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Recognizing Partially Occluded, Expression Variant
Faces From Single Training Image per Person

With SOM and Soft k-NN Ensemble
Xiaoyang Tan, Songcan Chen, Zhi-Hua Zhou, Member, IEEE, and Fuyan Zhang

Abstract—Most classical template-based frontal face recognition
techniques assume that multiple images per person are available for
training, while in many real-world applications only one training
image per person is available and the test images may be partially
occluded or may vary in expressions. This paper addresses those
problems by extending a previous local probabilistic approach pre-
sented by Martinez, using the self-organizing map (SOM) instead
of a mixture of Gaussians to learn the subspace that represented
each individual. Based on the localization of the training images,
two strategies of learning the SOM topological space are proposed,
namely to train a single SOM map for all the samples and to train
a separate SOM map for each class, respectively. A soft nearest
neighbor (soft -NN) ensemble method, which can effectively ex-
ploit the outputs of the SOM topological space, is also proposed
to identify the unlabeled subjects. Experiments show that the pro-
posed method exhibits high robust performance against the partial
occlusions and variant expressions.

Index Terms—Face expression, face recognition, occlusion, self-
organizing map (SOM), single training image per person.

I. INTRODUCTION

AS ONE of the few biometric methods that possess the
merits of both high accuracy and low intrusiveness, face

recognition technology (FRT) has a variety of potential appli-
cations in information security, law enforcement and surveil-
lance, smart cards, access control, among others [1]–[3]. For this
reason, FRT has received significantly increased attention from
both the academic and industrial communities during the past
twenty years. Numerous recognition methods have been pro-
posed, some of which have obtained much success under con-
strained conditions [3]. However, the general face recognition
problem is still unsolved due to its inherent complexity.
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The complexities of face recognition mainly lie in the con-
stantly changing appearance of human face, such as variations
in occlusion, illumination and expression. One way to overcome
these difficulties is to explain the variations by explicitly mod-
eling them as free parameters [4], [5]. On the other hand, the
variations can be attacked indirectly by searching one or more
face subspaces of the face so as to lower the influence of the vari-
ations. The early way to construct face subspaces is by manu-
ally measuring the geometric configural features of the face [8].
Later, researchers realize that one can extract not only the tex-
ture and shape information but also the configural information
of the face directly from its raw-pixels-based representation [9].
In addition, a higher recognition rate can also be achieved with
latter method as compared to the geometric-based approach [8].
Consequently, template-based methods have become one of the
dominant techniques in the field of face recognition since the
1990s.

To construct the face subspaces with good generalization, a
large and representative training data set should be required due
to the high dimensions of the face images [10]. However, this
is not always possible in many real world tasks, such as finding
a person within a large database of faces (e.g., in the law en-
forcement scenarios), typically only one image is available per
person. This brings much trouble to many existing algorithms.
Most subspace methods such as linear discriminant analysis
(LDA) [12]–[14], Bayesian matching methods [16] and evolu-
tionary pursuit (EP) [35] may fail because the intra-class vari-
ation becomes zero when there is only one image per class for
training. Furthermore, even the parameter estimation becomes
possible when two or more samples are available, these algo-
rithms’ performance may still suffer a lot from the small, non-
representative sample sets [17], [18].

In fact, this so-called one image per person problem can
be traced back to the early period when the geometric-based
methods were popular, where various configural features such
as the distance between two eyes are manually extracted from
the single face image [8]. Recently, several researchers [11],
[18]–[20] have begun to again pay attention to this classical
problem within the template-based framework due to the needs
of the applications and its potential significance of solving the
likewise small sample problem.

The general idea behind these literatures to solve this problem
is to try to squeeze as much information as possible from the
single face image, which is used to provide each person with
several imitated face images. For example, Chen et al. enlarged
the training image database using a series of -order projected
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Fig. 1. Block diagram of the proposed method for face recognition.

images [19]. Beymer and Poggio developed a method to gen-
erate virtual views by exploiting prior knowledge of faces to
deal with the pose-invariant problem [20]. Improved recogni-
tion accuracies have been achieved by these methods. However,
as Martinez stated [18], one nonignorable drawback of these
methods is that it may be highly correlated among the gener-
ated virtual images and therefore these samples should not be
considered as independent training images.

