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Abstract: Multi-atlas based methods have been recently used for classification of Alzheimer’s disease
(AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Compared with traditional
single-atlas based methods, multiatlas based methods adopt multiple predefined atlases and thus are
less biased by a certain atlas. However, most existing multiatlas based methods simply average or con-
catenate the features from multiple atlases, which may ignore the potentially important diagnosis
information related to the anatomical differences among different atlases. In this paper, we propose a
novel view (i.e., atlas) centralized multi-atlas classification method, which can better exploit useful
information in multiple feature representations from different atlases. Specifically, all brain images are
registered onto multiple atlases individually, to extract feature representations in each atlas space.
Then, the proposed view-centralized multi-atlas feature selection method is used to select the most dis-
criminative features from each atlas with extra guidance from other atlases. Next, we design a support
vector machine (SVM) classifier using the selected features in each atlas space. Finally, we combine
multiple SVM classifiers for multiple atlases through a classifier ensemble strategy for making a final
decision. We have evaluated our method on 459 subjects [including 97 AD, 117 progressive MCI
(p-MCI), 117 stable MCI (s-MCI), and 128 normal controls (NC)] from the Alzheimer’s Disease Neuroi-
maging Initiative database, and achieved an accuracy of 92.51% for AD versus NC classification
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and an accuracy of 78.88% for p-MCI versus s-MCI classification. These results demonstrate that the
proposed method can significantly outperform the previous multi-atlas based classification methods.
Hum Brain Mapp 36:1847–1865, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: multiatlas classification; feature selection; Alzheimer’s disease; ensemble learning; multi-
view learning
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INTRODUCTION

As the most common form of dementia diagnosed in
people over 65 years of age, Alzheimer’s disease (AD) is
an irreversible, neurodegenerative disorder that leads to
progressive loss of memory and cognitive function. It is
reported that, 1 in 85 people will be affected by AD by
2050 [Brookmeyer et al., 2007]. Thus, it is critical for early
and accurate diagnosis of AD, especially in its early stage
[i.e., mild cognitive impairment (MCI)], for timely therapy
and possible delay of the progression [Li et al., 2012; Wee
et al., 2012; Wee et al., 2014; Zhang et al., 2012].

Over the past decade, advances in magnetic resonance
imaging (MRI) have enabled significant progress in under-
standing neural changes that are related to AD and other
diseases [Chan et al., 2003; Chen et al., 2009b; Davatzikos
et al., 2008; Fan et al., 2008; Fox et al., 1996; Hinrichs et al.,
2009; Magnin et al., 2009; Mueller et al., 2005; Shi et al.,
2012]. By directly accessing the structures provided by
MRI, brain morphometry can identify the anatomical dif-
ferences between populations of AD patients and normal
controls (NC) for assisting diagnosis and also evaluating
the progression of MCI [Dickerson et al., 2001; Fox et al.,
1996; Jack et al., 2008; Wang et al., 2014]. In general, MRI-
based classification methods can be roughly divided into
two categories, that is, (1) methods using single-atlas
based morphometric representations of brain structures
[Cuingnet et al., 2011; Liu et al., 2014; Zhang et al., 2011]
and (2) methods using multi-atlas based representations of
brain structures [Koikkalainen et al., 2011; Lepor�e et al.,
2008; Min et al., 2014a, 2014b].

In the first category of methods, researchers mainly uti-
lize a single atlas as a benchmark space to provide a repre-
sentative basis for comparing the common anatomical
structures of different brain images. More specifically, they
first obtain a morphometric representation of each brain
image by spatially normalizing it onto a common space
(i.e., a predefined atlas) via nonlinear registration, and
thus, the corresponding regions in different brain images
can be compared [Sotiras et al., 2013; Tang et al., 2009;
Yap et al., 2009]. Usually, such a predefined atlas is an
image of a single subject, a general average atlas, or a spe-
cific atlas generated from a particular data under study
[Chung et al., 2001; Lepor�e et al., 2008; Teipel et al., 2007].
In the literature, many single-atlas based morphometry
pattern analysis methods, such as voxel-based morphome-
try (VBM) [Ashburner and Friston, 2000; Davatzikos et al.,

2001, 2008; Thompson et al., 2001], deformation-based
morphometry (DBM) [Ashburner et al., 1998; Chung et al.,
2001; Gaser et al., 2001; Joseph et al., 2014], and tensor-
based morphometry (TBM) [Kipps et al., 2005; Leow et al.,
2006; Whitford et al., 2006], have been proposed and dem-
onstrated promising results in AD diagnosis with different
classification techniques [Bozzali et al., 2006; Fan et al.,
2008; Frisoni et al., 2002; Hua et al., 2013]. Specifically, in
these methods, after nonrigidly transforming each individ-
ual brain image onto a common atlas space, VBM meas-
ures the local tissue density of the original brain image
directly, while DBM and TBM measure the local deforma-
tion and the Jacobian of local deformation, respectively.
For example, researchers in [Fan et al., 2007] proposed a
Classification Of Morphological Patterns using Adaptive
Regional Elements (COMPARE) algorithm to extract volu-
metric features from self-organized and spatially adaptive
local regions based on a single atlas. COMPARE helps
overcome the limitation of traditional voxel-wise analysis
methods that often have very high feature dimensionality,
and can also enhance the discriminative power of the fea-
ture representation. However, due to the potential bias
associated with the use of a particular atlas, the feature
representation extracted from a single (particular) atlas
may not be sufficient to reveal the underlying complicated
differences between populations of disease-affected
patients and NCs.

