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Abstract: Threshold selection is an important topic and also a critical preprocessing step for image 
analysis, pattern recognition and computer vision. In this letter, a novel automatic image thresholding 

approach only from the support vectors is proposed. It first fits the 1D histogram of a given image by 
support vector regression (SVR) to obtain all boundary support vectors and then sifts automatically so-

needed (multi-)threshold values directly from the support vectors rather than the optimized extrema of the 

fitted histogram in which finding the extrema is in general difficult. The proposed approach is not only 

computationally efficient but also does not require a priori assumptions whatsoever are made about the 
image (type, features, contents, stochastic model, etc.). Such an algorithm is most useful for applications 

that are supposed to work with different (and possibly initially unknown) types of images. The 

experimental results demonstrate that the proposed approach can select the thresholds automatically and 

effectively, and the resulting images can preserve the main features of the components of the original 
images very well. 

Index Terms: image segmentation, support vector regression, automatic thresholding, histograms, image 
processing. 

 

1 Introduction 
In many applications of image processing, abstractions of objects or features, which are used in high 

level tasks, are derived from images. For the purpose of abstraction, the pixels in an image have to be 

grouped into meaningful regions by a process called image segmentation. 
In many cases, the gray levels of pixels belonging to the object are substantially different from the 

gray levels of the pixels belonging to the background. Thresholding then becomes a simple but effective 

tool to separate objects from the background. Its applications include document image analysis, where the 

goal is to extract printed characters [1, 2], logos, graphical content, or musical scores; map processing, 
where lines, legends, and characters are to be found [3]; scene processing, where a target is to be detected 

[4]; and quality inspection of materials [5, 6], where defective parts must be delineated. 
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Thresholding in its simplest form involves mapping all pixels above a threshold value to one gray 

value, say white, and the rest to another, say black. Since the result is an image with two gray vales, the 

process is called bilevel segmentation. When multiple threshold values are used, the result is a multilevel 
image, and the process is called multilevel segmentation. Bilevel segmentation is appropriate for some of 

the “classical” image processing applications such as the automatic image analysis of documents or 

industrial parts. But for the applications dealing with more complex scenes, automatic multilevel image 

segmentation methods have to be adopted. 
Many automatic thresholding techniques use the histogram of a given image to select a good threshold. 

An image histogram is a frequency distribution of its gray levels. If, in an image, the objects have 

distinctly different gray values from the background, the histogram will exhibit two different peaks with a 

valley between them. The determination of a suitable threshold value, usually selected at the bottom of 
the valley between these two peaks, is a relatively simple. However, in many real-world images, this 

assumption is unrealistic. There have been a number of methods for threshold selection discussed in the 

literature, including those based on entropy [7-9], moment preservation [10], error minimization [11] and 

maximum likelihood [12]. One common characteristic of these existing methods is that the histogram is 
viewed as a mixture density function, and usually the problem of threshold determination is treated as a 

case of classification. In this paper, we propose a new threshold selection technique different from the 

existing approaches mentioned above. It first fits the 1D histogram of a given image by support vector 

regression (SVR) to obtain all boundary support vectors (BSV) and then sifts or selects automatically so-
needed (multi-) threshold values directly from the BSVs rather than the extrema of the fitted histogram. 

Since there are more than one support vectors, this approach can consequently lead to multilevel 

thresholding. 

This paper organizes as follows. In Section 2, the automatic threshold determination approach based 
on the functional regression of the histogram is described. Experimental results for the proposed approach 

and comparison with two other approaches are presented in Section 3. We compare the performance of 

our approach with two other approaches from the literature, namely Belkasim et al’s phase-based optimal 

image thresholding [13] and Chung et al’s fast adaptive PNN-based thresholding algorithm 1 [14]. Finally, 
Section 4 ends the paper with some future work. 

 

2  Seeking multi-thresholds from support vectors 
Before the detailed description of our approach, it is necessary to give a brief review of ε-SVR first. 

2.1 SVR 

Let the training set D be N
iii y 1)},{( =x , with input n

i ℜ∈x and output ℜ∈iy . In the ε-SVR, x is 

first mapped to )(xz ψ= in a Hilbert space F (with inner product ⋅〉〈⋅, ) via a nonlinear map →ℜn:ψ  F. 

