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Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC)
using both the labeled and unlabeled data. It first constructs a single Laplacian graph over the whole
dataset for representing the manifold structure, and then enforces the smoothness constraint over such
graph by a Laplacian regularizer in learning. However, the smoothness over such a single Laplacian graph
may take the risk of ignoring the discrimination among boundary instances, which are very likely from
different classes though highly close to each other on the manifold. To compensate for such deficiency,
researches have already been devoted by taking into account the discrimination together with the
smoothness in learning. However, those works are only confined to the discrimination of the labeled
instances, thus rather limited in boosting the semi-supervised learning. To mitigate such an unfavorable
situation, we attempt to discover the possible discrimination in the available instances first by
performing some unsupervised clustering over the whole dataset, and then incorporate it into MR to
develop a novel discrimination-aware manifold regularization (DAMR) framework. In DAMR, instances
with high similarity on the manifold will be restricted to share the same class label if belonging to the
same cluster, or to have different class labels, otherwise. Our empirical results show the competitiveness

of DAMR compared to MR and its variants likewise incorporating the discrimination in learning.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many real applications, the unlabeled data can be easily and
cheaply collected, while the acquisition of labeled data is usually
quite expensive and time-consuming, especially involving manual
effort. For instance, in web page recommendation, huge amounts
of web pages are available, but few users are willing to spend time
marking which web pages they are interested in. In spam email
detection, a large number of emails can be automatically collected,
yet few of them have been labeled spam or not by users. Conse-
quently, semi-supervised learning, which exploits a large amount
of unlabeled data jointly with the limited labeled data for learning,
has attracted intensive attention during the past decades. In this
paper, we focus on semi-supervised classification, and so far, lots
of semi-supervised classification methods have been developed
[1-4].

Generally, semi-supervised classification methods attempt
to exploit the intrinsic data distribution information disclosed
by the unlabeled data in learning, and the information is usually
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considered to be helpful for learning. To exploit the unlabeled
data, some assumption should be adopted for learning. Two
common assumptions in semi-supervised classification are the
cluster assumption and the manifold assumption [3-5]. The
former assumes that similar instances are likely to share the same
class label, thus guides the classification boundary passing through
the low density region between clusters. The latter assumes that
the data are resided on some low dimensional manifold repre-
sented by a Laplacian graph, and similar instances should share
similar classification outputs according to the graph. Almost all
off-the-shelf semi-supervised classification methods adopt one or
both of those assumptions explicitly or implicitly [1,4]. For instance,
the large margin semi-supervised classification methods, such as
transductive Support Vector Machine (TSVM) [6], semi-supervised
SVM (S3VM) [7] and their variants [8,9], adopt the cluster assump-
tion. The graph-based semi-supervised classification methods, such
as label propagation [10,11], graph cuts [12] and manifold regular-
ization (MR) [13], adopt the manifold assumption. Furthermore,
there are also methods combining both assumptions for better
performances, such as RegBoost [14] and SemiBoost [15], etc.

In this paper, we concentrate on the MR framework [13], which
provides an effective way for semi-supervised classification [16],
and has been applied in diverse applications such as image


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.06.059
http://dx.doi.org/10.1016/j.neucom.2014.06.059
http://dx.doi.org/10.1016/j.neucom.2014.06.059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.06.059&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.06.059&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.06.059&domain=pdf
mailto:s.chen@nuaa.edu.cn
http://dx.doi.org/10.1016/j.neucom.2014.06.059

300 Y. Wang et al. / Neurocomputing 147 (2015) 299-306

retrieval [17] and web spam identification [18], etc. At the same
time, the manifold learning concept has also successfully applied
in many other learning tasks including clustering [19], dimen-
sionality reduction [20], and non-negative matrix factorization
[21,22], etc.

MR for semi-supervised classification represents the manifold
structure for the whole dataset by a single Laplacian graph, which
is different from MR for supervised classification constructing the
respective Laplacian graphs for individual classes, and then
imposes the smoothness constraint over such a representation
by a Laplacian regularizer in learning. However, the smoothness
constraint imposed over a single Laplacian graph may take the risk
of ignoring the discrimination among the boundary instances,
which are very likely to belong to different classes though close
over the manifold, consequently, MR may misclassify the bound-
ary instances between clusters [16].