In the second category of methods, researchers attempt
to use multiple atlases to minimize the bias associated
with the use of a single atlas. Although requiring higher
computational cost, this kind of method is important for
helping reduce the negative impact of image registration
errors in morphometric analysis of brain images. Recently,
several studies [Koikkalainen et al., 2011; Lepor�e et al.,
2008; Min et al., 2014a, 2014b] have shown that the multi-
atlas based methods can often offer more accurate diagno-
sis results than the single-atlas based methods. For
example, researchers in [Lepor�e et al., 2008] registered
each brain image onto multiple atlases (which have
already been nonlinearly aligned to a new common atlas),
and then averaged their respective Jacobian maps of the
estimated deformation fields to improve the TBM-based
monozygotic/dizygotic twin classification. To reduce
errors caused by registration in the TBM-based classifica-
tion, researchers in [Koikkalainen et al., 2011] investigated
the effects of utilizing mean deformation fields, mean vol-
umetric features, and mean predicted responses of
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regression-based classifiers from multiple atlases, and
obtained the improved results for AD analysis. However,
one main disadvantage of the aforementioned methods is
that, after averaging the features from multiple atlases,
morphometric representations for a subject (although gen-
erated from different atlases) could become less powerful
in revealing the underlying complicated differences
between AD patients and NCs, because they ignore the
characteristics of each atlas.

It is worth noting that, because the anatomical structures
of different atlases could be very different from each other,
a subject’s corresponding representations generated from
different atlases (also called views later) will also be differ-
ent, as illustrated in Figure 1. From Figure 1, we can observe
that the gray matter (GM) tissue density maps represented
in the spaces of two atlases (i.e., Ti and Tj) are very different.
Therefore, the representations generated from these different
atlases [Min et al., 2014b] would convey different informa-
tion to help reveal the underlying complicated differences
between populations of disease-affected patients and NCs.
To this end, researchers in [Min et al., 2014a, 2014b] pro-
posed to nonlinearly register each brain image onto multiple
atlases separately for obtaining multiple representations.
However, in [Min et al., 2014a, 2014b], when considered for
AD classification, the features generated from different
atlases are simply concatenated, which could include redun-
dant information from similar atlases and also lead to high
dimensional feature representations. Therefore, deciding
how to better use those feature representations from multi-
ple atlases is a challenging problem.

Conversely, in machine learning and pattern recognition
domains, multiview based learning methods have been well
studied to make full use of features from multiple views to

represent an object [Li et al., 2002; Thomas et al., 2006]. For
example, in the multiview face recognition, a person can be
represented by both front-view and side-view images. Because
these images provide different information for the same per-
son, the use of multiple sets of features from different views
can largely enrich the representation for the person and bring
better learning performance than methods with only single-
view features, as demonstrated in various studies [Basha et al.,
2013; Gong et al., 2014; Li et al., 2002; Thomas et al., 2006; Xu
et al., 2014]. Similarly, in brain morphometry, multiple atlases
can also be regarded as multiple views for representing the
same brain. Thus, a representation generated from a specific
atlas can be regarded as a profile for the brain, and can be
used to provide supplementary or side information for other
representations generated from the other atlases (i.e., views).
Intuitively, focusing on the representation from one atlas with
also extra guidance from other atlases could lead to a richer
representation for the brain, and thus improve the disease
diagnosis performance. However, to our knowledge, few of
the existing multiatlas based classification methods have
explored the representation of each atlas with extra guidance
from other atlases to aid more accurate classification of AD or
related brain disease(s).

In this article, we propose a view-centralized multi-atlas
(VCMA) classification method to identify (1) AD patients
from NCs and (2) progressive MCI patients from stable MCI
patients, using a collection of representations derived from
multiple atlases. Unlike previous multiatlas based works in
[Koikkalainen et al., 2011; Lepor�e et al., 2008] that often aver-
aged the representations from multiple atlases, or works in
[Min et al., 2014a, 2014b] that simply concatenated features
from different atlases, we retain each atlas in its original (lin-
early aligned) space and then focus on the feature

Figure 1.

Illustration of different morphometric patterns generated from different atlases. Here, an AD

subject image is registered to two different atlases (i.e., Ti and Tj), through which two different

representations (i.e., density maps for GM) are generated as features for the AD subject. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

r View-Centralized Multi-Atlas Classification r

r 1849 r



representation from each atlas with extra guidance provided
by other atlases. The key of our proposed method involves a
VCMA feature selection algorithm and also a classifier
ensemble strategy. Specifically, we first spatially normalize
each brain image onto multiple atlases via nonlinear registra-
tion for obtaining the respective regional features in multiple
atlases. Then, we propose a VCMA feature selection method
by concentrating on the feature representation of each atlas
with extra guidance from other atlases. Here, for a certain
atlas, we treat it as the main-view information source, and
regard other atlases as the side-view information sources for
providing extra side information for the main-view. As each
of the K atlases will be treated as the main-view (with other
K21 atlases as side views), in turn, our proposed VCMA fea-
ture selection method will be performed for K times to get K
sets of selected features. Finally, based on these K sets of
selected features, support vector machine (SVM) classifiers
[Jie et al., 2014; Kl€oppel et al., 2008; Magnin et al., 2009;
Zhang et al., 2011] are learned to construct multiple (i.e., K)
base classifiers, and then these K base classifiers are com-
bined through a classifier ensemble strategy for making a
final decision. To evaluate the efficacy of our proposed

method, we perform two sets of experiments: (1) AD versus
NC classification and (2) progressive MCI (p-MCI) versus
stable MCI (s-MCI) classification. Using a 10-fold cross-vali-
dation strategy on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [Jack et al., 2008], we achieve a
significant performance improvement for both AD versus
NC classification and p-MCI versus s-MCI classification,
compared with the state-of-the-art methods for AD/MCI
diagnosis.

