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Abstract. We consider the problem of representing image matrices with a set of 
basis functions. One common solution for that problem is to first transform the 
2D image matrices into 1D image vectors and then to represent those 1D image 
vectors with eigenvectors, as done in classical principal component analysis. In 
this paper, we adopt a natural representation for the 2D image matrices using 
eigenimages, which are 2D matrices with the same size of original images and 
can be directly computed from original 2D image matrices. We discuss how to 
compute those eigenimages effectively. Experimental result on ORL image data-
base shows the advantages of eigenimages method in representing the 2D images.  

1   Introduction 

Principal component analysis (PCA) [3] is a well-known data representation technique 
widely used in pattern recognition and signal processing [2], [4], [5]. When using PCA 
to represent 2D images, we have to first transform the 2D image matrices into 1D image 
vectors, then compute the corresponding 1D eigenvectors from the sample covariance 
matrix to represent any image vector as a weighted sum of a set of eigenvectors, and 
finally retransform the 1D sum vector back to a 2D matrix to obtain the reconstructed 
image. However, the vectorized representation of image has the following disadvan-
tages. Firstly, concatenating a 2D image often leads to a corresponding high-
dimensional 1D vector, which makes it very difficult and time-consuming to compute 
the corresponding eigenvectors. Secondly, such a concatenation for 2D image may 
cause the loss of some structure information hiding in original 2D image. 

To overcome those problems, Yang et al. proposed two-dimensional PCA (2DPCA) 
[6] which directly compute eigenvectors of the so-called image covariance matrix 
without matrix-to-vector conversion. However, 2DPCA still use 1D eigenvectors to 
represent image matrices which will be detailed in the next section, if we view each row 
in the 2D image matrices as an image vector, then 2DPCA can be approximately seen 



as conventional PCA operated on those row vectors. Thus the obtained 1D eigenvec-
tors only reflect the row information in original images, and we call them as row eigen-
vectors. And each row of original 2D images is represented as a weighted sum of a set 
of those row eigenvectors. That is, 2DPCA represents 2D image matrices using 1D 
eigenvector in essence. A more recent development on that aspect is the generalized 
low rank approximations of matrices (GLRAM) [7] proposed by Ye. In GLRAM, two 
groups of 1D eigenvectors L={l1, l2, …, lp} and R={r1, r2, …, rq} are jointly used to 
represent 2D images. However, unlike in PCA and 2DPCA, GLRAM cannot find the 
global optimal solutions for L and R, and instead an iterative algorithm is used to find 
locally optimal solutions. Thus GLRAM needs a relatively more computational cost 
than 2DPCA. 

In this paper, we make further step along with 2DPCA. As in 2DPCA, we compute 
the row eigenvectors rj (1=j=p) by viewing each row as an image vector. Similarly, we 
can obtain the column eigenvectors li (1=i=q) by viewing each column as an image 
vector. Then we define an eigenimage as the outer-product between li and rj and rep-
resent original images with those 2D eigenimages. Although the proposed method is 
very similar to GLRAM, there do exis t at least two differences. First, although GLRAM 
also compute the two groups of eigenvectors L and R, there is no explicit definition for 
the eigenimage and thus no discussion on the interesting characteristics on eigeni-
mages, as shown in the next section. Moreover, the eigenvectors L and R in GLRAM 
are computed with iterative steps and a good initial value is needed, while in our 
method L and R are computed both in closed-form and in a parallel manner. Experimen-
tal result on ORL image database shows the advantages of the proposed method in 
representing the 2D images compared with PCA, 2DPCA and GLRAM. 

2   Image representation with eigenimages 

Let , 1,...,k r cA R k n×∈ =  denote original image matrices, compute the mean image as 
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We first compute the row eigenvectors as follows. 
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Here 
k
ja  is the j-th row of image matrix kA  and jb  is the j-th row of rowA . Note 

that Eq. (1) is in fact n times of the image covariance matrix ( ) ( )
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viewing each row jb  as an image vector. However, according to matrix theory mu lti-

plying a matrix by a constant does not change its eigenvectors [1], so Σ  has the same 
eigenvectors as 'Σ . That is, what 2DPCA really computes is only the eigenvectors 
corresponding to nr  row vectors. We name those c eigenvectors as row eigenvec-

tors and denote them as 1 2, ,..., cr r r . Here 1r  is the eigenvector corresponding to the 

largest eigenvalue and cr  the eigenvector corresponding to the smallest eigenvalue. 

Following a similar procedure, we can obtain the column eigenvectors. By concate-

nating the n image matrices kA  into an r by nc single matrix according to the follow-

ing order: ( )1 2, ,..., n
colA A A A= , we have 

( )( ) ( ) ( ) ( ) ( )
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Here 
k
ja  is the j-th column of image matrix kA  and jb  is the j-th column of colA . 