In fact, many researches have already been devoted to com-
pensating for this deficiency by utilizing the dissimilarity or
discrimination in the learning of MR. In [23], Andrew et al.
considered both the label similarity and dissimilarity in learning,
and developed a new dissimilarity encoded MR framework based
on mixed graph. However, the dissimilarity should be given
beforehand. In [24], Wang and Zhang constructed an unsupervised
discriminative kernel based on discriminant analysis, and then
used it to derive specific algorithms, including semi-supervised
discriminative regularization (SSDR) and semi-parametric discri-
minative semi-supervised classification (SDSC). However, the
derived methods do not fall into the methodology of manifold
regularization. Recently in [16], Wu et al. incorporated linear
discriminant analysis (LDA) and MR into a coherent framework
and developed a semi-supervised discriminative regularization
(SSDR). Specifically, the intra-class and inter-class graphs are
constructed first in SSDR based on the labeled data, and then the
corresponding intra-class compactness and inter-class separation
are optimized simultaneously in the learning of MR. However,
SSDR in [16] only utilize the discrimination of the labeled data,
while the label information is usually rather limited in semi-
supervised learning, consequently, its improvement over MR is not
so distinct in the experiments.

In this paper, we attempt to incorporate the discrimination of
both the labeled and unlabeled data into MR so as to develop a
discrimination-aware MR framework for semi-supervised classifi-
cation. In fact, due to the lack of label information in semi-
supervised learning and thus the difficulty for formulating the
discrimination of the whole data, SSDR in [16] only uses the
discrimination of the labeled data, while the label instances are
usually scarce in semi-supervised classification. For discovering
the discrimination of all given data, we adopt the strategy of a pre-
performed unsupervised clustering method as an example. Speci-
fically, by performing some unsupervised clustering method such
as FCM beforehand, we can get the within/between-cluster infor-
mation of all instance pairs, which is much analog to the must/
cannot-link information in semi-supervised clustering. Then we
incorporate such information into MR such that for instances with
high similarity over the manifold structure, they are restricted to
share the same class label if belonging to the same cluster, or to
have different class labels, otherwise. In this way, DAMR actually
utilizes both the cluster and manifold assumptions in learning. It
has been demonstrated by previous work that methods working
on multiple data distribution assumptions can achieve better
classification than those working on a single one [14,15], thus
DAMR is able to be expected to perform better than MR.

The rest of this paper is organized as follows. Section 2
introduces the related works, Section 3 presents the proposed
discrimination-aware manifold regularization framework, Section 4
presents a specific algorithm DA_LapRLSC through adopting the

square loss function, Section 5 gives the empirical results, and some
conclusions are drawn in Section 6.

2. Related works
2.1. Manifold regularization

Manifold assumption is one of the most commonly-used data
distribution assumptions in semi-supervised learning [2,4].
Generally, the manifold structure is captured by an undirected
graph according to some similarity measure, in which the vertices
represent the instances and the edge-weights represent the
similarities between instance pairs, and the manifold assumption
assumes that similar instances over the manifold structure should
share similar classification outputs. Lots of semi-supervised clas-
sification methods have been proposed based on the manifold
assumption, mainly including the graph-based methods such as
label propagation, graph cuts and manifold regularization, etc.
Most graph-based methods, including label propagation and graph
cuts, aim to learn only the class labels for the available unlabeled
instances, thus learn in the transductive learning style [4]. How-
ever, many real applications actually need inductive methods for
predicting unseen instances [15], and manifold regularization
(MR) is exactly an inductive learning framework for semi-
supervised classification based on the manifold assumption, which
has been applied in diverse applications during the recent years.

Given labeled data X; = {x;}}_,; with the corresponding labels
Y ={y;}{_,, and unlabeled data X, = {x;}]_,,;, where each x;e R’
and u=n-1I G={Wy}};_, is a Laplacian graph over the whole
dataset, where each weight Wj; represents the similarity between
instances x; and x;. The Laplacian graph can be defined by many
strategies such as the 0-1 weighting, i.e., W;;=1 if and only if x;
and x; are connected by an edge over the graph, the heat kernel
weighting with Wy =e~ % -x1/e if x; and x; are connected, or the
dot-product weighting with Wj; = xx; if x; and x; are connected.