Besides the one image per person problem, there exist other
problems that make things even more complicated, such as
the partial occlusion and/or expression-invariant problem. The
former means that portions of the face image are missed or
occluded due to glasses or clothing, while the latter means
that the facial expressions in the training images are different
from those in the testing images of the same subject. Both
the problems are supposed to be difficult for the traditional
template-based paradigm, such as principal component analysis
(PCA) [27]–[29].

Recently, Martinez [18], [21], [22] has partially tackled the
previous problems using a local probabilistic method, where
the subspace of each individual is learned and represented by a
separate Gaussian distribution. This paper extends his work by
proposing an alternative way of representing the face subspace
with self-organizing maps (SOMs) [24], [25]. One of the main
motivations of such an extension is that, even when the sample
size is too small to faithfully represent the underlying distribu-
tion (e.g., when not enough or even no virtual samples are gen-
erated), the SOM algorithm can still extract all the significant
information of local facial features due to the algorithm’s un-
supervised and nonparametric characteristic, while eliminating
possible faults like noise, outliers, or missing values. In this way,
the compact and robust representation of the subspace can be
reliably learned. Furthermore, a soft nearest neighbor (soft

-NN) ensemble method, which can efficiently exploit the out-
puts of the SOM topological space, is also proposed to identify
the unlabeled subjects.

The paper proceeds as follows. The local probabilistic
method proposed by Martinez is briefly introduced in Sec-
tion II. The proposed method is described in Section III. The
experiments are reported in Section IV. Finally, the conclusion
is drawn in Section V.

II. LOCAL PROBABILISTIC APPROACH

The local probabilistic approach works as follows [18], [21].
First, a set of virtual images accounting for all possible localiza-
tion errors of the original image are synthetically generated for
each training face. And then, each face (including the generated
face images) is divided into six local areas, and the subspace
of every subimage is estimated by means of a mixture model
of Gaussians using the EM algorithm. Finally, the eigen-rep-
resentaton of each local areas are calcualted within their own
subspace, and each sample image can thus be represented as a
mixture of Gaussians in each of these eigenspaces.

In the identification stage, the test images are also divided into
six local areas and are then projected onto the above computed

eigenspaces. A probabilistic rather than a voting approach is
used to measure the similarity of a given match. Experiments on
a set of 2600 images show that the local probabilistic approach
does not reduce accuracy when 1/6 of the face is occluded (on
the average).

A weighted local probabilistic method is also proposed by the
author to address the expression-invariant problem [18], [22].
The idea is based on the fact that different facial expressions
influence different parts of the face more than others, thus, a
learning mechanism is proposed to learn such prior information
by weighting each of the local parts with the values that vary de-
pending on the facial expression displayed on the testing image.

The (weighted) local probabilistic method greatly improves
the robustness of the recognition system. However, the mixture
of Gaussians is a parametric method which heavily depends on
the assumption that the underlying distribution is faithfully rep-
resented with a lot of samples. While those samples can be syn-
thetically generated as the way described previously, the compu-
tational and storage costs along with the procedure of generating
virtual samples may be very high (e.g., 6,615 samples per indi-
vidual in [18]) when the face database is very large. We extend
the method using an unsupervised and nonparametric method,
i.e., SOM, which can represent the subspace of local features
reliably even no extra virtual samples are generated, and the ap-
plication scope of the method is hereby expanded. The proposed
method will be detailed in Section III.

III. PROPOSED METHOD

A high-level block diagram of the proposed method is shown
in Fig. 1. The details of the method are described in Section III-
A–C.

A. Localizing the Face Image

In the case of only limited training samples available per
person, it is almost unavoidable to face the dilemma of high
dimensions of image data and small samples. One way to
deal with this difficulty is to reduce the dimensionality using
projection methods such as PCA [27]–[29], however, one of
the main drawbacks of the classical PCA projection is that it is
easy to be subject to gross variations and, thus, sensitive to any
changes in expression, illumination, etc. Most recently, Yang
et al. have proposed a new technique named two-dimensional
principal component analysis (2-DPCA) [43], which is based
on small 2-D image matrices instead of 1-D vectors and, thus,
more suitable for small sample size problem than classical
PCA.

An alterative way is to use local approaches [8], [11], [16],
[23], [28], [30], [31], [34], [48], i.e., based on some partition of
the image, the original face can be represented by several low di-
mensional local feature vectors (LFVs) rather than one full high
dimensional vector, thus, the small sample problem can be alle-
viated. Moreover, the subpattern dividing process can also help
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Fig. 2. Representation of a face image by a set of subblock vectors.

increase the diversity [31], making the common and class-spe-
cific local features be identified more easily [30]. These advan-
tages are useful for the identification of the unknown persons.