This space F is often called the feature space and its dimensionality is usually very high (sometimes 



infinite). Then, a linear function bf +〉〈= )(,)( xwx ψ is constructed in F such that it deviates least from 

the training data according to Vapnik’sε-insensitive loss function 
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while at the same time keeps as “flat” as possible (i.e., ||w|| is as small as possible). Mathematically, this 
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where C is a user-defined constant. It is well known that the above problem can be transformed to the 

following quadratic programming (QP) problem: 
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where ),( ⋅⋅K  is a kernel function. 
All xi’s corresponding to nonzero )ˆ( ii αα − ’s constitute the support vector set (SV set for short). And 

all xi’s on bound, i.e., satisfying iα  or ˆiα  =C, are members of the boundary support vector set (BSV set 

for short). Thus, the regressed function can be written as 
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2.2 Seeking multi-thresholds directly from support vectors --- A case analysis and algorithm 
Next, we explain our approach by taking the ‘bacteria’ image (see Fig. 3(a)) as example. 
Let each pixel of the image have gray level in [0, 1, 2, …, L-1] , and commonly L = 256. The number 

of pixels with gray level i is denoted by ni, i=0, 1, 2, …, L-1, and the total number of pixels is denoted N = 

n0+n1+…+nL-1. Thus, the gray level histogram is defined as a probability distribution: p(i) = ni/N, p(i)≥0, 

and 1)(
1

0
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−
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i
ip . Forming a histogram P(x) of the image results in an ordered set of discrete values, p(0), 

p(1), …, p(L-1). Suppose those zero p(j)s’ are deleted and we pack the remaining nonzero p(k)’s, say m 

nonzero p(k)’s, into an array with size m. We thus have a compact image histogram with the probability 

distribution <p(i0), p(i1), …, p(im-1)> for 0≤ij≤L-1, j=0, 1, 2, …, m-1, and p(ij)≠0. The total number of 
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According to the above definition, the compact image histograms for the ‘bacteria’ and ‘Lena’ image are 
shown in Fig. 1-2(a), respectively. 

Our aim is to approximate the set of discrete values by some fitting method such that the pj, j=0, 1, 

2, …, m-1 can be replaced by qj, j=0, 1, 2, …, m-1. In this paper, we choose the SVR as the fitting tool 

rather than the traditional histogram smooth technique. An advantage of doing so is that the generated 
support vectors on boundary can provide us good candidate thresholds, consequently, it is not necessary 

for us to employ some complicated optimization technique to find so-needed thresholds from the extrema 

of the fitted or regression histogram. Besides, the SVR has much better noise-tolerance than the 

traditional smooth one. For the ‘bacteria’ and ‘Lena’ image, the regression histograms are shown in Fig. 
1-2(b) respectively, and the BSVs are labeled with ‘+’.  

Next we will seek out optimum threshold values directly from the BSV set. We calculate first order 

derivative of the regression histogram with respect to each support vector (SV) in the BSV. From this 

derivative we can obtain threshold values by identifying the gray levels or SVs within the areas where 
negative to positive transition is occurring.  

According to the above description, the proposed algorithm is summarized below: 

1. Form a compact histogram form a given input image; 

2. Use theε-SVR to approximate the histogram and let BSV be the set consisted of all support 
vectors on boundary; 

3. Seek thresholds from the BSV set to ensure them to lie in the areas where negative to positive 

transition of first order derivative is occurring; 
4. Use the so-obtained thresholds to segment the input image. 

 

 
(a)                                                                                (b) 



Fig. 1. (a) Compact histogram of the ‘bacteria’ image (b) SVR histogram and BSVs (labeled by “+”). 

 
(a)                                                                                 (b) 

Fig. 2. (a) Compact histogram of the ‘Lena’ image (b) SVR histogram and BSVs (labeled by “+”) 

 

3 Experiments 
   In this section, two types of experiments are carried out to evaluate the performance of the proposed 

algorithm. The first experiment is used to evaluate the bi-thresholded images by using our approach. The 

second one is used to justify the performance of multi-thresholding. 

 

3.1 Bilevel thresholding 
   The threshold values for Fig. 3-4(a) were computed by using Belkasim et al’s phase-based optimal 

image thresholding [13], Chung et al’s fast adaptive PNN-based thresholding algorithm 1 [14] and our 

approach based on histogram regression, respectively. We  choose such two approaches as a comparison 
because they are more recent and effective approaches to the problem. The thresholded images are shown 

in Fig. 3-4(b-d). Obviously, for such images, both the phase based approach and PNN-based approach 

perform visually poor compared to our approach. Our approach can select the thresholds automatically 

and effectively, and the resulting images can preserve the main features of the components of the original 
images very well. 