Then with a decision function f{x), the framework of MR can be
formulated as

1 4 I+u
ming ¥ Vouye+ralfIi+55 s B Waleo—fe? )
where V(x;,y;,f) is some loss function, such as the hinge loss max
[0, 1—yif(x;)] for support vector machine (SVM) or the square loss
(i —f(x))* for regularized least square classifier (RLSC), in this
way, the MR framework naturally embodies the specific algo-
rithms LapSVM and LapRLSC [13]. ||f||% is a regularization term for
smoothness in the Reproducing Kernel Hilbert Space (RKHS). The
third term guarantees the prediction smoothness over the graph,
which can be further written as

1 2 _ T
2,2, Wil —feg)” =fLf 2

where f=[f(x;), ..., fix;;.)]", and L is the graph Laplacian given by
L=D-W, W is the weight matrix of graph G and D is a diagonal
matrix with the diagonal component given by D; = 20 Wi
According to the Representer theorem [13], the minimizer of
problem (1) has the form

) = Tt aiK(xi, %) 3)

where K: X x X—R is a Mercer kernel (the bias of the decision
function can be omitted by augmenting each instance with an
1-valued element).

It is clear that in MR, if instances x; and x; are similar in terms of
Wj;, then it is restricted that their class labels are similar as well.
Such a smoothness restriction is also imposed on the boundary
instance pairs, however, instance pairs in the boundary area are very
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likely to belong to different classes. Thus in this paper, we attempt
to utilize the discrimination among instances together with the
smoothness over the manifold.

2.2. Semi-supervised discriminative regularization (SSDR) [16]

The performance of LDA usually deteriorates when the label
information is insufficient, and at the same time, MR tends to
misclassify instances near the boundary between clusters during
classification [16]. With those in mind, Wu et al. [16] incorporated
LDA and MR into a coherent framework for semi-supervised
classification, and proposed a novel semi-supervised discrimina-
tive regularization (SSDR) method. SSDR exploits both the dis-
crimination (label information of the labeled data) and the data
distribution for learning. Specifically, besides the graph G over the
(I4+u) instances to model the intrinsic geometrical structure of
data manifold, a intra-class graph G,, (with weight matrix W,,) and
a inter-class graph G, (with weight matrix W,) are also con-
structed respectively by

W — { 1/l if both x; andx; are labeled and y; = y; 4
"7 10  otherwise ¢
W — 1/l if both x; and x; are labeled andy; # y; 5

b= { 0 otherwise ()

Then the optimization problem of SSDR is formulated as

!
minl ¥ Vx;, i, f)+ 2, N gTyf
¥ lizzl (Xi, Yi f) }’A”f”K (l+u)2

1-— l+u
22 5 Wayeo-fe)?  ©)
ij=

I+u
25 WaglF o) —f05)° +
ij=

The last two terms in (6) can be further written as

l+u 1—y, l+u
23 Wag(f) =) +—52 3 Wi y(f(x)—f(x)
ij=1 ij=1

=1 (ypLw+(1 —yp)Lof %)

where L,, and L, are the graph Laplacian over the intra-class graph
Gy and the inter-class graph Gy, respectively.

SSDR actually aims to exploit the discrimination in the learning
of MR, and is able to partly reduce the risk of misclassifying the
boundary instances. However, from the definition of G,, and G, in
(4) and (5) respectively, SSDR exploits only the discrimination from
the labeled data, while in semi-supervised learning, the labeled
instances are usually quite limited. Thus in this paper, we attempt
to utilize the discrimination from all available data, including both
the given labeled and unlabeled instances.

3. Discrimination-aware manifold regularization (DAMR)
for semi-supervised learning

3.1. Motivation

MR imposes the smoothness constraints over instances from
both classes, thus may ignore the discrimination among instances
in the boundary areas, and consequently misclassify those bound-
ary instances, since they are very likely to belong to different
classes though highly similar over the manifold. Fig. 1 gives an
illustration over a linear manifold dataset consisting of two classes,
each class containing 200 instances with only 10 labeled. From
Fig. 1, concentrating on the smoothness only, MR (more specifi-
cally LapRLSC) derives a classification boundary (denoted by the
dotted line) deviating from the real one (denoted by the dot-dash
line), and thus misclassifies several boundary instances. To com-
pensate for it, SSDR [16] utilizes the discrimination of the labeled

% labeledl
O unlabeled1
X labeled2
06 ° o unlabeled2
o @Q) == DAMR
o o MR/SSDR[16]
02 © @Oé? -'-'REAL
’ © © @ § 0 OoO o
O@%% g‘j O% © o O
ot Koo
0.2 080 XK O
O(Q.QZD@:O@ & o o
O o X ©
0o
-0.6
-0.6 -0.2 1.4