In the implementation of this paper, the original image is
divided into nonoverlapping subblocks with equal
size. The LFVs are obtained by concatenating the pixels of
each subblock, where and are the dimensionalities of the
whole image and each subblock, respectively (Fig. 2). Note that
other local features can also be used, such as the local eigenfea-
tures [16], [21], [28] and local Gabor filters [36]. For example,
one can extract local features at different scale as done in [50]
to deal with the multiscale problem.

B. Use of SOM

1) Single SOM-Face Strategy: A large number of subblocks
may be generated from the previous localizing stage. Now we
need an efficient method to find the patterns or structures of
the subblocks without any assumption about their distribution.
There exist several classical methods for this purpose, such
as the LGB [32], SOM [24], [25], and fuzzy C-means [33].
Fleming et al.’s early work also suggested that unsupervised
feature clustering helps to improve the performance of the
recognition system [37].

The SOM, which approximates an unlimited number of input
items by a finite set of weight vectors, is chosen here for sev-
eral reasons as follows. First, the SOM learning is efficient and
effective, suitable for high-dimensional process [25]. Second,
it is found that the SOM algorithm is more robust to initializa-
tion than other algorithm such as LGB [38]. Finally and most
importantly, in addition to clustering, the weight vectors can be
organized in an ordered manner so that the topologically close
neurons are sensitive to similar input subblocks [25].

In this paper, the original SOM algorithm is used, which is
arguably one of the most computationally efficient [39]. This is
very important, especially when the number of subblocks is very
large. Furthermore, to accelerate the computation of the SOM,
the batch formulation of the SOM algorithm is used, which has
the advantages of fast convergence and being less sensitive to
the order of presentation of the data. Recently, the batch-SOM
algorithm has been employed by Kohonen et al. to fast learn a
large text corpus in their WEBSOM project [39].

Formally, let be the set of input
vectors at time , and be the neurons of the
SOM, respectively. Also let the weight vector (also called code-
book or reference vectors) stored in the neuron be

, which in turn decides the location of the neuron in the lat-
tice . The Voronoi set of the neuron is denoted by , which
consists of all the closest subblocks of the weight vector
in the input space. Let denote the size of the data set and ,

Fig. 3. Example of an (a) original image, (b) its projection, and (c) the
reconstructed image.

the number of neurons in the lattice, respectively. After initial-
ization, the batch-mode SOM algorithm consists of iterating the
following three steps to adjust the weight vectors until they can
be regarded as stationary [25], [40].

Step 1) Partition all the subblocks into Voronoi re-
gions by finding each sub-
block’s closest weight vector according to:

, where is index of the
winner neuron.

Step 2) And then the average of the subblock vectors
over , denoted by , is computed by: ,

, with
Step 3) Smooth the weight vector of each neuron:

, where is a neighbor-
hood function which governs both the self-organi-
zation process and the topographic properties of the
map.

After the SOM map has been trained, all the subblocks
from each training face are mapped to the best matching
units (BMUs) in the SOM topological space by a nearest
neighbor strategy. The corresponding weight vectors of the
BMUs will be used as the “prototype” vectors of each class for
later recognition purpose (detailed in Section III-B.2).Fig. 3
shows an example of an original image, its projection and the
reconstructed image (called “SOM-face,” constructed with the
corresponding prototype vectors).

2) Multiple SOM-Face Strategy: One drawback of the man-
ifold-based learning methods is the requirement of the recompu-
tation of the base vectors (such as eigenvectors in PCA, weight
vectors in SOM, etc.) when new individuals are presented. One
way to deal with this problem is to train a separate subspace
for each face, that is, when a new face is encountered, only the
new one rather than the original whole database is needed to be
relearned, thus, the computational cost can be significantly re-
duced due to the simplification of the learning procedure.

Based on the previous idea, another SOM-face strategy,
namely the multiple SOM-face (MSOM-face) strategy is pro-
posed (similar ideas can be found in [15] and [26]). Formally,
let the th new face image be presented to the system, which
is divided into a set of equally-sized subblocks, denoted as

. Then a separate small SOM map for the
face will be trained with its class-designated samples, using the
previously-described batch-mode SOM algorithm. To evaluate
the prototype vectors of the new class, we can map the new face’s
subblocksonto thenewly trainedmap.Anotherway is tocombine
all the small maps into one big map and then recalculate all the
prototype vectors for every class. We have found that the latter
method is more accurate when a large number of classes exist.
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Fig. 4. Architecture of the soft k-NN ensemble classifier.

