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Abstract: As a generalization to multi-layer perceptron (MLP), circular back-propagation neural 
network (CBP) possesses better adaptability. On CBP basis, an improved CBP (ICBP) in this 
paper is presented. Although having less adjustable weights, ICBP has better adaptability than 
CBP, which tallies quite the famous Occam’s razor principle for model selection. In its application 
to time series, considering both the structural changes and correlations of time series itself, we 
introduce the principle of the discounted least squares (DLS) to CBP and ICBP, respectively, and 
investigate their predicting capability further. Introduction of DLS improves the predicting 
performance of both on benchmark time series dataset. Finally, the comparison of experiment 
results shows that ICBP with DLS (DLS-ICBP) has better predicting performance than DLS-CBP. 
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I. Introduction 
 

EBP (Error Back-propagation) is probably the most popular learning algorithm in the study of 
artificial forward neural networks by which multiple-layer perceptron (MLP)[1] has most widely 
received attention in both theory and applications due to its excellent properties like universal 
approximating ability to arbitrary continuous functions. On its basis, Sandro Ridella et al 
proposed a circular BP neural network (CBP) [2,3,4] through adding or augmenting an extra node to 
the original BP input layer and taking the sum of all squared components of an input vector 
presented to the network as a incoming signal of the added node. The authors proven that CBP 
possesses favorable capabilities in generalization and adaptability compared to the MLP model 

[2,3,4]. Under the CBP framework, both the vector quantization (VQ)[4,5] and the radial basis 
function (RBF) networks[3] can respectively be constructed , and hence CBP shows great 
flexibility. However, there also exist several deficiencies in it: 1) The incoming signal of the 
added node only is an isotropic, i.e., an equally-weighted sum of all squared component values, 
thus it lacks anisotropy among different components for an input vector; 2) Due to such an 
isotropy, it cannot simulate the famous Bayesian classifier in a more direct way; 3) It requires 
probably more hidden nodes to approximate any continuous function to arbitrary precision. As a 
result, redundant parameters may lead to over-fitting, which will lower the generalization 
capability[2].  

The goal of this paper aims at obtaining a general improved network model for CBP, for short, 
ICBP. Actually, ICBP is similar in structure to CBP, but there are two major changes made: a) the 
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incoming signal of the added node is not an isotropic sum of all squared input components as in 
CBP instead of their anisotropic sum; b) more importantly, the weight values between the added 
node and all hidden nodes are set to a special common value (in our case, all 1 or all -1)[6, 7] rather 
than usually adjustable parameters as in CBP so that the total number of the adjustable weights in 
ICBP is probably reduced. Our motivation of the alterations to CBP is to control the network 
complexity and to avoid possible over-fitting in this way while still make the ICBP structure as 
simple as possible. The newly-constructed model has following characteristics: Firstly, besides 
inheriting those CBP characteristic of constructive equivalence to VQ and RBF [5, 6], ICBP can 
also model the famous Bayesian classifier in a direct constructive way [10]. Secondly, although 
having less adaptable weights than CBP, ICBP has better generalization and adaptation [6]. Thirdly, 
it can still adopt the BP learning algorithm to perform training with the learning complexity equal 
to that of CBP. Naturally, various existing improved algorithms to BP can also be applied to 
upgrade performances of CBP and ICBP. In addition, due to assigning special constant values 
either +1s or –1s to all the weights connecting the added node and all the hidden nodes to 
respectively form ICBP+1 or ICBP-1 networks, consequently ICBPs have less adjustable weights 
but better generalization and adaptability than CBP [6,7]. This indeed demonstrates rationality of 
the famous Occam’s razor principle, i.e., network with simple structure but just good training 
performance is generally better generalization than the one with slightly better training 
performance but more complex structure. 