Fig. 1. The toy dataset and the corresponding classification boundaries of MR
(LapRLSC), SSDR [16] and DAMR (DA_LapRLSC), together with the real one, labeled1
and labeled2 denote the labeled instances in individual classes, unlabeled1 and
unlabeled2 denote the unlabeled instances in individual classes, MR and SSDR in
[16] derive the same decision boundary.

instances together with the smoothness in MR. However, the
labeled instances are usually scarce in semi-supervised classifica-
tion, thus for each labeled instance, labeled instances in the
opposite classes may not fall into its neighbor in the construction
of the Laplacian graph, consequently, the discrimination from
those labeled instances may have little effect on classification. As
can be seen in Fig. 1, SSDR [16] derives the same classification
boundary as MR. While considering the discrimination over the
whole dataset together with the smoothness in MR, our proposed
DAMR (more specifically DA_LapRLSC, detailed later) derives a
classification boundary (denoted by the solid line) closer to the
real one. Correspondingly, the classification accuracies for the
unlabeled instances by MR, SSDR [16] and DAMR are 0.8974,
0.8974 and 0.9132, respectively. As a result, it is reasonable to
consider the discrimination of all available instances in the
learning of MR, which is exactly the motivation of our DAMR.

3.2. DAMR framework

In order to exploit the discrimination of all available data, we first
perform some unsupervised clustering method, such as FCM, to
discover the intrinsic cluster structure of the data distribution. Suppose
we get a cluster indicator vector for instances from the unsupervised
clustering method denoted by Yc =[y{,...yf, ] € RU+Y where each
y; € {— 1,1} represents the cluster label for the jth instance, then we
define a discriminative matrix by S; = Y.Y! e R/"%*(+% where each
Si= yiyfe{-1,1). Si; =1 indicates that instances x; and x; belong to
the same cluster, and Sj; = —1 indicates that x; and x; belong to

different clusters. For the labeled instances, we keep the discrimina-
tion from the given labels, and define a discriminative matrix

St e R0+ in which each

1, if x; and x; are both labeled, and belong to the same class
sgj —{ —1, if x; and x; are both labeled, and belong to different classes
0, otherwise (either or both of x; and x; are unlabeled)

®

Finally, a discriminative matrix S¢ combing the given label
information and discrimination from the unsupervised clustering
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method can be defined by

I
s )50
y 5;,

where each S e {—1,1}.

Further, we introduce a weight vector for instances denoted by
w=[wy,..w,,]", where w;=1 for the labeled instance and
wj=y(0 <y < 1) for the unlabeled instance, and set T=ww/, then
we renew the discriminative matrix by

ifx; and x; are both labeled ©

otherwise

1,ifS§=1, or7;;<05
S. — 10
v —1, otherwise (if Sj = —1, and 7 > 0.5) a0

From (10), there are two cases in which the S is set to 1, i.e.,
(1) if instances x; and x; belong to the same class by the class label,
or the same cluster by the clustering results. (2) The confidence
relating to the unlabeled instance is low, or the clustering result is
unreliable such that Tj; < 0.5. In those two specific cases, we set S;;
to 1 such that the discriminative (smoothness) constraints in
DAMR mainly degenerates to the smoothness constraints in MR.
Otherwise, if x; and x; belong to different classes or clusters, and at
the same time, the clustering result is reliable such that T; > 0.5,
most of the discrimination constraints are kept in DAMR.

Further, we renew the weight matrix W over G as

W Wy, ifsy=1
) Twe

otherwise
where Wg- represents the similarity between instances x; and x;
over the manifold by some distance metric. Note that the weight
matrix W here differs from that in MR in that the component S;
are weighted by T;; when x; and x; belong to different classes or
clusters.