C. Identify Faces Based on SOM-Face

To identify an unlabeled face, a classifier should be built on
the SOM map. Popular supervised classifiers, such as LVQ,
MLP, SVM, etc, require that the neurons of the SOM be la-
beled before being used for recognition. Unfortunately, labeling
neuron may also lead to the losing of information. For example,
in a commonly used labeling mechanism, majority voting (MV),
each neuron is hard labeled according to the maximum class fre-
quency obtained from the training data, while a large amount of
information about the classes other than the winner class is, thus,
lost from the neuron.

For this reason, a soft -NN ensemble decision scheme
(Fig. 4) is proposed to avoid the above problem and to effec-
tively exploit as much information as possible from the outputs
of the SOM topological space. In the proposed method, each
component classifier is supposed to output a confidence vector
which gives the degree of support for each LFVs membership
in every class, and then all the outputs will be combined with
a sum aggregation method [49] to give the final decision. The
details of the proposed method are described in the following.

Given classes, to decide which class the test face belongs
to, we first divide the test face into nonoverlapping sub-
blocks as mentioned before, and then project those subblocks
onto the trained SOM maps to obtain the face’s SOM-face
representations.

Then, a distance matrix, describing the dissimilarity between
the test face and every training face in the current SOM topo-
logical space, is calculated. The distance-calculation algorithm
will be detailed in Table I. Its outputs, however, are introduced
directly below for convenience of description, which take the
form of a matrix as follows:

(1)

(2)

where is called the distance vector, whose element is
the distance between the th neuron of the test face and the cor-
responding neuron of the th class.

TABLE I
DISTANCE MATRIX CALCULATION

Next, we convert the distance vectors into corresponding con-
fidence vectors. One possible conversion method is to use a soft

-NN algorithm, which is briefly described as follows. The dis-
tance from the th neuron of the test face to its -NNs are first
arranged in increasing order: , then the
confidence value for the th nearest neighbor is defined as

(3)

It can be seen from (3) that the class with minimum distance
to the testing subblock will yield a confidence value closer to
one, while a large distance produces a very small confidence
value, meaning that it is less likely for the testing subblock to
belong to that class.

Finally, the label of the test image can be obtained through a
linearly weighted voting scheme, as follows:

Label (4)

IV. EXPERIMENTS

A. Data Set and Methodology

To verify the performance of the proposed method, we have
conducted various experiments on two well-known face image
databases (AR [44], [45] and FERET [46]) . The AR database
is employed to test the performance of the SOM-face algorithm
under the conditions when partial occlusion and expression
variant are involved. The FERET database is used to explore
some practical properties of the proposed algorithm, such as
the selection of the size of subblock.
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Fig. 5. Sample images for one subject of the AR database.

Except when stated otherwise, all the experiments reported
here were conducted as follows. In the localizing step, the
training images were partitioned into nonoverlapping subblock
with equal size. Then either a single SOM map or multiple SOM
maps was trained in batch-mode using the obtained subblocks.
The training process was divided into two phases as recom-
mended by [25], that is, a rough training phase (to adjust the
topological order of the weight vectors) and a fine-adjustment
phase (to fine tune the feature map so as to provide an accurate
statistical quantification of the input space). 100 updates were
performed in the first phase, while 400 times in the second
one. The initial weights of all neurons were set to the greatest
eigenvectors of the training data, and the neighborhood widths
of the neurons converged exponentially to 1 with the increase
of training time. The soft -NN ensemble classifier described
before was used for final classification decision.

Finally, to evaluation the experimental results of the SOM-
face algorithm compared to other methods, we have conducted
pairwise one-tail statistical test using the method described in
[47]. Recently, several other authors have also adopted the same
statistical testing method [43].