The rest of this article is organized as follows. The pro-
posed VCMA classification method is presented in the
Method section. Then, in the Results section, we perform
extensive experiments by comparing our method with sev-
eral state-of-the-art methods using the ADNI database.
Finally, in the Conclusion section, we conclude this paper
and discuss some possible future directions.

METHOD

Figure 2 shows the flowchart of our proposed view-
centralied multi-atlas (VCMA) classification framework.

Figure 2.

The framework of our proposed view-centralized multi-atlas classification method, which

includes four main steps: (1) preprocessing and atlas selection, (2) feature extraction, (3) feature

selection, and (4) ensemble classification. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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As can be seen from Figure 2, brain images are first nonli-
nearly registered onto multiple atlases individually, and
then, their volumetric features are extracted within each
atlas space. In this way, multiple feature representations
can be generated from different atlases for each specific
subject. Based on such representations, we then apply our
proposed VCMA feature selection algorithm to select the
most discriminative features, by focusing on the main-
view atlas along with the extra guidance from side-view
atlases. Finally, multiple SVM classifiers are constructed
based on multiple sets of selected features, followed by a
classifier ensemble strategy to combine the outputs of mul-
tiple SVM classifiers for making a final decision. In what
follows, we will introduce each step in detail.

Preprocessing and Atlas Selection

For all studied subjects, we first apply a standard pre-
processing procedure to the T1-weighted MR brain
images. More specifically, nonparametric nonuniform bias
correction (N3) [Sled et al., 1998] is used to correct inten-
sity in homogeneity. Then, we perform skull stripping
[Wang et al., 2014], and also perform manual review (or
correction) to ensure the clean removal of skull and dura.
Afterward, we remove the cerebellum by warping a
labeled atlas to each skull-stripping image. Next, we apply
the FAST method [Zhang et al., 2001] to segment each
brain image into three tissues, that is, GM, white matter
(WM) and cerebrospinal fluid (CSF). Finally, all brain
images are affine-aligned by FLIRT [Jenkinson et al., 2002;
Jenkinson and Smith, 2001].

One challenging problem in multiatlas based methods is
deciding how to select appropriate atlases, which should
not only be representative enough to cover the entire popula-
tion, to reduce the overall registration errors, but also cap-
ture the discriminative information of brain changes related
to AD. For that purpose, we first perform a clustering algo-
rithm, called affinity propagation [Frey and Dueck, 2007], to
partition the whole population of AD and NC images into K
(e.g., K 5 10 in this study) nonoverlapping clusters, through
which an exemplar image can be automatically selected for
each cluster. Then, these exemplar images can be used as
representative images or atlases for different clusters.
Accordingly, we can construct an atlas pool by combining
these exemplar images from different clusters. During the
clustering process, the normalized mutual information
[Pluim et al., 2003] is used as similarity measure and a bisec-
tion method [Frey and Dueck, 2007] is adopted to find the
appropriate preference value for the affinity propagation
clustering algorithm. In this study, there are a total of 10
atlases in our atlas pool. Although it is possible to add more
atlases to the atlas pool, those additional atlases could intro-
duce redundant information, as well as higher computa-
tional cost, especially in the image registration stage. It is
worth noting that multiple atlases used in this study are
only selected from both AD and NC subjects rather than

MCI subjects, because MCI can be regarded as an intermedi-
ate stage between AD and NC and, thus, owns the charac-
teristics of both AD and NC.

Feature Extraction

To obtain feature representations for each subject based
on multiple atlases, we perform the following two proce-
dures: (1) a registration step for spatial normalization of
different brain images onto multiple atlas spaces and (2) a
quantification step for morphometric measurement. Specif-
ically, for a given subject with three segmented tissues
(i.e., GM, WM, and CSF), its brain image is first nonli-
nearly registered onto K atlases using a high-dimensional
elastic warping tool, that is, HAMMER [Shen and Davatzi-
kos, 2002]. Then, based on these K estimated deformation
fields, for each tissue we quantify its voxel-wise tissue
density map [Davatzikos et al., 2001; Goldszal et al., 1998]
in each of the K atlas spaces, to reflect the unique defor-
mation behaviors of a given subject with respect to each
specific atlas. In this study, we extract a GM density map
as the feature representation for a brain image, as GM is
the most affected by AD and widely used in the literature
[Liu et al., 2014; Min et al., 2014a; Zhang and Shen, 2012].