               



(a)                                                          (b) 

             

  (c)                                                      (d) 

Fig. 3 (a) Original ‘bacteria’ image; (b) our thresholded image; (c) the thresholded image by phase-based 
approach; (d) the thresholded image by PNN-based approach 

               
(a)                                                             (b) 

                
(c)                                                                     (d) 

Fig. 4 (a) Original ‘rice’ image; (b) our thresholded image; (c) the thresholded image by phase-
based approach; (d) the thresholded image by PNN-based approach 

 

3.2 Multi-level thresholding 
In the second experiment, we show the result of multi-thresholding using our approach. Because the 

phase-based approach is only applicable for bi-thresholding, we only make a comparison for the 



thresholded images between our approach and the PNN-based approach. For convenience, we only 

consider the case of selecting two threshold values although the same principle is also applicable for 

selecting more threshold values in terms of need. 
Since the criterion used in each algorithm is different, the determined thresholds are somewhat 

different from each other. Here, the main features of the thresholded images are examined for both 

approaches. For the thresholded image of Lena, we mainly compare five features [14]: (1) the nose, (2) 

the lip, (3) the cheek, (4) the stumps, and (5) the shoulder. After comparing the two related thresholded 
images as shown in Figs. 5(b)-(c) with Fig. 5(a), the above five features comparison is illustrated in Table 

1. Here, for each feature, we use “fair” or “good” to grade its feature-preserving capability. From Table 1, 

for Lena, it is observed that the thresholded image of our approach has the relatively better quality 

exhibition. 

         

(a)                                     (b)                                              (c) 
Fig. 5 (a) Original ‘lena’ image; (b) our approach’s thresholded image (at 85, 148); (c) the 

thresholded image by PNN-based approach (at 100, 139) 

 

Table 1. Feature-preserving comparison 
of the thresholded image for Lena 

 Ours [14]’s 
(1) Nose Good Fair 
(2) Lip Good Good 
(3) Cheek Fair Good 
(4) Stumps Good Fair 
(5) Shoulder Fair Fair 

    

For the thresholded image of the F-16 plane, we mainly compare seven features [14]: (1) the entrance 

with shape □, (2) the F-16 mark, (3) the star signature, (4) the text “U.S.AIR FORCE”, (5) the belly, (6) 
the cloud, and (7) the ID number 01568. After comparing the two related thresholded images as shown in 
Figs. 6(b)-(c) with Fig. 6(a), the above seven features comparison is illustrated in Table 2. From Table 2, 

for plane, it is observed that the thresholded image of our approach has the relatively better quality 

exhibition. 



         

(a)                                         (b)                                              (c) 

Fig. 6 (a) Original ‘plane’ image; (b) our approach’s thresholded image (at 105, 138); (c) the 

thresholded image by PNN-based approach (at 76, 154) 

 
Table 2. Feature-preserving comparison 

of the thresholded image for plane 
 Ours [14]’s
(1) Entrance with shape □ Fair Fair 
(2)  F-16 mark Good Good 
(3) Star signature Good Good 
(4) Text “U.S.AIR FORCE” Good Good 
(5) Belly Good Fair 
(6) Cloud Good Good 
(7) ID # 01568 Good Fair 

Combining the above feature-preserving comparison, it comes to a conclusion that the thresholded 

images of our proposed approach have an encouraging feature-preserving capability. 

 

4 Conclusions and future works 
This paper introduces an automatic threshold determination approach that is based on the support 

vector regression of the image histogram function. Experimental results obtained here demonstrate that 

our approach performs better than both the phase-based approach and PNN-based approach.  

We need to point out that the results presented here only a first step in the exploration of SVR’s 
application to image segmentation. The scheme is both novel and computationally efficient due to 1) SVR 

approximation just for a very small scale (≤255) of data points and 2) selecting thresholds only from the 

BSVs whose distribution is sparse and thus its size is also very small. However, there are still a multitude 

of open questions await exploration. For example, the selection of optimum threshold values from support 
vectors needs further investigation. It is our hope that this paper will generate sufficient interest and entice 

other researchers to join our effort in advancing the frontiers of this new endeavor. 
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