B. Experiments on the AR Database

The AR face database [44], [45] contains over 4000 color
face images of 126 people’s faces (70 men and 56 women),
including frontal view faces with different facial expressions,
illumination conditions, and occlusions (sun glasses and scarf).
There are 26 different images per person, taken in two sessions
(separated by two weeks), each session consisting of 13 images.
In our experiments, a subset of 1200 images from 100 different
subjects (50 males and 50 females) were used, which were
the same dataset used by Martinez et al. in their experiments
[18], [21]. All the experimental results reported in this section
concerning the local probabilistic approach were also quoted
directly from [18] and [21]. Some sample images for one
subject are shown in Fig. 5.

Before the recognition process, each image was cropped and
resized to 120 165 pixels and then converted to gray-level
images, which were then processed by a histogram equaliza-
tion algorithm. Except when stated otherwise, in our experi-
ments, the subblock size of 5 3 was used and only the single
SOM strategy was employed. According to [46], both the top 1
match and the top matches were considered through the testing
procedure.

1) Variations in Facial Expressions: First, we conducted ex-
periments to investigate the classification capability of the pro-
posed method under varying facial expressions. The results were

Fig. 6. Comparative performance of the SOM-face algorithm and the weight
local probabilistic approach (wLocPb) [18] with expression variant involved.

compared with those of the weighted local probabilistic ap-
proach [18]. Specifically, in this series of experiments, the neu-
tral expressions images [Fig. 5(a)] of the 100 individuals were
used for training, while the smile, anger and scream images in
the first sessions [Fig. 5(b)–(d)] and those in the second ses-
sions [Fig. 5(h)–(j)] were used for testing. Thus, there were 300
testing images in all for each experiment.

Results of the two experiments are shown in Fig. 6(a) and (b),
respectively, where the horizontal axis is rank and the vertical
axis is cumulative match score, representing the percentage of
correct matches with the correct answer in the top matches. It
can be seen from Fig. 6 that, when the happy and angry images
[Fig. 5(b), (c), (h), and (i)] were presented to the system, the
performance of the two methods is comparable. However, when
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TABLE II
COMPARISON OF PCA, 2-DPCA, AND SOM-FACE ALGORITHM CONCERNING

THE TOP 1 RECOGNITION ACCURACY (%)

Fig. 7. Illustration of the image in different occlusion modes. Image (a) is the
testing image without occlusion, while images (b)–(e) are faces in four occlusion
modes, respectively.

the “screaming” faces [Fig. 5(d) and (j)], which differ most
from the training sample, were used for testing, the SOM-face
algorithm achieved much higher performance than the weighted
local probabilistic approach, to be more specific, 30% and 10%
higher accuracy is yielded, respectively, concerning the top 1
match rate. Moreover, it should be noted that the weighted local
probabilistic approach must use additional training samples to
obtain the needed weighted information of each local area for
each expression, while the SOM-face achieves comparable or
better recognition performance by using only one reference
facial image per individual. Therefore, the proposed method
seems to have a higher degree of robustness to variant facial
expressions.

For reference, we present the top 1 recognition rates one
would obtain with the classical PCA and 2-DPCA [43] in
Table II.

2) Variations in Partially Occluded Conditions: Next we
want to study the applicability of the proposed method to
partially occluded images, where both the simulated and the
real occlusions were considered.

First the case of simulated occlusion was examined. The neu-
tral expression images [Fig. 5(a)] of the 100 selected individuals
were used for learning, while the smiling, angry and screaming
images with simulated partial occlusions were used for testing
[Fig. 5(b)–(d)]. In each face, only those subblocks without being
occluded were used for recognition. The occlusion was simu-
lated by discarding some subblocks from the test face image,
i.e., setting the gray values of all pixels within a subblock to
zeros. There were four modes of occlusions simulated in all
by discarding the subblocks 10% each time, in the way of row
by row from the bottom to top and vice versa [Fig. 7(b) and
(c)], and column by column from left to right and vice versa
[Fig. 7(d) and (e)], respectively. The results at every percentage

of occlusion are denoted as in accordance with [18], with
, for 0, no portions of the image were

occluded; for 1, only 10% of the images were occluded,
etc.

The results of the simulated-occlusion experiment are shown
in Fig. 8, where Fig. 8(a)–(d) display the corresponding results
of the occlusion modes shown in Fig. 7(b)–(e), respectively. We
can find that half face occlusion does not harm the performance
of the recognition system much [see Fig. 8(a), (c), and (d)] ex-
cept the occlusion of upper face [see Fig. 8(b)]. This observation
agrees with the previous results obtained by Brunelli and Poggio
[8], i.e., the use of the mouth area may lower the performance of
the system. This can be explained by the fact that the lower half
contains the mouth and cheeks, which can be easily affected
by most facial expression variation. However, to what extent
this effect affects all recognition techniques is still a problem
needing to be further studied.