In order to incorporate such discrimination, we assume that
“with high similarity over the manifold, instances in the same
cluster should share the same class label, and have different class
labels, otherwise”, then we formulate the discrimination-aware
manifold regularization framework as follows,

an
i’

2 Z le(f(xl) Sl]f(xj))
(12)

. 1
n}lnj=7i§ V(Xz,YIsf)+}’A|Lf”K+2(l+ u?;

where V(x;,y;,f) is some loss function. The last term can be further
written as

11w 2 T A ¢T

iiJzz:l Wu(f(X,)—Suf(XJ)) =f (D—W”S)f £f LDf (13)
where Lp =D—-W.-S is actually a new Laplacian matrix incorpo-
rated with the discrimination over all available instances. When
Sij=1,1.e., x; and x; belong to the same class or cluster, then x; and x;
are restricted to share the same class label when they are similar
over the manifold structure, otherwise, when S;= —1, i.e., x; and x;
belong to different classes or clusters, then x; and x; are restricted
to belong to different classes though they are similar over the
manifold structure. Note that we do not simply add the discrimi-
native information to wy, i.e., let w;; <0 when x; and x; belong to
different classes or clusters, since it would lead to several pro-
blems such as non-convex [23]. On the other hand, the parameter
y actually adjusts the reliability or importance of the discrimina-
tion from the unsupervised clustering method. If such information
is reliable or important, one can attach importance to it by setting
a large y value, otherwise, one can accordingly set a small y value.
When y approaches 0, DAMR actually degenerates to MR concern-
ing on the smoothness alone. Moreover, through exploiting the
cluster discrimination in MR, the proposed DAMR framework

utilizes both the cluster and manifold assumptions. Researchers
have demonstrated that methods working on multiple data dis-
tribution assumptions can achiever better classification than those
just working on a single one [14,15]. As a result, DAMR is able to be
expected to perform better than MR.

As in MR, the minimizer of the optimization problem (13) can
also be formulated as f*(x)= Zit”] a;iK(x;,x) according to the
Representation Theorem.

4. Discrimination-aware Lap_RLSC (DA_LapRLSC)
4.1. Algorithm

In terms of different loss functions, we can develop different
algorithms for DAMR. We adopt the square loss in this section as
an example, and derive an algorithm called Discrimination-aware
Lap_RLSC (DA_LapRLSC). The optimization problem of DA_LapRLSC
can be written as,

I+u
5 E Wu(f(xz) Sljf(xj))
(14)

As in MR, the minimizer of (14) can also be formulated as
f*(x):zft”]a,K(x,-,x) according to the Representation Theorem.
Then (14) can be further written as

f(xz)) +7’A|[f||1(+

. 14
minj =7 X Oi 2(1+ 0

min]:1(1(,0(—Y)T(Kl(x—Y)+yA(xTK(x+ ' o KLpKo (15)
f l (I+u)?

where a=[ay,..a;,.,]" is the vector of Lagrange multipliers.

K, = (X, X)y e R*W and K= (X, X), e RIT*I+W 3re the kernel
matrices, where X; and X denote the labeled and the whole
datasets, respectively. Y =[y;,...y)]" is the vector of class labels
for the labeled data. Zeroing the derivation of (15) w.r.t. a, we have

J_ 1K K —Y)+y Ko+ 2KLDKoz (16)
oo (l+ u)
Finally, we have
1 B
_ [ kT 7D 2T
a= < K l(,+yAl(+(l+u)2KLDK> KIY (17)

The concrete algorithm description of DA_LapRLSC is summar-
ized in Table 1 below.

Note that though the square loss function is adopted here as an
example, one can also adopt other loss functions to develop
specific algorithms within the framework of DAMR.

4.2. Computation complexity

In Lap_RLSC, the construction of the weight matrix needs a
computation complexity of O(n?), where n is the size of the whole
dataset, and the solution involves the inverse of the kernel matrix
over the whole dataset with a computation complexity of O(n>). As
a result, the computation complexity of Lap_RLSC is O(n). In SSDR
in ref. [20], there is the inverse of the kernel matrix in both the
construction of the discriminative kernel and the solution process,
thus its computation complexity is also O(n®). In SSDR in ref. [16],
the complexities of constructing the intra-class and inter-class
graphs are both 0(n?), and the complexity of the solution is O(n®)
as in Lap_RLSC, thus the overall computation complexity is still O
(n®). In our DA_LapRLSC, the complexity of the clustering method
FCM is O(c®ndi) [25], where c is the number of clusters, d is the
dimension of the dataset, and i is the number of iterations in FCM.
The complexity of constructing the discriminative matrix is O(n?),
and the complexity of the solution is O(n®). As a result, the total
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Table 1
The algorithm description of DA_LapRLSC.