Time series prediction is one of the active applied areas for neural networks. As a proven 
effective nonlinear predicting tool, neural networks are successful in industry and financial areas. 
However, during predicting process, merely simply using the original ICBP to directly predict 
time series will result in, to some degree, neglect for the inherent structural changes and time 
correlation in time series itself. Intuitively, a predicting point has stronger correlation to 
observations closer to it and weaker one to those far away from it. Therefore in training process 
samples in time window impose different influences on network weights: the nearer is the 
observation from the predicting point, the greater is the influence. Moreover the idea of 
discounted least square formulates and reflects exactly this influence [8]. To make ICBP embody 
the above characteristic, we bring forward a DLS-ICBP, based upon DLS and oriented to time 
series prediction, introducing DLS to its cost function. DLS cost function biases learning towards 
most recent observations in a time series but without ignoring long term effects. The experiments 
of Benchmark chaotic time series and certain city’s water consumed quantity time series 
prediction indicate that DLS improves ICBP performance. Simulation results also show that 
DLS-ICBP performance is much better than DLS-CBP, which prove the superiority of ICBP 
again. 

  

II. ICBP Network 
 



 

 
Fig. 1 ICBP three-layer network model 

Fig.1 shows a three-layer ICBP network with ON  output nodes, hN  hidden nodes, d input 

nodes with respect to d dimensional input pattern or vector and an extra input node with an 
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And at the same time, ICBP weights, )1()1( hdj Njv K=+
, connecting the extra or added node to 

the jth node of the hidden layer differ from CBP corresponding ones: in 

ICBP, )1()1( hdj Njv K=+
take a common constant directly, while the counterparts in CBP are 

adaptable parameters. Consequently, the difference of the number of adaptable parameters for 

these two models is dNh − . In general, the number of hidden nodes in function approximation 

is larger than that of input nodes due to such a fact that the forward multi-layer networks with 
sufficient hidden node number can approximate any continuous function to arbitrary precision [1]. 
Therefore, the adjustable parameters of ICBP are often less than those of CBP. Now let the 

expected outputs of the network be )......1( Oi Nio = , and thus a corresponding sum-of-squares 

error function E is defined as: 
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where yi is actual output of the ith output node ( 1...... )Oi N= . Adopting the known-as error 

back-propagation learning algorithm (in fact, any other improved algorithms can be applied) and 

after algebra manipulation, the weight ( ijw ) adjustments between output and hidden layer are 

easily derived as follows: 
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The weight ( jkv ) adjustments between hidden layer and input layer are: 
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III.  DLS-ICBP Neural Network 
A. DLS error back-propagation algorithm 

Learning by the error backpropagation is an error minimization procedure which uses the 
gradient descent to weight error space to minimize a quadratic measure of total error. The most 
commonly used error measure is the Ordinary Least-Square criterion (OLS) as shown in (5). 
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where N is the total number of observations in the sample, por  is the desired response and pyr  

is the observed response, with p=N being the most recent observation. LS measures give equal 
weight to all observations in the sample (training set). In time series analysis with structural 
changes, it is often desirable to overweight more recent observations for the reasons discussed 
above. The idea of DLS arises from here. The cumulative error calculated by the DLS procedure 
is given by 
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N, por , pyr are defined as above, and w(p) is an adjustment of the contribution of observation p 

to the overall error [8] or discounted rate. In general, there are many different ways of biasing the 
cost function through w(p) (such as linear, exponential, etc.) to differentially weight the 
contribution of each observation towards the total error. In the paper, we examine a simple 
sigmoidal decay as follows 
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The parameters a and b are used to scale and offset the sigmoid. The DLS cost function is 
asymptotically invariant with respect to the sample size (N). Since b in (7) is derived from a and N, 
the only control parameter is the discount rate a. The learning rule is derived in the usual way by 
repeatedly changing the weights by an amount proportional to 
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B. DLS-ICBP neural network 

In this paper DLS cost function is incorporated into ICBP network. A group of biased weights 
modifying formulae are derived out accordingly from (8), (2), (3) and (4). Again after complicated 

algebra manipulation, the weight ( ijw ) adjustments between the output and hidden layer for 

DLS-ICBP are respectively modified to: 
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Weights ( jkv ) adjustments between hidden layer and input layer are: 
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Adjusting formula for )...1(, dkak = is: 
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In the DLS-ICBP, learning is biased toward more recent observations with long term effects 
experiencing exponential decay through time. This is particularly important in systems in which 
the structural relationship between input and response vectors changes gradually over time but 
certain elements of long-term memory are still retained. Experiments results show that DLS-ICBP 
achieves better predictive effects than ICBP in both single step and multiple steps prediction. 
 