Next we examined the capability of the proposed method to
handle real occlusions. For that purpose, two classical wearing
occlusions, the sunglasses and the scarf occlusion [Fig. 5(e), (f),
(k), and (l)], were studied by conducting another experiment.
As usual, the neutral expression images [Fig. 5(a)] of the 100
individuals were used for training, while the occluded images
[Fig. 5(e), (f), (k), and (l)] were used for testing. Here both the
training images and the testing images were not preprocessed
by the histogram equalization algorithm to avoid the unwanted
effect of the occluded portions of the faces, and the occluded
portions of the image were not used for recognition. The results
are shown in Fig. 9.

It can be seen from Fig. 9 that SOM-face consistently
achieved better recognition rate than the local probabilistic
approach. Specifically, when the time factor is not involved
[Fig. 5(e) and (f)], the SOM-face outperformed the local prob-
abilistic approach by about 10% or higher, concerning the top
1 match rate. It is interesting to note that when the duplicate
images [Fig. 5(k) and (l)] were presented to the system, the
results of both algorithms reveal that the occlusion of the eyes
area led to better recognition results than the occlusion of the
mouth area as observed in [18]. This seems to be conflicting
with our previous observation [Fig. 8(b)] that upper part of the
face is more important than the lower part. We think, however,
that this contrary is a specific phenomenon, which is mainly
caused by the fact that the scarf occluded each face irregularly
and, thus, made the occluded face much more difficult to be
identified than the face occluded by the sunglass (see Fig. 5).

The occlusion experiments reported previously assume that
the system knows what is occluded and what is not before-
hand. So how good our algorithm is when such an assumption is
not valid? To answer this question, we have conducted another
set of experiments as follows: the neutral expression images
[Fig. 5(a)] of the 100 individuals were used for learning, while
the neutral, smiling, angry and screaming images for testing
[Fig. 5(a)–(d)]. To simulate the occlusion, we randomly local-
ized a square of size pxp 5 50 pixels in each of the four
testing image, with all the pixels inside the square set to zeros
as done in [18]. Such synthetic occlusions were independently
conducted 100 times, and the mean and standard deviation of
the results for each of the facial expression groups were shown
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Fig. 8. Performance of the SOM-face algorithm under different occlusion modes.

Fig. 9. Comparative performance of the SOM-face algorithm and the local probabilistic approach (LocPb) with real occlusions involved.

in Fig. 10(a), while the results one would obtain with the local
probabilistic approach [18] were shown in Fig. 10(b) for com-
parison. Fig. 10 reveals that our method demonstrates highly
robust performance against occlusions even when the occlusion
size and location are unknown to the system. It can also be ob-
served from Fig. 10 that the results on Fig. 5(a) and (b) are both
so perfect that they can not be visually distinguished from the
figure. Moreover, our method consistently performs better than

the local probabilistic approach, while the latter works much
better than the classical PCA method [18].

3) Visualization of the SOM-Face: Before ending the exper-
iments on the AR database, we will exploit the visualization
capability of SOM, which enables us gain some insight into
the class distribution of high-dimensional face image. In par-
ticular, the distribution of the BMUs of four images [three of
which come from the same class, Fig. 11(a)–(c), one from some
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Fig. 10. Recognition rate when the occlusion size and location is unknown. (a) the SOM-face algorithm and (b) the local probabilistic approach.

Fig. 11. Example of the corresponding distributions of the BMUs of image
(a–d) in the SOM topological space (e–h). (The size of the SOM map has been
scaled for better display).

other class, Fig. 11(d)] are visualized in the SOM map (Fig. 11),
and the map was learned using the neutral expression images
[Fig. 5(a)] of the 100 individuals, with the map size of 12 15
neurons for better display. Several observations can be made
from Fig. 11. First, the figure shows that the projections of two
matching images [Fig. 11(e) and (f)] are not matched exactly
in lower dimensional space. However, the similarity between
the two can still be captured by the soft -NN ensemble clas-
sifier for a correct recognition. Second, it can be observed that,
in the feature space, the intra-class similarity between the two
matching images [Fig. 11(e) and (f)] is larger than the inter-class
similarity between the two un-matching images [Fig. 11(e) and
(h)]. How to enhance such a class-specific distribution will be
an interesting topic of our future research. Third, even when
some of the subblocks are missing from the face (e.g., being
occluded, Fig. 11(c), the left subblocks can still be used to iden-
tify the testing image (see Fig. 11(g), where only the BMUs of

Fig. 12. Some raw images in the FERET database.

the subblocks not being occluded are displayed), that is why the
SOM-face algorithm exhibits high robustness against missing
information.