Input

Output

Procedure

Get the initial cluster indicator vector Y. by some unsupervised
clustering method such as FCM;

Construct the discriminative matrix S;

Construct the new Laplacian matrix Lp with the discrimination;

Get o for DA_LapRLSC by (17);

Predict any instance x by decision function f*(x) = ZH:"] aiK(x;,x);

i

X, X, - the labeled and unlabeled dataset
Y, - the label set of X;
7a» vp» v — the regularization parameters

fix) - the decision function

Table 2
The description of the 14 UCI datasets.

Table 3
The comparative results with 10 labeled instances.

Dataset Size Dimension Dataset Size Dimension Dataset Lap_RLSC SSDR [24] SSDR [16] DA_LapRLSC
Automobile 159 25 Horse 366 27 Automobile  78.22+0.69  80.34+0.84 7869+0.69  76.61+045
Austra 690 15 lonosphere 351 34 Austra 59.34+0.44  5922+046 59.89+0.44  60.38+0.41
Biomed 194 5 Isolet 600 51 Biomed 5522+0.65 60.82+0.67 5522+0.65 64.62+0.58
Bupa 345 6 Pima 768 8 Bupa 49.67+0.03 4837+010  49.57+0.03  49.03+0.03
Ethn 2630 30 Sonar 208 60 Ethn 5930+129  59.41+124 5986+125  61.25+1.25
German 1000 24 Vehicle 435 16 German 62.54 +0.25 60.80 + 0.22 62.54 + 0.25 64.20 + 0.07
Heart 270 9 Wdbc 569 14 Heart 5156 +0.31  5267+035 51.56+031  64.81+1.01
Horse 53.72+024 50.87+035 53.80+026  53.72+0.32
lonosphere  69.52+025  7233+015  69.55+026  71.39+0.43
Isolet 80.93+2.07  9227+0.09 80.93+2.07 9413 +0.10
. . . 5 3 Pima 4773+039  5437+011  4775+040 5150 +0.32
computaatlonl complexity of DA_LapRLSC is O(cndi+n’), or O Sonar 47754004 4760005 47754004 5045+ 015
(4ndi+n’) with the cluster number set to the class number 2 here. Vehicle 6775+048  7541+049 6829+042  70.18+0.76
Since both the data dimension d and iteration number i are Wdbc 62.81+0.00 62.81+0.00 62.89+0.00 67.33+0.04
commonly much smaller than the instance number n, the compu-
tation complexity of DA_LapRLSC can also be considered to be
comparable to O(n?).
Table 4
The comparative results with 100 labeled instances.
5. Experiments Dataset Lap_RLSC SSDR [24] SSDR [16] DA_LapRLSC
In this section, we evaluate the performance of the developed Automobile ~ 90.17 £0.05  90.76 + 0.10 91.19+0.05  90.25 + 0.06
DAMR framework (specifically, DA_LapRLSC) over 14 UCI datasets Austra 6356+£002  6332+003 63561002  67.85+0.02
compared with Lap_RLSC, and two off-the-shelf improvements of Biomed 77393015 7771016 78441015 88.62+001
pared with Lap_RL>¢, and two ol Imp Bupa 56034003 58.62+007 56994005  64.88+0.09
MR considering the discrimination, i.e., SSDR in [24] and [16], Ethn 9237+0.03 9245+002 92591002 9240+ 0.02
respectively. German 64.68+0.37 6493+032 6492+037  68.44+0.04
The descriptions of the 14 UCI datasets are given in Table 2. Heart 82.17+03 82.27+004 82964002  83.414+0.01
. i L Horse 62.86+014 66.43+017  6317+014  63.59 +0.23
Each ECI dlitasfet is rapdomly s;;lht mt_o _two halves, one for training lonosphere 88614001 88984001 88984001 8922+ 0.00
and the other for testing, gnd the training set contains 10 and 100 Isolet 9834+000 98.64+001 9857+000 9857 +0.00
labeled instances, respectively. The FCM method and linear kernel Pima 5710+ 0.02 58.70+0.02  5797+0.01  60.40 + 0.02
are adopted here, and the neighbor graph is used with the Sonar 7713+0.09  78.52+0.09  7736+0.08  77.73+0.08
neighbor number k fixed to 10, and the cluster number is set to Vehicle 79874014 7761+002  8111+0.09  76.67+0.02
Wdbc 91.07+0.01  9510+0.01  9127+001 9157 +0.01

the class number.

