools [10] http://www.cs.colostate.edu/�ross/

ocof_toolset_2012/
4.2. Databases and performance evaluation

Although there are many face databases [113] developed, they
are not originally aiming for the problem of eye localization and
are collected under well controlled laboratory conditions with
normal lighting, neutral expression and high image quality.
Despite these drawbacks, they contain many kinds of interesting
eye pattern variations and hence are widely used for the eye
localization research nowadays. Among others, popular face data-
bases include FERET [82], FRGC (Face Recognition Grand Challenge,
[83]), JAFFE [20], BioID [23], LFW (Labeled Face in the Wild, [42]) ,
FaceTracer [56] and so on. Fortunately, most of these databases are
shipped with the ground truth of eye positions and thus can be
used for model training. Alternatively, plenty of sources for reliable
labels of eyes are publicly available in the area of face alignment.
For details, see Kostinger et al. [52]. More information about
published miscellaneous face databases can be found in the
Internet [39], and some useful sources are listed in Table 2.

Table 3 summarizes the performance evaluated on some of
these databases and Fig. 14 gives a visual illustration of the
localization results on them. In the table we highlight the major
challenges contained in each database, the size of test images, the
localization performance in terms of the percentage of images that
have been successfully handled corresponding to a certain locali-
zation error (cf. Eq. (2)). Note also that the time costs given in this
table may be recorded under different settings. Among them,
FERET [82] is one of the most popular databases for both face
recognition and eye localization. Face images in this database are
taken under controlled conditions, thus they are suitable for
general evaluation of eye localization algorithms. The table shows
that most methods perform well on this database. The face images
of JAFFE [20] have rich expression variations and most with eyes
wide open, which makes them particularly suitable for evaluating
Please cite this article as: F. Song, et al., A literature survey on rob
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those methods based on measuring the geometrical or intensity
characteristics of eyes (e.g., [114]).

The BioID is a much more challenging database for eye
localization, featured with a large variety of changes in illumina-
tion, background and face size. Actually, performance reported on
this database drops about 7% compared to that on the relatively
simple databases [67,93]. This indicates that complicated uncon-
trolled conditions are still big challenges for current eye localiza-
tion methods. In this aspect, methods exploiting rich feature sets
and structural information may have advantages (cf. Fig. 14).
Finally, the FRGC [83] face data are featured with large lighting
changes but with high image resolution, and most methods show
satisfying performance on this database.
5. Conclusion and prospect

Eyes are arguably one of the most salient features of the human
face, and locating eyes precisely and efficiently is of great impor-
tance for a wide range of real-world applications. It is not
uncommon to mistakenly think that eye localization is a simple
task since eyes are just a simple structure in the face. However,
eyes have its unique geometric, photometric and motion charac-
teristics, and changes due to these three characteristics would lead
to a very complicated nonlinear manifold of eyes. Developing
effective eye models to describe this manifold and performing
efficient searching within this manifold is therefore of both
academic and practical interest. In the recent thirty years, inten-
sive studies on this problem have resulted in a great amount of
achievements.
ust and efficient eye localization in real-life scenarios, Pattern



Table 3
Lists of eye localization performance evaluated on various face databases.

Databases Challenges Methods #Test Accuracy (%) Time (s)

deyeo0:1 deyeo0:25

FERET Lighting, General-to-specific [13] 375 89.5 96.4 12
[82] expression, Eyes + mouth [15] 1175 97.3 99.7 3

pose Multi-scale LBP [55] 3368 97.6 99.6
Avgerage of synthetic exact filters [10] 1699 98.5 0.03
Bayesian method [22] 1000 99.0
Multi-scale Gabor [51] 488 (fa) 91.8 (0.07)
Combining face detector [75] 1175 99.7 (0.05)

JAFFE Expression General projection function [114] 213 97.2
[20] Locally smoothed IPF [65] 213 99.1

AdaBoost [67] 213 98.6 100 (0.12) 0.06
AdaBoost + SVM [93] 213 99.5 100 0.04
2D Cascaded AdaBoost [77] 213 100
Probabilistic cascade [109] 213 100
Multi-scale Gabor [51] 213 100 (0.07)
Multi-view eyes localization [29] 213 60.9 98.6

BioID Lighting, General projection function [114] 1521 94.8
[23] Locally smoothed IPF [65] 489 95.2

Background, Isophote curvature [97] 1521 90.9 98.5 0.01
scale Eyes + mouth [15] 1521 93.2 99.3 3

Multi-scale sparse dictionary [107] 1521 95.5 99.1
Multi-scale LBP [55] 1512 97.9 99.9 0.95
Probabilistic Cascade [109] 1521 99.0 100
Multi-scale Gabor [51] 1521 96.4 98.8
Combining face detector [75] 1521 99.3 (0.06)
AdaBoost + SVM [93] 1521 91.8 98.1 0.06
2D Cascaded AdaBoost [77] 1521 93.0 97.3 0.03

LFW Uncontrolled Enhanced pictorial model [92] 1000 98.4 0.1
[42] Probabilistic cascade [109] 88.1 99.8