C. Experiments on the FERET Database

In this second series of experiments, a larger database than
AR, i.e., FERET database is used [46]. The FERET database
consists now of 13 539 facial images corresponding to 1565
subjects, which are diverse across gender, ethnicity, and age.
Several standardized subsets of FERET images have been de-
fined, including a common set of gallery images , and four
different probe sets. In this study, the common gallery images

are used for training, which consisted of images of 1196
people with one image per person, while probe set is selected
for testing, which contains 1,195 images of subjects. only facial
expressions variance is involved between the corresponding im-
ages in and . Some samples of the database are shown in
Fig. 12. Before the recognition process, the raw images were
normalized and cropped to a size of 60 60 pixels.

On this dataset, five experiments were conducted to further
inspect some practical aspects involved in the SOM-face algo-
rithm, such as choosing an appropriate value for the value
of the soft -NN ensemble classifier, defining the size of sub-
blocks, and so on. We note that in the implement of the MSOM-
face strategy, alternative version of way to calculate the distance
matrix is used due to its better recognition performance, i.e.,
combine all small maps to one big map and then calculate the
distance matrix as the single SOM-face strategy.
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Fig. 13. Comparative performance of the single SOM-face strategy,
MSOM-face strategy, eigenface and 2-DPCA algorithm on FERET.

Fig. 14. Top 1 recognition rate of the single SOM-face algorithm with varying
k-values.

Experiment 1: First, the performance of the two SOM-face
based algorithms (single SOM-face and MSOM-face) on the
subset was evaluated. All the images were divided into sub-
blocks of 3 3. The results are shown in Fig. 13.

It can be observed from Fig. 13 that the results of the single
SOM-face strategy and the MSOM-face strategy were close,
whereas both outperformed the standard Eigenface technique
and 2-DPCA by 10%–15%, respectively. Pairwise 1-tailed sta-
tistical test indicates that such difference is statistically signifi-
cant at 0.95 level of significance.

Experiment 2: Second, we investigated the problem of
choosing an appreciate -value for the soft -NN classifier. For
this purpose, a subblock size of 3 3 was used and then a single
SOM map was trained using all 1196 images in the gallery set.
And the top 1 recognition rate of the system on 1195 probe
images is measured, using the soft -NN ensemble classifier
with varying -values. The results are shown in Fig. 14. The
figure reveals that it would be appropriate to set the -value
in the range of 10% to 20% of the size of the database, while
the larger -value did not necessarily produce better results.
Nevertheless, as an exception to the previous remark, the largest

-value that could be set, i.e., the size of the training samples,
might be an interesting point worthy to be examined.

Fig. 15. Top 1 recognition rate of the single SOM-face algorithm with varying
subblock size.

Fig. 16. Top 1 recognition rate of the single SOM-face, MSOM-face,
eigenface and 2-DPCA as a function of gallery size.

Experiment 3: The effect of different subblock sizes on the
performance of the proposed algorithm was also studied. We
partitioned the training images and testing images to various
subblock sizes (e.g., 3 3, 3 5, etc.) and, then, repeated the
previous experiment (i.e., Experiment 2, but with fixed -value)
under different subblock sizes. The results are displayed in
Fig. 15. It can be seen that smaller subblock seems be more
beneficial to the performance of the system. Intuitively, the
choice of subblock size reflects the balance between general-
ization and specialization, that is, as the subblocks gets smaller,
the degree of generalization grows higher, while the degree of
specialization becomes lower.

Experiment 4: The computational complexity is considered
then. Formally, let the number of training faces and testing faces
be and , respectively. Suppose that each face is divided
into subblocks with dimensions each subblock. Also let the
number of iterations be , the number of neurons in the SOM
be , and the number of neurons used in the neighborhood
calculation be , respectively. Then the computational com-
plexity of the single SOM-face strategy consists of two terms,
i.e., , where the first term
stems from the training of SOM map [39], while the second term
results from the soft -NN ensemble classifier.
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Fig. 17. Summaries of the performance of the SOM-face algorithm at different percentage of occlusions, (a) single SOM-face algorithm (b) MSOM-face
algorithm.