5.1. Performance comparison

The heat kernel weighting strategy is used in the graph
construction. When 10 instances are labeled, y, and y; in Lap_RLSC
are fixed to 1 and 1, respectively, y1, y, and 4 in SSDR [24] are fixed
to 1,1 and 1, respectively, y4, y; and yp in SSDR [16] are fixed to 1, 1,
and 0.6, respectively, and y,, yp and y in DA_LapRLSC are fixed to 1,
1 and 1, respectively. When 100 instances are labeled, y in
DA_LapRLSC and yp in SSDR [16] are both selected by 5-cross
validation from [0, 0.2, 0.4, 0.6, 0.8, 1], and the other parameters
are all selected from the range [0.01, 0.1, 1, 10, 100]. This training
process is repeated 20 times and the average accuracy and
variance are reported in Tables 3 and 4, respectively, in which
the best performance over each dataset is highlighted in bold in
each row.

From Tables 3 and 4, we can get several observations as follows,

® SSDR in [24] defines a new discriminative kernel for exploiting
the discrimination in semi-supervised classification learning,
and usually performs better than Lap_RLSC. Specifically,
SSDR in [24] performs better than Lap_RLSC over 9 out of the
14 datasets when 10 instances are labeled, and outperforms
Lap_RLSC over 12 datasets when 100 instances are labeled. As a
result, utilizing the discrimination can help improving the
performance of semi-supervised classification.

® Utilizing the discrimination of the labeled data, SSDR in [16]
also performs better than Lap_RLSC in most cases, indicating
again that the discrimination can boost learning. Specifically,
SSDR in [16] performs better than Lap_RLSC over 8 datasets
when 10 instances are labeled, and outperforms Lap_RLSC over
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13 datasets when 100 instances are labeled. However, the
improvement is not so distinct when the labeled data are scarce.
As can be seen, the performance improvement of SSDR in [16] is
much more distinct in the case of 100 labeled instances than
that of 10 labeled instances. As a result, we attempt to exploit
the discrimination of all available data in this paper.
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® Through using the discrimination of all given data, DA_LapRLSC
performs better than Lap_RLSC over 11 datasets when 10
instances are labeled, and outperforms Lap_RLSC over 13
datasets when 100 instances are labeled. Moreover, it performs
the best over 8 datasets when 10 instances are labeled, and
outperforms the other methods over 7 datasets when 100
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Fig. 2. The performances of DA_LapRLSC w.r.t. different values of y4 (yp) from {0.001, 0.01, 0.1, 1, 10, 100, 1000} over (a) automobile (b) austra (c) biomed (d) heart
(e) ionosphere and (f) sonar, accuracy-y, indicates the performance curve w.r.t different values of y4, and accuracy-yp is the performance curve w.r.t. different values of yp.
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instances are labeled, indicating the effectiveness of the pro-
posed DA_LapRLSC compared with the other methods.

5.2. Parameter analysis

We show the performance of DA_LapRLSC w.r.t different values
of y4 and yp, respectively, from {0.001, 0.01, 0.1, 1, 10, 100, 1000}
over 6 datasets with 10 labeled instances in Fig. 2, with y fixed to 1.
Moreover, we also give the performance of DA_LapRLSC w.r.t
different values of y from {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1} in Fig. 3, with y4 and yp both fixed to 1.

In Fig. 2, the performance of DA_LapRLSC (accuracy-y4) tends to
increase and then decrease with the increase of y,. Since when y, is
small, DA_LapRLSC considers little about the smoothness of the
decision function in the RKHS space, and when y, is large, the
classification of DA_LapRLSC will be dominated by such smoothness.

At the same time, the performance of DA_LapRLSC (accuracy-
yp) in Fig. 2 tends to increase and then decrease with the increase
of yp over most datasets. The reason is that when yp is small,
DA_LapRLSC considers little about the discriminative smoothness
constraints over the whole dataset, and when yp is large, the
classification of DA_LapRLSC will be dominated by those con-
straints. However, it is not the case over automobile. Specifically,
the performance of DA_LapRLSC tends to decrease with the

m— qutomobile

== austra

=©=biomed - : ‘ \
heart
-e— ionosphere

sonar H_<>
0.7< R

accuracy

o

0.5 1

Y

Fig. 3. The performances of DA_LapRLSC w.r.t. different values of y from {0, 0.1, 0.2,
0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1} over (a) automobile, (b) austra, (c) biomed, (d) heart,
(e) ionosphere and (f) sonar.