IV.  Experiment Results 

A. Chaotic time series prediction [11] 

Time series produced by iterating the logistic map 

)1()( xxxf −=α    (continuous)  or ))(1)(()1( nxnxnx −=+ α  (discrete) 

is probably the simplest system capable of displaying deterministic chaos. This first-order 
difference equation, also known as the Feigenbaum equation, has been extensively studied as a 

model of biological populations with non-overlapping generations, where )(nx  represents the 

normalized population of n-th generation and α  is a parameter that determines the dynamics of 
the population. The behavior of the time series depends critically on the value of the bifurcation 
parameter α . When α  reaches a value of about 3.56, the output becomes chaotic. In this 
contrastive experiment, we set 56.3=α  and produce 100 elements sequence orderly. First, we 

take the data pairs of )501(),,( 1 <≤+ txx tt  as training set, and then we take 50 data points 

equally spaced in [0.5, 0.99] as the test data to do 50 times of single step predictions. The 
experimental results are averaged from 50 times of experiments. Fig.2 shows the contrastive 
experimental results of CBP, DLS-CBP, ICBP-1 and DLS-ICBP-1 respectively when Nh=7.  
MVAR, a 50 time average of the sum of squared difference between the 50 predicting results and 
targets, is chosen as the performance measure index as shown in Table.1.  
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where N represents the number of repeated experiments; P represents P predicting points; N o is 
the number of output nodes. Here N=50, P=50, N o =1. From the obtained MVARs in the 
experiments, DLS-ICBP-1 has less MVAR value than both ICBP-1 and DLS-CBP, meaning that it 
has is better predicting performance than ICBP-1. In order to further verify effectiveness of the 



proposed model, we also adopt the Normalized Mean Square Error (NMSE) for the test set (TS) 
as another comparison index as defined in (13): 
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where ty  denotes the target value of predicting point t , tŷ  represents the predictive value of 

point t , and y  denotes the actual mean value of the whole set. From Fig. 2, it seems that the 

predicting curves of all methods are, visually, all similar. However respectively from the MVARs 
and NMSEs in both Table 1 and Table 2, we can observe that though the DLS-CBP yields the 
worst predicting performance in all compared models, even inferior to these models without using 
DLS technique, DLS-ICBP-1 predictive quality is just slightly lower than the best CBP in the 
MVAR but conversely slightly higher than CBP in the NMSE and seats No. 1 of predicting 
performance. The interpretation of why these models yield such diverse results seems to attribute 
to such a fact that the chaotic time series possess their own regularities. Chaos do not mean 
orderless[11] and can be generated from simple definite system. In chaos there exist attractors 
which possess attractability and stability to small disturbance. This experiment indicates that BP 
and CBP networks both indeed have strong approximating capability to chaotic system, while 
DLS method slightly weakens the regularity in chaotic system and probably impairs the network 
predicting performance, instead. 

 

Fig.2 Chaotic time series single step prediction results on [0.5, 0.99], compared with the targets, 
of the respective network model 
 

B. Applications to city daily life water consumed quantity 

Predicting city daily life water consumed quantity can help to lay a productive course, 



economize energy sources and boost production benefits. It is practically valuable for civil life 
and manufacture. In terms of the historical data provided, we predict the water consumed quantity 
one month to one quarter ahead for the use of water supply department. According to the practical 
condition of this experiment, we choose the dynamic prediction way. Generally, the dynamic 
predicting model can be described as follows: 
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That is to say, the information of the preceding m months, the month of the preceding n years and 
the preceding m months of the preceding n years are taken into the network inputs in prediction. 
Not supplied with enough data, we take n as zero here. We use the four network models of CBP, 
DLS-CBP, ICBP-1, DLS-ICBP-1, respectively to process single step prediction for the recent 12 
months. The network inputs include the year, the month, the planned consuming quantity of the 
month and the actual consumed quantity of the preceding m months. Because the values of the 
monthly planned consuming quantity and the monthly actual consumed quantity are huge, they 
are mapped into the district of (0, 1). Let M  be the set of the monthly planned consuming 

quantity or the monthly actual consumed quantity; let iIN  be the i-th monthly planned 

consuming quantity or the i-th monthly actual consumed quantity and iin  be the i-th actual input 

to the network; then  
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Fig. 3 shows the predicting results of corresponding network models in contrast to the actual 
consumed quantity. As seen from Fig.3 and Table.1 and Table 2, the models with DLS method 
improve largely the performance of the ones without it. Moreover, the performances of both 
ICBP-1 and DLS-ICBP-1 are better than CBP and DLS-CBP, respectively.  