After registration and quantification in each atlas space,
we first determine a set of region of interest (ROI) by per-
forming watershed segmentation [Grau et al., 2004; Vincent
and Soille, 1991] on the correlation map between voxel-wise
tissue density values and class labels of all training subjects.
It is worth noting that each atlas will yield its unique ROI
partition, as different tissue density maps of the same sub-
ject are often generated from different atlas spaces. Then, to
improve the discriminative power, as well as the robustness
of the volumetric features computed from each ROI, we fur-
ther refine ROI by choosing the voxels with reasonable rep-
resentation power. To be specific, we first select the most
relevant voxel according to the Pearson correlation (PC)
between this voxel’s tissue density values and class labels
among all training subjects. Then, we iteratively include the
neighboring voxels until no increase in PC when adding
new voxels. Note that such voxel selection process will lead
to a voxel set for a specific region, through which the mean
of tissue density values of those selected voxels can be com-
puted as the feature for this region. It is worth noting that
such voxel selection process is important in eliminating
irrelevant and noisy features, which has been confirmed by
several previous studies [Liu et al., 2013; Min et al., 2014a,
2014b]. Finally, in each atlas space, the top 1,500 most dis-
criminative ROI features are selected as the representation
for a subject. Given K atlases, the feature representation for
each subject is of 1,5003K dimensionality.

Feature Selection

Although we extract the most representative regional
features in each atlas space, many regional features could
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still be redundant or too noisy for the subsequent classifi-
cation task. Therefore, feature selection plays an important
role in selecting a robust feature subset, as well as to
remove those noisy features to achieve good classification
results.

In this subsection, we propose a VCMA feature selection
method to select features from each atlas with extra guid-
ance from other atlases. Specifically, given N training
images that have been registered to K atlases, we denote X
5fxigN

i51 2 RD3N (D 5 1,5003K in this study) as the train-
ing data, where xi 2 RD is the feature representation gener-
ated from K atlases for the ith training image. Let
Y5fyigN

i51 2 RN be the class labels of N training data, and
w 2 RD be the weight vector for the feature selection task.
For clarity, we divide the feature representations from
multiple atlases into a main-view group and a side-view
group, as illustrated in Figure 3. As can be seen from Fig-
ure 3, the main-view group (corresponding to the main
atlas) contains features from a certain atlas, while the side-
view group (corresponding to other supplementary
atlases) contains features form all other (supplementary)
atlases.

Denote A5½a 1ð Þ; að2Þ� 2 R2 as the weighting parameters
for two different groups, where að1Þ represents the weight-
ing value for the main-view (i.e., main atlas) group and
að2Þ denotes the weighting value for the side-view (i.e.,
supplementary atlases) group. By setting different weight-
ing values for features from the main view and the side
views, we can incorporate our prior information into the
following learning model:

min
w

1

2N

XN

i51

kyi2wTxik2
21k1kw1k1k2

X2

g51

aðgÞkwðgÞk2

s:t:
X2

g51

aðgÞ51; aðgÞ > 0; g51; 2:

(1)

where wðgÞ represents the weight vector for the gth
group. The first term in Eq. (1) is the empirical loss on
the training data, and the second one is the L1-norm reg-
ularization term that enforces some elements of w to be
zero. It is worth noting that the last term in Eq. (1) is a

view-centralized regularization term, which treats fea-
tures in the main-view group and the side-view group
differently using different weighting values (i.e., að1Þ

and að2Þ). For example, a small að1Þ (as well as a large að2Þ)
implies that the coefficients for features in the main-view
group will be penalized lightly, while features in the
side-view group will be penalized severely, because the
goal of the model defined in Eq. (1) is to minimize the
objective function. Accordingly, most elements in the
weight vector corresponding to the side-view group will
be zero, while those corresponding to the main-view
group will not. In this way, the prior knowledge that we
focus on the representation from the main atlas (i.e.,
main view) with extra guidance from other atlases can
be incorporated into the learning model naturally. In
addition, two constraints in Eq. (1) are used to ensure
that the weighting values for different groups are greater
than 0 and not greater than 1. By introducing such con-
straints, we can efficiently reduce the freedom degree of
the proposed model, and avoid over-fitting with limited
training samples.

Based on the feature selection model defined in Eq. (1),
we can obtain a feature subset by selecting features with
non-zero coefficients in w. Each time, we perform the
aforementioned feature selection procedure by focusing on
one of multiple atlases, with other atlases used as extra
guidance. Accordingly, given K atlases, we get K selected
feature subsets, with each of them reflecting the informa-
tion learned from a certain main atlas and corresponding
supplementary atlases.

It is straightforward to verify that the objective func-
tion in Eq. (1) is convex but nonsmooth because of the
nonsmooth L1-norm regularization term. The basic idea
to solve this problem is to use a smooth function to
approximate the original nonsmooth objective function
and then solve the former by utilizing some off-the-
shelf fast algorithms. In this study, we resort to the
widely used Accelerated Proximal Gradient (APG)
method [Beck and Teboulle, 2009; Chen et al., 2009b] to
solve the problem defined in Eq. (1). To be specific, we
first separate the objective function in Eq. (1) to a
smooth part

f wð Þ5 1

2N

XN

i51

kyi2wTxki

2

2 (2)

and a nonsmooth part

h wð Þ5k1kwk11k2

X2

g51

aðgÞkwðgÞk2 (3)

To approximate the composite function J wð Þ5f wð Þ1
h wð Þ, we further construct the following function:

XS;wj
ðwÞ5f wj

� �
1hw2wj;rf wj

� �
i1 S

2
kw2wkj

2

2
1h wð Þ (4)

Figure 3.