Table 5
The computation times(s) of individual methods with 10 instances labeled.

increase of yp over automobile, indicating that the discrimina-
tion smoothness constraints may not be helpful for learning in
this case.

Further, when y is small, the instance pairs satisfying T; > 0.5
are scarce, and the discriminative smoothness constraints in
DA_LapRLSC mainly degenerate to the smoothness constraints in
MR, otherwise, most of the discriminative smoothness constraints
are kept in DA_LapRLSC. From Fig. 3, we can see that the
performance of DA_LapRLSC tends to descend with the increase
of y with more discriminative smoothness constraints over auto-
mobile, indicating that the discrimination smoothness constraints
may not be helpful for learning here. At the same time, the
performance tends to ascend with the increase of y over the other
5 datasets, indicating that the discrimination smoothness con-
straints are indeed helpful for learning in those cases.

5.3. Time complexity

We show the computation time of the compared methods with
10 instance labels in Table 5 below. From Table 5, we can see that
though our DA_LapRLSC is not so competitive in efficiency, its
computation time is still acceptable trading for better classification
performances.

6. Conclusion

Considering that MR imposes the smoothness constraint over
each instance pairs, including the instances in the boundary area,
thus may misclassify those boundary instances, we develop a
discrimination-aware MR (DAMR) framework in this paper
through incorporating the discrimination of all available data from
some unsupervised learning method. In the learning of DAMR,
with high similarity over the manifold structure, instances in the
same cluster are restricted to share the same class output, while
instances in different clusters are restricted to have different class
outputs. In this way, DAMR actually utilizes both the manifold and
cluster assumptions. In the implementation, we simply use the
square loss function and FCM to develop a specific DA_LapRLSC
algorithm as an example. Empirical results show the competitive
results of DA_LapRLSC compared with Lap_RLSC, as well as SSDR
in [24] and [16], respectively.

Though we adopt the FCM method in the experiment as an
example, other unsupervised learning methods or even some semi-
supervised clustering method can also be adopted for exploiting the
data structure with both labeled and unlabeled data, moreover, the
clustering method cannot avoid grouping instances in different
classes into the same cluster, thus some other strategy is also worth

Dataset Lap_RLSC SSDR [24] SSDR [16] DA_LapRLSC
Automobile 0.2402 + 0.01 0.0468 + 0.002 0.2246 + 0.0001 0.3368 + 0.0003
Austra 3.1824 + 0.0268 7.1783 + 0.0752 3.2649 + 0.0211 5.0879 + 0.0296
Biomed 0.2465 + 0.0053 0.1622 + 0.0007 0.2496 + 0.0005 0.2680 + 0.0064
Bupa 0.5054 + 0.0047 0.6583 + 0.0052 0.5460 + 0.0021 0.7421 + 0.0179

Ethn 193.6908 + 12.5806 541.8539 + 21.3753 202.0057 + 15.2876 218.6510 + 11.6523
German 11.0969 + 0.1583 27.0818 + 0.1557 10.6705 + 0.1003 14.6953 + 01221

Heart 0.3713 + 0.0024 0.4649 + 0.0000 0.4368 +0.0013 0.6268 + 0.0002
Horse 0.5554 + 0.0020 0.6802 + 0.0167 0.5834 + 0.0105 0.6670 + 0.0133

fonosphere 0.4867 + 0.0120 0.3463 + 0.0005 0.5023 + 0.0024 0.7951 + 0.0039
Isolet 1.8252 + 0.0090 3.7544 + 0.0619 1.8824 4+ 0.0079 3.3072 + 0.0068
Pima 5.0420 + 0.4375 10.0433 + 0.1282 4.7612 +0.0080 6.8422 + 0.0030
Sonar 0.2527 + 0.0031 0.0874 + 0.0002 0.2527 + 0.0003 0.3585 + 0.0026
Vehicle 0.6833 + 0.0077 11731 +0.0170 0.7706 + 0.0115 0.9038 + 0.0255
Wdbc 1.7316 + 0.0032 3.3759 + 0.0849 1.8096 + 0.0375 2.9578 + 0.0192
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investigating, which is exactly one of our future works. At the same
time, seeking for strategies for selecting the parameters in DAMR,
and further improving the efficiency of DAMR are both learning
problems worth investigating in our future work.
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