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Abstract 

Recently, an online agglomerative clustering method called AddC (Guedalia etc, Neural Computation, 

1999) was proposed for nonstationary data clustering. Although AddC possesses many good attributes, a 

vital problem of that method is its sensitivity to noises, which limits its use in real-word applications. In 

this paper, based on kernel-induced distance measures, a robust online clustering (ROC) algorithm is 

proposed to remedy the problem of AddC. Experimental results on artificial and benchmark data sets show 

that ROC has better clustering performances than AddC, while still inheriting advantages such as 

clustering data in a single pass and without knowing the exact number of clusters beforehand. 
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1. Introduction 

Clustering analysis is the process of grouping data (patterns) into clusters such that the patterns in a 

cluster are more similar to each other than to patterns in different clusters under some measure of distance 

or similarity [5]. Typically, clustering algorithms can be divided into two classes, batch and on-line. Batch 

algorithms process data off-line; hence the temporal structure of generating data is usually ignored. On the 

other hand, most of the existing on-line clustering methods assume stationarity of the data. When used to 

cluster nonstationary data, these methods fail to generate a good representation for given data. Here by 

“nonstationary”, we mean that on a short time scale, it is pseudo-stationary, while on the long time scale, 

the process has a sequential property [3]. In our real-world and science discipline, there are a large amount 

of these nonstationary data, such as stock market indexes and video streams transferred across the Internet 

[2]. To effectively process these nonstationary data, an online clustering algorithm called AddC was 

proposed recently by Guedalia et al [3]. It has been reported that the AddC has great advantages over 

traditional methods such as the online k-means [5] and the EquiDistortion [7] when used to cluster 

nonstationary data. However, a main drawback of the AddC is very sensitive to noise and thus results in its 

lack of robustness, which limits its use in real-world applications.  

Based on the well-established kernel method [1, 6], we propose a robust online clustering algorithm, 

i.e. ROC for clustering nonstationary data. The kernel method in the machine learning theory refers to 

increasing the computational power of linear methods by mapping the data into high-dimensional feature 

space and has shown its great power in a number of kernel-based learning machines, e.g. support vector 

machines (SVMs) [1] and kernel principal component analysis (KPCA) [6]. And in one of our previous 

works [8], a robust batch clustering algorithm has been developed for clustering incomplete data using the 

kernel method. In this letter, we generalize the algorithm in [8] to make it able to cluster on-line 



nonstationary data. We carry out several experiments to compare the performances between the proposed 

ROC algorithm and the existing AddC algorithm. Experimental results on artificial nonstationary data set 

and 13 benchmark data sets show that ROC achieves better performances than AddC in most cases. 

The rest of this paper is organized as follows: we present the kernel-induced distance measures and 

whole ROC algorithm in section 2. In section 3, some experimental results are given, and finally in section 

4, we conclude and give some directions for further research. 

 

2. The proposed ROC algorithm 

2.1 Kernel-induced distance measure 

Suppose we are given an input set X , and a mapping function ϕ  that maps ix X∈  from the input 

space X  to a new space F  with higher or even infinite dimensions. The kernel function is defined as 

the inner product in the new space F : 

( , ) ( ), ( )K x y x yϕ ϕ=                      (1) 

where ,x y X∈ , and ,⋅ ⋅  is the inner product operation in the new space. 

An important fact about kernel function is that it can be constructed without knowing the concrete 

form of ϕ [1]. Namely, the transform is defined implicitly. There are several typical kernel functions, e.g. 

the radial basis function (RBF) kernel: 2( , ) exp( | | / )b
i ii

K x y x y σ= − −∑  ( 20 ≤< b ) and the 

polynomial kernel (PK): ( , ) ( 1)T dK x y x y= + . For all RBF kernels, ( , ) 1,K x x x X= ∀ ∈ , and the RBF 

kernel will become the Gaussian kernel (GK) when b=2.  

In the original AddC algorithm, a Euclidean norm is adopted as the distance measure. Here we develop 

a novel kernel-induced distance ( , )d x y  defined as follows 
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The above distance ( , )d x y  in the feature space corresponds exactly to a class of new non-Euclidian 

distances or measures in the original space with varying kernels. It has been proved in [8] that the 

measures based on the RBF kernels including GK are all robust but the measure induced by the PK is not 

according to Huber M-estimator theory [4]. In summary, different kernels can induce different distance 

measures with different properties and thus can induce different clustering algorithms. In this letter, we 

only consider the Gaussian kernel for the simplicity of representation. From the above discussions, it is 

obvious that when the Gaussian kernel is used in Eq. (2), the distance ( , )d x y  can be simplified as 

2( , ) 2 2 ( , )d x y K x y= − . 