Illustration of group information for feature representations gen-

erated from multiple atlases. The first group G1 (i.e., the main-

view group) consists of features from a certain atlas, while the sec-

ond group G2 (i.e., the side-view group) contains features from all

other (supplementary) atlases. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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where rf wj

� �
denotes the gradient of f wð Þ at the point wj,

and S is the step size that can be determined by line
search, for example, the Armijo-Goldstein rule [Dennis
and Schnabel, 1983]. Finally, the update step of the AGP
algorithm is defined as follows:

wj115 min
w

1

2
kw2vkj

2

2
1

1

S
h wð Þ (5)

where vj5 wj2
1
Srf wj

� �
.

The key of the AGP algorithm is to solve the update
step efficiently. The study in [Liu and Ye, 2009] showed
that this problem can be decomposed into several separate
subproblems. Thus, we can obtain the analytical solutions
of these subproblems easily. In addition, according to the
technique used in [Chen et al., 2009a], instead of perform-
ing gradient descent based on wj,we compute the follow-
ing equation:

pj5wj1gj wj2wj21

� �
(6)

where gj is a properly chosen coefficient [Chen et al.,
2009a]. The detailed procedures for the optimization
algorithm for the problem defined in Eq. (1) are given in
Algorithm 1.

For a fixed Q (i.e., the maximum iteration), the APG
algorithm for the problem in Eq. (1) has a O(1/Q2) asymp-
totical convergence rate. Here, we further plot the change
of the objective function values in Eq. (1) in both AD ver-
sus NC and p-MCI versus s-MCI classification tasks in Fig-
ure 4. From Figure 4, one can observe that the values of
the objective function decrease rapidly within 10 iterations
in both classification tasks, illustrating the fast convergence
of Algorithm 1.

Ensemble Classification

After obtaining K feature subsets using our proposed
view-centralized feature selection algorithm, we can then
learn K base classifiers individually. In this study, a linear
SVM classifier is used to identify AD patients from NCs,
and progressive MCI patients from stable MCI patients.
Here, we choose a linear model because it has good gener-
alization capability across different training data as shown
in extensive studies [Burges, 1998; Pereira et al., 2009;
Zhang and Shen, 2012]. Finally, a classifier ensemble strat-
egy is used to combine these K base classifiers to construct
a more accurate and robust learning model. Among vari-
ous classifier combination approaches, we use the majority
voting strategy because it is very simple and is one of the
more widely used methods for the fusion of multiple clas-
sifiers. Thus, the class label of an unseen test sample can
be determined by majority voting for the outputs of K
base classifiers.

Implementation Details

In this study, we adopt a 10-fold cross-validation strat-
egy to evaluate the performance of our proposed method.
To be specific, all subject samples are partitioned into 10
subsets (each subset with a roughly equal size), and each
time all samples within one subset are successively
selected as the testing data, while the remaining samples
in the other nine subsets are combined together as the
training data to perform feature selection and classifica-
tion. Finally, we report the average values of classification
results across all 10 cross-validation folds. It is worth not-
ing that the 10-fold cross-validation strategy has been
widely used in recent neuroimaging based classification
[Jie et al., 2014; Liu et al., 2014; Min et al., 2014b; Zhang
and Shen, 2012].

In our proposed feature selection algorithm, the regula-
rization parameters k1 and k2 are chosen from {2210, 229,
� � �, 20} through cross-validation on the training data. More
specifically, in each fold of the 10-fold cross validation, we
further split the training set into the training part and the
validation part. By varying the values of both k1 and k2 in
the proposed feature selection method, we can obtain dif-
ferent feature subsets based on samples in the training
part, and record the classification results on the validation
data. The values of k1 and k2 with the best classification
accuracy on the validation data will then be chosen. Here,
the linear SVM [Chang and Lin, 2011] is used as the classi-
fier, with the default value for the parameter C (i.e., C 5 1).
Similarly, the parameter for the L1-norm regularization
term in Lasso is selected from {2210, 229, � � �, 20} through
cross-validation on the training data. In addition, the
weighting value for the main-view group að1Þ is set as 0.1,
and the weighting value for the side-view group að2Þ is set
as 0.9 empirically, because with such settings we can not
only concentrate on one main atlas but also make full use
of information provided by other atlases. In the Results

Algorithm 1. Optimization Algorithm for the
Proposed Model

Input: The training data X5 xif gN
i51; The class labels

Y5 yif gN
i51.

Initialize: The maximum iteration number Q; The step
size S0; The parameters, i.e., k1, k2, a 1ð Þ ða 2ð Þ512að1ÞÞ.

1: Let w05w150; b051, and S 5 S0;
2: for j 5 1 to Q do

3: Set gj5
ð12bj21Þbj

bj21
, and compute pj according to Eq. (6);

4: Find the smallest S5Sj21; 2Sj21; � � � such that

f wj11

� �
1h wj11

� �
� XS;pj

ðwÞ
where wj11 is computed using Eq. (5);

5: Set Sj5S and bj115
11

ffiffiffiffiffiffiffiffiffiffi
114b2

j

p
2 .

6: end for

Output: wj
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section, we will further investigate the influence of param-
eters on the performance of our proposed method.

In our experiments, we use four measurement criteria to
evaluate the performances of different methods, including
classification accuracy (ACC), classification sensitivity
(SEN), classification specificity (SPE), and the area under
the receiver operating characteristic (ROC) curve (AUC).
To be specific, the accuracy measures the proportion of
subjects that are correctly predicted among all studied
subjects, the sensitivity denotes the proportion of AD
patients (or p-MCI) that are correctly predicted, and the
specificity represents the proportion of NC (or s-MCI) that
are correctly predicted.