The computational complexity of the multiple SOM-face
strategy can be calculated in the same way as the single
SOM-face strategy, except that a third term will be added,
i.e., , which results from the recalculating of the
prototype vectors when a new face is added into the database.
However, the training of the MSOM-face is much faster than
that of the single SOM-face due to its smaller training set and
smaller SOM map. On our IBM xSerises 235 server with two
Intel Xeon processors and 1GB memory, the time to train a
single map of 3472 neurons for 1196 faces, with 3 3 subblock
and 500 iterations, took about 36.1 hours. However, only 1.6
hours was needed if the MSOM-face strategy was used to train
1196 small maps with 100 neurons each.

To investigate the incremental learning capability of the
MSOM strategy, another experiment was conducted using
different gallery sizes. Fig. 16 shows the top 1 recognition rates
of different methods as the function of gallery size.

Experiment 5: Finally, we repeated one of the simulated
occlusion experiments done on the AR dataset (see Fig. 7).
In this experiment, all the images in gallery set were used for
learning, while all the images in probe set were artificially
partially occluded according to the same way as described
in Section IV-B.2 (Fig. 7). The subblocks size was taken as
3 3 and both single SOM-face and MSOM-face strategies
were tried. Only the averaged results at different percentages
of occlusions are displayed in Fig. 17. Once again, the results
illustrate the robustness of the proposed method against partial
occlusions.

V. CONCLUSION

In this paper, we introduce a very simple but effective method
called “SOM-face” to address the problem of face recognition
with one training image per person. The images were allowed
to vary in expressions and have partial occlusion. The proposed
method has several advantages over some of the previous
methods such as weighted local probabilistic method [18], the
standard Eigenfaces technique [27] and the 2-DPCA algorithm
[43]. First, it can achieve comparable or better performance
than the mentioned methods with no single extra virtual sam-
ples needed to be generated. Second, it shows higher robustness

against expression variance and partial occlusions. Third, this
method is very intuitive due to the visualization capability
of SOM, which enables us gain some insight into the class
distribution of high-dimensional face image.

We attribute these advantages to the seamless connection
between the three parts of the method: By localization of the
training samples, the robust performance against global changes
is increased. By the unsupervised and nonparametric learning
of the SOM, the similarity relationship of the subblocks in the
input space is preserved in the SOM topological space. And
finally, by the soft -NN ensemble classifier, the similarity
relationship is captured and exploited to enhance the whole
system’s robustness.

However, it is worth mentioning that the proposed method as-
sumes that the system knows what is occluded and what is not
occluded in advance. It is natural to ask the question how to de-
cide the location and size of the occlusion. In a general case,
this is a very difficult problem since any facial portions can be
occluded in any shape at any grey level. One possible way to
deal with this problem is to train several specific feature detec-
tors corresponding to each facial part (e.g., eyes, nose, mouth,
and profile) [7] so as to detect the nonoccluded facial parts and
use them for recognition purpose. Wu et al. [6] have recently pre-
sented a method to automatically locate the region of eyeglasses
if the system is given a face wearing eyeglasses, using an offline
trained eye region detector. Other methods such as active appear-
ance models (AAMs) [5], deformable shape models [41] are also
useful. Another way to deal with the problem is to try to bypass
the problem with the help of users, for example, Gutta et al. dis-
carded the whole half of the occluded face and only used the in-
formation from either left or right half of the test face for recogni-
tion [42]. Since the first way is not so mature and heavily depen-
dent on the accuracy of the specific feature detectors, we prefer
to use the second method currently, i.e., incorporating man in
loop. Although experiments show that our method demonstrates
highly robust performance against occlusion even when the oc-
clusion size and location is unknown to the system, the possible
need of the manual effort of the user can be regarded as a draw-
back of the proposed system. Thus, further studies along the first
line will be the focus of our future work.
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Finally, the proposed method could also be regarded as a gen-
eral paradigm for dealing with small sample problem, in which
the training set is transformed and enlarged by being partitioned
into multiple subblocks. This paper shows that this paradigm
works well in the scenario of face recognition with one training
image per person. It is anticipated that this method is also effec-
tive in scenarios where each person has two (or more, but still
small sample) training images.
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