By computing the eigenvectors of Eq. (2), we obtain the column eigenvectors. And we 
denote the r column eigenvectors as 1 2, ,..., rl l l . Here 1l  is the eigenvector corre-

sponding to the largest eigenvalue and rl  the eigenvector corresponding to the small-

est eigenvalue. 
Now we are in a position to introduce the concept of eigenimage. Given c row ei-

genvectors 1 2, ,..., cr r r  and r column eigenvectors 1 2, ,..., rl l l , define eigenimage as 

,(1 ,1 )T
ij i jE l r i r j c= ⋅ ≤ ≤ ≤ ≤ . (3) 

It is easy to verify that the eigenimage Eij has the following characters: 
(1) Eij is a 2D matrix with the same size of original image, i.e. r c× . 
(2) The intrinsic dimensionality or rank  of Eij is no more than 1. 
(3) Any two eigenimages Ekl and Emn, satisfying 
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(4) Any image kA (1 k n≤ ≤ ) can be represented by a weighted sum of eigeni-

mages plus the mean image A  as 
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(5) The coefficients 
k
ijD  in Eq. (5) is computed using 

,(1 ,1 )k T k
ij i jD l A r i r j c= ≤ ≤ ≤ ≤ . (6) 

 

From Eqs. (5) and (6), we accurately represent the original image kA  with rc  ei-

genimages. In fact, we can approximately represent image kA  with partial (< rc ) ei-
genimages. If we choose the q(<c) row eigenvectors corresponding to the largest q 
eigenvalues of Eq. (1) and the p(<r) column eigenvectors corresponding to the largest 

p eigenvalues of Eq. (2). Then we can approximately represent image kA  as 
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= +∑∑  with only pq  eigenimages. And k̂A  is also called recon-

structed image in image compression. 
We conclude this section by giving the detailed description of algorithm Eigeni-

mage as follows. 
 

Algorithm ‘Eigenimage’:  
Step 1: Input n r c×  image matrices 1 2, ,..., nA A A , and fix 

( )p r≤  and ( )q c≤ . 

Step 2: Compute the mean image 
1
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k
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= ∑  and gener-

ate ,(1 )k kA A A k n= − ≤ ≤ . 

Step 3: Concatenate (1 )kA k n≤ ≤  into 

( )1 2( ) ,( ) ,...,( )
TT T n T

rowA A A A= , and compute the q  row eigen-

vectors { }1 2, ,..., qr r r  corresponding to the q  largest ei-

genvalues of ( ) ( )T

row rowA A . 

Step 4: Concatenate (1 )kA k n≤ ≤  into ( )1 2, ,..., n
colA A A A= , 

and compute the p  row eigenvectors { }1 2, ,..., pl l l  corre-

sponding the p  largest eigenvalues of ( )( )T

col colA A . 

Step 5: Compute the eigenimages ,(1 ,1 )T
ij i jE l r i p j q= ⋅ ≤ ≤ ≤ ≤ . 



Step 6: Compute the coefficients 

,(1 ,1 ,1 )k T k
ij i jD l A r i p j q k n= ≤ ≤ ≤ ≤ ≤ ≤ . 

Step 7: Compute the reconstructed image 
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3   Experimental results 

In this section, we compare the performances of the proposed Eigenimage method with 
those of PCA, 2DPCA, and GLRAM on ORL face database. We are more concerned on 
the image reconstruction quality measured by PSNR and the time required by algo-
rithms. All of our experiments are carried out on a PC machine with P4 1.7GHz CPU and 
256MB memory. 

We use the cropped ORL database in our first experiment. The cropped ORL face 
database consists of 400 different grey scale images of 40 different persons, with a 
resolution of 64×64. PCA first concatenating each 64×64 image to a 4094-dimensional 
vector, and then compute the corresponding eigenvectors, which is a very time-
consuming procedure because the 4094×4094 covariance matrix is very huge. In our 
experiments, we adopt a trick introduced in [1] which need only computing the eigen-
vectors of an n×n matrix, and n is the size of face database. The left part of Fig. 1 
shows the 36 eigenvectors of PCA corresponding to the largest 36 eigenvalues. Note 
these 1D eigenvectors are retransformed back to 2D images for visualization. We can 
see from the figure that these eigenvectors looks like the faces, i.e. they are dependent 
to the input data. On the other hand, the right part of Fig. 1 shows the 36 eigenimages 
of the Eigenimage method. We are surprised to see that, unlike PCA, these eigeni-
mages do not look like faces any more, but show themselves with some ‘regular’ strip 
or block structures.  

 

     
Fig. 1. Eigenvectors (Left) and Eigenimages (Right) on ORL database. 



Table 1. Comparisons of performances of four methods on ORL database 

Methods PSNR CR Time (s) 
PCA 25.19 11.39 8.75 
2DPCA 24.96 10.64 0.28 
GLRAM 28.60 12.42 6.14 
Eigenimage 28.58 12.42 0.59 

 
Table 1 gives the detailed comparisons of four methods concerning the image re-

construction quality (measured with PSNR), compression ration (CR) and the required 
time. Here PCA and 2DPCA use 32 and 6 eigenvectors respectively, while GLRAM and 
Eigenimage both use 18 row and column eigenvectors. From Table 1, 2DPCA has the 
fastest speed but its compressed image quality is the worst under the same compres-
sion ratio, because it needs too many coefficients to represent an image. On the oppo-
site, GLRAM has the best compressed image quality but it takes relatively more time, 
because there exist iterative steps in its solving procedure. The proposed Eigenimage 
achieves a good tradeoff between the compressed image quality and the speed. As 
seen from Table 1, the compressed image quality of Eigenimage is only slightly (about 
0.02 db) worse than that of GLRAM, but its speed is tens of times higher than that of 
GLRAM. In fact, the required time of Eigenimage is about 2 times of 2DPCA, because 
Eigenimage can be seen as performing 2 times of 2DPCA in row and column, respec-
tively. 
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