To evaluate the efficacy of our proposed method, we per-
form experiments on part of subjects in the ADNI database
(http://adni.loni.usc.edu/). The ADNI database was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengin-
eering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and nonprofit organiza-
tions, as a $60 million, 5-year public–private partnership.
The primary goal of the ADNI has been to test whether dif-
ferent biological markers (e.g., such as magnetic resonance
imaging (MRI) and Positron Emission Tomography (PET))
as well as clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and the cost of clini-
cal trials. The Principal Investigator of this initiative is
Michael W. Weiner MD, VA Medical Center and University
of California, San Francisco. The ADNI was the result of
efforts of many coinvestigators from a broad range of aca-
demic institutions and private corporations. The studied

subjects were recruited from over 50 sites across the U.S.
and Canada, and gave written informed consent at the time
of enrollment for imaging and genetic sample collection, as
well as completed questionnaires approved by each of the
participating sites’ Institutional Review Board (IRB).

In this study, we use T1-weighted MRI data in ADNI-1
[Jack et al., 2008] for AD-related disease diagnosis. In our
experiments, there are a total of 459 subjects, randomly
selected from those scanned with a 1.5T scanner, including
97 AD, 128 NC, and 234 MCI (117 p-MCI and 117 s-MCI)
subjects. The scanning parameters for the 1.5T MRI data
used in this study can be found from [Jack et al., 2008]. It
is worth noting that not all subjects with MRI data from
the ADNI-1 database are used, because it requires much
preprocessing time to register all subjects to multiple
atlases (i.e., 10 atlases in this study). Conversely, the sub-
ject size used in our experiments is very similar to that
used in many previous studies [Cuingnet et al., 2011;
Koikkalainen et al., 2011; Liu et al., 2014; Min et al., 2014a;
Zhang et al., 2011], and is sufficient to compare the pro-
posed method with the other methods. The demographic
information of the studied subjects is shown in Table I.

TABLE I. Demographic information of the studied

subjects from ADNI database

Diagnosis Number Age Gender (M/F) MMSE

AD 97 75.90 6 6.84 48/49 23.37 6 1.84
NC 128 76.11 6 5.10 63/65 29.13 6 0.96
p-MCI 117 75.18 6 6.97 67/50 26.45 6 1.66
s-MCI 117 75.09 6 7.65 79/38 27.42 6 1.78

Values are denoted as mean 6 deviation; MMSE means mini-
mental state examination; M and F represent male and female,
respectively.

Figure 4.

Objective function values versus optimization iteration number in (a) AD versus NC classifica-

tion and (b) p-MCI versus s-MCI classification. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

r Liu et al. r

r 1854 r

http://adni.loni.usc.edu/
http://wileyonlinelibrary.com


RESULTS

AD Classification

Classification using single atlases

To demonstrate the variability of classification results
using different atlases, we first report the results of AD ver-
sus NC classification based on a single atlas. Note that, in
the single atlas case, our proposed VCMA feature selection
method uses only features from a particular atlas (i.e., main
view), while features from other atlases are completely
ignored (i.e., að1Þ51 and að2Þ50); thus Eq. (1) is similar to the
formulation of elastic net [Zou and Hastie, 2005]. In this
group of experiments, we compare our method with two
conventional feature selection methods. The first one is
based on the ranking of PC coefficients, and the second one
is the COMPARE method proposed in [Fan et al., 2007] that
combines PC and SVM-RFE [Guyon et al., 2002]. For fair
comparison, the linear SVM with default parameter (C 5 1)
is adopted as a classifier after feature selection using PC,
COMPARE, and our proposed method. In Figure 5, we
report the distribution of classification results achieved by
PC, COMPARE, and our method using 10 single atlases in
AD versus NC classification.

As can be seen in Figure 5, the classification results
using different single atlases are very different, regardless
of the use of different feature selection methods. The
underlying reason may be that the anatomical structure of
a certain atlas may be more representative for the entire
population, compared with other atlases. In this case, the
overall registration errors of this atlas are smaller and,
thus, the feature representation generated from this atlas
includes less noise. Another possible reason could be that
the AD-related patterns generated from a certain atlas
may be more discriminative than those generated from

other atlases, thus, have better generalization capability in
identifying unseen test subjects. Conversely, from Figure
5, one can see that the overall performance of our pro-
posed method is better than that of PC and that of COM-
PARE, in terms of classification accuracy and sensitivity.
Especially, our method achieves the best sensitivity among
the three compared methods, indicating that our method
can effectively classify AD patients from the NCs.
Although COMPARE achieves the best specificity, its accu-
racy and sensitivity are lower than our method.

Classification using multiple atlases

In this subsection, we show results for AD versus NC
classification using multiple atlases. Here, we compare our
method with six feature selection methods, including (1)
single-atlas based PC (PC_SA); (2) single-atlas based COM-
PARE (COMPARE_SA); (3) multiple-atlas based PC
(PC_MA); (4) multiple-atlas based COMPARE (COMPAR-
E_MA); (5) Random subspace (RS) [Ho, 1998] that ran-
domly selects features from the original feature space; and
(6) Lasso [Tibshirani, 1996] that is a widely used feature
selection method in neuroimaging analysis. Specifically,
we report the averaged classification results of single-atlas
based methods (i.e., PC and COMPARE) among all 10
atlases for PC_SA and COMPARE_SA, respectively. It is
worth noting that all compared methods use the same fea-
ture representation (i.e., 15,000-dimensional) generated
from 10 atlases. Similar to the work in [Min et al., 2014a],
for both PC_MA and COMPARE_MA methods, we first
concatenate all regional features (i.e., 15,000-dimensional)
extracted from multiple atlases. Then, the top M
(M 5 1; 2; � � � ; 1500f g) features are sequentially selected
according to the PC (with respect to class labels) for
PC_MA and PC1SVM-RFE for COMPARE_MA, and the
best classification results are reported. It is worth noting
that, in our proposed method, we learn 10 SVM classifiers
based on different atlas-centralized feature subsets

Figure 5.