 

2.2 Proposed ROC algorithm 

In this section, we are in a position to present the robust online clustering (ROC) algorithm based on 

the kernel-induced distance measure introduced in the last section. Similar to the AddC algorithm, the 

ROC algorithm can also be divided into three main steps. For a new arriving data point, we first look for 

and update the winner among the prototypes using the kernel-induced measure. Then we merge the two 

closest prototypes in order to obtain a redundant prototype for future learning. At last, we remove all 

clusters with negligible data points. The detailed description of the proposed algorithm is as follows (Note 

that we follow the notation used in [3]). There is a parameter controlling the scale of the desired solution in 

the ROC, which is denoted by maxN , a possible maximum number of prototypes available. The final 

number of prototypes may be less than maxN  because of the removing of clusters in the last step. 

Apparently, different values for maxN  may result in clustering results with different scales. Generally the 



value of maxN  is given in advance. 

 

The proposed ROC algorithm: 

Step 1: Set the threshold ε , a parameter used to control the final number of clusters, and initialize the 

system with zero prototypes: 0N = . 

Step 2: Input a new data point x . The prototype closest to the data point is defined as the winner: 

winner = 
1
arg min( ( , ))i

i K
d x y

≤ ≤
, where ( , )id x y is defined in Eq. (2). Update the winner prototype winnery  

and its weight winnerc  as follows: 

( , )winner winner winnerc c K x y= + ; winner
winner winner

winner

x yy y
c
−

= +    (3) 

where the kernel function K(x, y) as defined in Eq. (1). 

Step 3: If maxN N< , then 1N N= + , set Nδ = , and go to Step 5. 

Step 4: Find the two closest prototypes:{ }
1
    

, arg min( ( , ))
K

d y y
γ δ
γ δ

γ δγ δ
≤ ≤ ≤

≠

= . Merge the two prototypes 

using the following equation: 

y c y c
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c c
γ γ δ δ

γ
γ δ

+
=

+
; c c cγ γ δ= +          (4) 

Step 5: Initialize the prototype yγ  with the new data x  and set its weight to zero: y xγ = ; 0cγ = . 

Step 6: while there remains data to be clustered, go to Step 2. 

Step 7: Post-processing: Remove all clusters with a negligible weight, i.e. cα ε< . 

 

Note that the proposed ROC algorithm is similar to the AddC algorithm, but there are two major 

differences: one is that the ROC uses a kernel-induced distance measure to replace the original Euclidean 

norm in AddC, and different kernel functions can induce different kinds of distance measures and thus 



different clustering algorithms in ROC. The other is the update of the weight winnerc , it is updated with the 

kernel ( , )winnerK x y  between the data x and the winner winnery rather than simply set to constant 1 as in 

the whole clustering course of the AddC. Possibly, it is a very point that makes the AddC sensitive to noise 

and outliers. For example, when we take the Gaussian RBF kernel, ( , )winnerK x y  will approach to 1 

for x near to winnery ; on the other hand, ( , )winnerK x y  will approach to 0 for x far away from winnery , i.e. 

an outlier. As a result, the outlier does not cause too much effect on the prototype winnery . It is the distance 

information used in the weight of the winner prototype that is expected to make ROC more robust to noise 

or outlier than AddC. 

 

3. Simulation results 

3.1 Artificial data set 

We use the same dataset as in [3] in the experiment. At first glance, i.e. when viewed at low resolution, 

the dataset contains 3 clusters, as shown in Fig. 1(a). However, when viewed at high resolution, the same 

dataset has 9 clusters, as shown in Fig. 1(b). When the dataset is not corrupted by noise, both AddC and 

ROC can correctly clustering the data under different scales by setting the parameter maxN  with 

corresponding different scales. We use the Gaussian kernel with σ = 1 for ROC. Fig. 1(a ) and (b) show the 

results of AddC and ROC with maxN = 4 and 10 respectively. For more values of maxN , the results are in 

Table 1. It can be seen that ROC has equivalent performance with AddC without noises. 

Fig. 1(c), (e) and (g) show the clustering results with maxN = 4 when corrupted by 10%, 20% and 30% 

random noises respectively, and Fig. 1(d), (f) and (h) show the clustering results with maxN = 10 when 

corrupted by 10%, 20% and 30% random noises respectively. Table 1 shows the number of clusters found 

by AddC and ROC respectively under different Nmax values when corrupted by 20% random noises. 



According to Fig.1, AddC is very sensitive to the added noises and its performance deteriorates greatly as 

the level of noises increases. However, ROC achieves nearly the same result as in Fig. 1(a) when maxN = 4 

under all levels of noises. That is, ROC successfully eliminates the disturbance of noises at low resolution. 