 

Fig.3 Twelve months water consumed quantity prediction results, compared with the actual 



consumed quantity, of the respective network model 
 

C. Non-stationary variance time series prediction [8] 

To compare the performance characteristics of CBP and DLS-CBP, ICBP and DLS-ICBP, we 
carry out a controlled predictive experiment using a simple sinusoid function. In the experiment 
the variance of the time series is changing through time. The non-stationary variance time series is 
built from: 

bxxnay +∗+= )2sin()( π , ]1,0[∈x , }7,,0{ KK∈n  

With the parameters set to a=3, b=[2a]/N. A serial of 800 elements is generated from the above 
formula. With the time window set to four, we take the data pairs of 

)6001(},),,,,{( 4321 ≤≤++++ tyyyyy ttttt  as the training data, and then take the data of 

)703604(),,,,( 321 ≤≤+++ tyyyy tttt  as the test data. The experimental results are shown in 

Fig. 4, Fig. 5 and Table.1, respectively. From them, we can observe that the predicting 
performances of both DLS-CBP and DLS-ICBP-1 are better than CBP and ICBP-1 respectively. 
Moreover, DLS-ICBP-1 performs much better than DLS-CBP, which also illustrates the 
improvement of ICBP to CBP.  

 
Fig.4 Non-stationary covariance time series prediction results on [604,703], compared with the 
targes, of BP, CBP and DLS-CBP 



 

Fig. 5 Non-stationary covariance time series prediction results on [604,703], compared with the 
targes, of BP, ICBP-1 and DLS-ICBP-1 
 
Table.1 The comparative MVAR measurements of the experiments of respective models 
 

       Time series BP CBP DLS-CBP ICBP-1 DLS-ICBP-1

Chaotic  0.1140 3.2201e-004 0.1487 0.0075 6.6657e-004 
City monthly water 
consumed quantity  

0.1492 0.0969 0.0752 0.0575 0.0382 

Non-stationary 
covariance time series  

0.2434 0.2180 0.1972 0.1643 0.0328 

 
Table.2 The NMSE measurements of the comparative simulations of the respective networks 

       Time series BP CBP DLS-CBP ICBP-1 DLS-ICBP-1

Chaotic  0.0480 2.8098e-004 0.0627 0.0032 1.3574e-004 
City monthly water 
consumed quantity  

1.1041 0.4048 0.5569 0.4415 0.2828 

Non-stationary 
covariance time series  

0.0028 0.0047 0.0018 0.0012 5.5172e-004 

 

V. Conclusion 
It has experienced a fairly long history since the investigation of time series prediction. The 

traditional statistical methods can hardly solve non-linear time series predicting problems. 
Predicting using neural networks is an effective way. BP, CBP and ICBP, etc, possess good 
performance in experiments. However, all of them neglect inherent structural changes and time 
correlation in time series itself. Intuitively, predicting point has stronger correlation to 



observations closer to it and weaker one to those far away from it. Therefore in training process 
samples in time window impose different influences on network weights: the nearer is the 
observation from the predicting point, the greater is the influence. Moreover the idea of 
discounted least square formulates exactly this influence. The forecasting experiments on 
benchmark non-stationary time series and the data sets of daily life water consumed quantity have 
proved that the method of DLS boosts the predictive performance of ICBP and CBP by 60% and 
20% respectively. And at the same time, the comparisons of experimental results show clearly that 
DLS-ICBP predicts better than DLS-CBP, which proves again that the generalization of ICBP to 
CBP is valuable. The principle of DLS fits the prediction in economical area especially. In that 
area, the structural changes of time series take place slowly, along with the time going and the 
economical environment changing. When the inherent economic laws are reacting on the 
economical data, short-term trends can have the opposite effects on them. The selection of the 
parameters a and b of w(p) in DLS is very important. Experiments show that as long as we select 
these parameters conservatively, the two types of problems of whether the recent training samples 
are over or insufficiently stressed are not crucial [8]. 
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