Distribution of accuracy (ACC), sensitivity (SEN) and specificity

(SPE) achieved by different singleatlas based methods in AD ver-

sus NC classification. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

TABLE II. Results of AD versus NC classification using

single atlas and multiple atlases

Method ACC (%) SEN (%) SPE (%) AUC

PC_SA 84.00 79.53 87.45 0.7692
COMPARE_SA 84.18 75.33 89.17 0.7870
PC_MA 85.91 81.56 89.23 0.8191
COMPARE_MA 87.19 80.56 92.31 0.8495
RS 85.44 69.00 92.75 0.7688
Lasso 87.27 84.78 89.23 0.9004
Proposed method 92.51 92.89 88.33 0.9583

PC_SA and COMPARE_SA denote PC and COMPARE using sin-
gle atlas, respectively; PC_MA and COMPARE_MA mean PC and
COMPARE using multiple atlases, respectively; RS represents ran-
dom subspace; ACC denotes accuracy; SEN means sensitivity;
SPE represents specificity, and AUC denotes the area under ROC
curve.

r View-Centralized Multi-Atlas Classification r

r 1855 r



determined by our proposed feature selection method, and
then construct a classifier ensemble with these learned
base classifiers. For fair comparison, for the RS method,
we randomly select M (M 5 1; 2; � � � ; 1500f g) features
from each atlas for classification, and then record the best
result. For the Lasso method, we first learn a Lasso model
based on the features from one specific atlas, and then
select features with non-zero coefficient in the learned
weight vector. Given 10 atlases, 10 classifiers can be con-
structed based on the features selected by RS and Lasso,
respectively. Finally, for the RS and Lasso methods, these
classifiers are combined by the same ensemble strategy as
used in our proposed method. The experimental results
are summarized in Table II, and Figure 6 shows the ROC
curves achieved by the different methods.

From Table II and Figure 6, it is clear to see that multiat-
las based methods (i.e., PC_MA, COMPARE_MA, RS,
Lasso, and our proposed method) generally achieve much
better performance than single-atlas based methods (i.e.,
PC_SA and COMPARE_SA). Specifically, the best accura-
cies achieved by PC_SA and COMPARE_SA are only
84.00% and 84.18%, respectively, which are much lower
than those of COMPARE_MA, Lasso, and our proposed
method. This demonstrates that, compared with the case
of using single atlas, using multiple atlases can improve
the performance of AD classification, which is consistent
with the conclusion in [Min et al., 2014a, 2014b]. Con-
versely, Table II shows that our proposed method consis-
tently outperforms other methods in terms of classification
accuracy, sensitivity, and AUC value. To be specific, our
method achieves a classification accuracy of 92.51%, a sen-
sitivity of 92.89%, and an AUC of 0.9583, while, among the
other methods, the best accuracy is 87.27%, the best sensi-
tivity is 84.78%, and the best AUC is 0.9004. Obviously, by

focusing on the representation from a certain atlas with
other atlases as extra guidance, our method achieves better
performance than the compared methods.

In addition, from Table II, we can observe that the sensi-
tivities of PC_SA, COMPARE_SA, PC_MA, COMPAR-
E_MA, RS, and Lasso are much lower than their
corresponding specificities. Here, low sensitivity values
indicate low confidence in AD diagnosis, which will
greatly limit the practical usage in real-world applications.
In contrast, our method achieves a significantly improved
sensitivity value (i.e., nearly 8% higher than the second
best sensitivity achieved by Lasso). This characteristic of
possessing a high sensitivity may be advantageous for a
confident AD diagnosis, which is potentially very useful
in practice.

MCI Conversion Prediction

Prediction using single atlases

Similar to the AD versus NC classification experiments,
we evaluate single-atlas based methods in MCI conversion
prediction (i.e., p-MCI vs. s-MCI classification), with
results reported in Figure 7. From Figure 7, one can see
that using different single atlases yields a large variation
of classification results, which is similar to the trend in AD
versus NC classification. In addition, as shown in Figure 7,
our method generally achieves much better results than
PC and COMPARE in terms of the classification accuracy,
sensitivity, and specificity. Conversely, from Figures 5 and
7, one can see that the results of p-MCI versus s-MCI clas-
sification are much lower than those of AD versus
NC classification. The reason may be that MCI can be
regarded as the early stage of AD, where the related atro-
phy is small and not as discriminative in distinguishing

Figure 7.

Distributions of accuracy (ACC), sensitivity (SEN) and specificity

(SPE) achieved by different singleatlas based methods in p-MCI

versus s-MCI classification. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

ROC curves for the classification between AD and NC achieved

by different methods. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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p-MCI from s-MCI subjects [Jie et al., 2014; Suk et al., in
press].