When maxN  = 10, ROC both find three clusters under 10% and 20% added noises respectively, unlike the 

nine clusters in Fig. 1(b) without noises. We guess that the random noises have destroyed the fine 

structures of the dataset, and thus affected the final clustering at high resolution. And ROC begin to fail 

under 30% added random noises for maxN  = 10, as shown in Fig. 1(h), where a noise cluster, besides the 

normal data clusters, is discovered by ROC. 

 

3.2 Benchmark data sets 

In the following experiment, we test the performances of AddC and ROC on 13 benchmark data sets 1. 

For each data set, we only use the first group of training patterns for clustering. Table 2 shows the total 

number of patterns and misclassified number of patterns by AddC and ROC respectively. In the ROC 

algorithm, the Gaussian kernel with σ = 5 is used for all the 13 data sets. 

According to Table 2, for 'banana', 'flare-solar' and 'image' data sets, the clustering performances of the 

AddC are all a little superior to those of ROC. While for the rest data sets, ROC has all the same or better 

performance than AddC. And such a contrast is especially distinct for "heart', 'twonorm' and 'waveform' 

data sets, where ROC has 2-4 times less misclassified numbers of patterns than AddC. The corresponding 

classification errors of ROC on "heart', 'twonorm' and 'waveform' data sets are 21.18%, 11.25% and 

19.75% respectively. Remember that there is only one pass in the clustering process of the ROC algorithm 

and hence the execution speed is very fast. The above performance of ROC is very competitive. 

                                                        
1 available at: http://web.rsise.anu.edu.au/~raetsch/data/index.html 



 

4. Conclusions 

Base on a kernel-induced measure, a robust online clustering algorithm named ROC is proposed in this 

paper to breakthrough the limit of the AddC algorithm. We compare experimentally the performances of 

ROC and AddC on the artificial and benchmark data sets. Experimental results show that ROC is more 

robust to noises and has less classification errors than AddC in most cases. 

In this paper, only the Gaussian kernel is used for the simulations. Furthermore, we fix the kernel 

parameter σ to 5 in the real data experiments here for simplicity. The classification errors of ROC can 

actually be further reduced if we optimize the parameter, which will be the ongoing and future research. 

Moreover, other type of kernels such as the polynomial kernel can also be exploited and investigated. 
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Figure captions 

Fig. 1 Performance of AddC and ROC in clustering nonstationary data: (a) Nmax = 4 without noise, (b) Nmax 

= 10 without noise, (c) Nmax = 4 with 10% noises, (d) Nmax = 10 with 10% noises, (e) Nmax = 4 with 20% 

noises, (f) Nmax = 10 with 20% noises, (g) Nmax = 4 with 30% noises, (h) Nmax = 10 with 30% noises. 

•(dot)-data points, □(square)-prototypes of AddC, *(star)-prototypes of ROC.  
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Table 2 Clustering performances of AddC and ROC on 13 benchmark data sets 
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(g)                                        (h) 

 
Fig. 1 Performance of AddC and ROC in clustering nonstationary data: (a) Nmax = 4 without noise, (b) Nmax 

= 10 without noise, (c) Nmax = 4 with 10% noises, (d) Nmax = 10 with 10% noises, (e) Nmax = 4 with 20% 
noises, (f) Nmax = 10 with 20% noises, (g) Nmax = 4 with 30% noises, (h) Nmax = 10 with 30% noises. 
•(dot)-data points, □(square)-prototypes of AddC, *(star)-prototypes of ROC.  



 

Table 1 Number of clusters found by AddC and ROC respectively under different Nmax values 

Nmax 1 2 3 4 5 6 7 8 9 10 
AddC 1 1 2 3 4 5 6 7 8 9 Without 

noise ROC 1 1 2 3 4 5 6 7 8 9 
AddC 1 1 2 2 3 4 5 6 7 6 With 20% 

noise ROC 1 1 2 3 3 3 3 3 3 3 

 

 

Table 2 Clustering performances of AddC and ROC on 13 benchmark data sets1 

Data Set 
Total number of 

patterns 
Misclassified 

number of AddC 
Misclassified 

number of ROC 2 
banana 400 137 138 

breast-cancer 200 53 46 
flare-solar 666 307 315 
diabetis 468 165 165 
german 700 217 217 
heart 170 74 36 
image 1300 566 568 

ringnorm 400 194 194 
splice 1000 484 424 

thyroid 140 34 34 
titanic 150 39 39 

twonorm 400 194 45 
waveform 400 183 79 

 

1 Data sets available from: http://web.rsise.anu.edu.au/~raetsch/data/index.html  
2 The kernel function used in ROC algorithm is Gaussian kernel with σ = 5 for all data sets 