Intensity filtering and clustering [84] 1192 90.6 96.1
Novel correlation filter [38] 1540 86.0a

Multi-view eyes localization [29] 400 75.4 97.2
Locally smoothed IPF [65] 1000 95.6

FRGC [83] Controlled Eyes + mouth [15] 748 (v1) 97.7 100 3
1430(v2) 95.0 99.9 3

Uncontrolled Eyes + mouth [15] 409 (v1) 91.2 95.1 3
1430(v2) 89.1 94.5 3

Controlled/Uncontrolled General-to-specific [13] 862 92.8 97.1 12
Multi-scale LBP [55] 39094 98.6 99.6
Discriminant features [101] 4715 (v1) 99.0

a The error measured in pixels is converted into normalized localization error (cf. Eq. (2)) by assuming that the eyes distance is 40 pixels for faces in LFW [42].
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In this paper, we attempt to provide a comprehensive survey of
current researches in this area. In particular, we have focused on
the overall difficulties and challenges in real-life scenarios and
described the current state of the art in dealing with these
challenges. The ad hoc methods are mostly reviewed from the
perspective of pattern recognition and computer vision with the
bias on how to learn generalizable, flexible and efficient statistical
eye models from a small number of training images, which, we
believe, could help us to develop a clear understanding of this
particular problem. We also pay much attention to the practical
issues concerning the development of a robust eye localization
system, ranging from various preprocessing methods to postpro-
cessing ones. Furthermore, we reviewed the relative localization
performance of current algorithms on popular face databases and
discussed various factors (e.g., the design of ground truth) that
should be taken into account when evaluating a system. Finally, it
is worth mentioning that some closely related problems are
deliberately ignored in this paper, such as gaze estimation and
eye tracking, which are also very important in practice. For these
topics, we refer to [37] for a detailed discussion.

Despite of many efforts devoted to eye localization during the
last several decades, we have to admit that this problem is far from
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being resolved and several promising research directions could be
suggested.

Firstly, from the application's point of view, locating eyes under
uneven lighting and occlusion, variable face pose, and low image
resolution remains largely problematic. Each of these difficulties is
non-trivial and is of great academic interest as well. While the final
solution of these problems depends heavily on the advance of related
areas, such as computer vision, pattern recognition and machine
learning, promising progress can be made in developing new
problem-specific but flexible feature extraction techniques and con-
structing effective mathematical model for lighting, pose, occlusion
and image enhancement. In addition, considering that human can
perform the task of object detection and recognition task effectively
and efficiently, insights into the mechanism of human brain and
neural network will definitely promote development in eye localiza-
tion, for example, through deriving novel visual attention model.

Secondly, accuracy and efficiency are conflicting in the model-
ing of eyes. It is still worth discussing on how to find feature sets
and to develop optimization techniques compromising the
requirements for both the accuracy and efficiency. ‘Coarse-to-fine’
and ‘branch-and-bound’ are currently two major fast searching
techniques for real-time eye localization. However, constructing a
ust and efficient eye localization in real-life scenarios, Pattern



Fig. 14. Example results of eye localization of the enhanced pictorial structure model [92] on several typical databases, from left to right: FERET [82], JAFFE [20], BIOID [23],
LFW [42], FaceTracer [56], and FRGC [83].
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cascade of classifiers with increasing complexity may miss the
global solution, while the branch and bound searching avoids this
problem but its usage depends on the heuristic exploring of
specific model structure. We are therefore expecting to see more
effective optimization models in the next few years which accu-
rately model the eyes while being fitted efficiently.

Thirdly, there are needs to develop benchmark eye databases
with carefully designed ground truth. Although current face
databases contain useful eye patterns, they are not originally
designed for eye localization and the ground truth are mainly
provided for face recognition, which cannot be used for other eye-
related tasks such as gaze estimation. Furthermore, many face
images collected in the laboratory have eyes looking in the frontal
direction, which is rarely the case in reality. While the LFW
database [42] is closed to the real-life scenarios, it lacks ground
truth for eyes partly due to the difficulties involved in labeling
those realistic face images. Fortunately, we see that at least two
large-scale annotated face databases, i.e., FaceTracer [56] and
AFLW [52] with images harvested from the web, have emerged
to meet the need for ground truth.

Finally, the question of whether the application areas for eye
localization actually need precise eye locations bears mentioning.
Specifically, it is usually assumed that better face alignment leads
to better performance. However, it has been shown that accurate
recognition is possible (e.g., using high-level attribute features
[57]) without requiring face alignment and, hence, do not rely on
eye localization. Will the existence of such robust methods remove
the need for eye localization algorithms? Probably not, but this is a
topic that needs to be addressed. After all, it is well-known that
the warping operation has the side effect of image distortion.

Nevertheless, the aforementioned difficulties do not mean that
addressing this problem cannot be achieved under the current
technique framework. As shown in Table 3, considerable efforts in
this field are very encouraging. Due to the inherent complexity of this
problem and its wide practical applications, we believe that this area
will draw increasing attention from a variety of fields beyond
computer vision, pattern recognition and machine learning.
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