Prediction using multiple atlases

In this subsection, we perform p-MCI versus s-MCI clas-
sification using feature representations generated from
multiple atlases. The experimental results are reported in
Table III. We further plot the ROC curves achieved by dif-
ferent methods in Figure 8.

From Table III and Figure 8, we can observe again that
multiatlas based methods generally outperform single-
atlas based ones. For example, the best accuracy of multi-
atlas based methods (achieved by our method) is 78.88%,
which is significantly better than the best accuracy of
single-atlas based methods, that is, 70.06% (achieved by
COMPARE_SA). In addition, among the five multiatlas
based methods, our proposed method achieves consis-
tently better performances than the other four methods in
terms of classification accuracy, sensitivity, specificity, and
AUC value. Especially, our proposed method achieves an
area under the ROC curve (AUC) of 0.8069, while the best
AUC value of the compared methods is only 0.7602
(achieved by Lasso). Furthermore, Table II and Table III
also indicate that, for both AD versus NC classification
and p-MCI versus s-MCI classification, our proposed
method achieves much higher sensitivities than the com-
pared methods, implying that our method can produce
more confident diagnosis results for both AD and progres-
sive MCI patients.

Comparison with Existing Classification Methods

In this subsection, we compare the results achieved by
our proposed method with some recent results reported in
the literature, which are also based on the MRI data of
ADNI subjects for AD/MCI classification. To be specific,
we compare our method with seven methods, which are

based on either single atlas [Cuingnet et al., 2011; Liu et al.,
2012, 2014; Zhang et al., 2011] or multiple atlases [Koikka-
lainen et al., 2011; Min et al., 2014a, 2014b]. For fair com-
parison, results using only MRI data are reported for the
multimodality based approach in [Zhang et al., 2011]. In
Tables IV and V, we report the results of AD versus NC
classification and p-MCI versus s-MCI classification,
respectively. In addition, we further list the details of each
method in Tables IV and V, including the type of features,
classifiers, and subjects used in the corresponding
methods.

As shown in Table IV, for AD versus NC classification,
our proposed method is superior to the compared meth-
ods, in terms of both classification accuracy and sensitiv-
ity. More specifically, our method achieves an accuracy of
92.51% and a sensitivity of 92.89%, while only the method
proposed in [Liu et al., 2014] obtained comparable results,
with an accuracy of 92.00% and a sensitivity of 91.00%.
Although researchers in [Cuingnet et al., 2011] reported
the highest specificity value, their accuracy and sensitivity
are relatively lower than our method. Conversely, among
the four multiatlas based methods, our proposed method
achieves significantly higher accuracy and sensitivity than
the method proposed in [Koikkalainen et al., 2011] which
simply averaged feature representations from different
atlases. At the same time, our method obtains slightly bet-
ter accuracy, but much higher sensitivity, than methods
proposed in [Min et al., 2014a, 2014b], which simply con-
catenated feature representations from multiple atlases.

Among all compared methods, only four methods (i.e.,
those in [Cuingnet et al., 2011; Koikkalainen et al., 2011;
Min et al., 2014a, 2014b]) report their results of p-MCI ver-
sus s-MCI classification, which is a more difficult classifi-
cation task. Accordingly, we list their performances as

Figure 8.

ROC curves for the classification between p-MCI and s-MCI

achieved by different methods. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

TABLE III. Results of p-MCI versus s-MCI classification

using single atlas and multiple atlases

Method ACC (%) SEN (%) SPE (%) AUC

PC_SA 68.49 67.80 69.10 0.6285
COMPARE_SA 70.06 68.08 72.02 0.6356
PC_MA 72.78 74.62 70.91 0.7245
COMPARE_MA 73.35 75.76 70.83 0.7405
RS 69.05 68.10 72.94 0.6912
Lasso 75.32 81.36 69.17 0.7602
Proposed method 78.88 85.45 76.06 0.8069

Note: PC_SA and COMPARE_SA denote PC and COMPARE
using single atlas, respectively; PC_MA and COMPARE_MA
mean PC and COMPARE using multiple atlases, respectively; RS
represents random subspace; ACC denotes accuracy; SEN means
sensitivity; SPE represents specificity, and AUC denotes the area
under ROC curve.
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well as ours in Table V. In the work of [Cuingnet et al.,
2011], the best results for AD versus NC classification and
p-MCI versus s-MCI classification were obtained using dif-
ferent features. That is, they used the GM tissue density
map for AD versus NC classification, and adopted a sub-
set of features selected by the method proposed in
[Vemuri et al., 2008] for p-MCI versus s-MCI classification.
In addition, the best results in [Koikkalainen et al., 2011]
are obtained by combing the classifiers trained from differ-
ent atlases, which is different from the strategy used in
AD versus NC classification. In [Min et al., 2014a], the best
result of p-MCI versus s-MCI classification is obtained in a
transfer-learning manner. That is, they use the abnormal
patterns identified between AD and NC for guiding p-
MCI versus s-MCI classification. In addition, the best
result reported in [Min et al., 2014b] is based on a new
representation learned from the feature concatenation of
multiple representations generated from multiple atlases.

From Table V, we can observe that our proposed method
achieves much higher classification accuracy and sensitivity
than the other four methods. Specifically, our method achieves
a classification accuracy of 78.88% and a sensitivity of 85.45%,
while the best accuracy and the best sensitivity obtained by
the compared methods are only 73.69% and 77.00%, respec-
tively. Although the specificity reported in [Cuingnet et al.,

2011] is higher than those of other methods, its accuracy and
sensitivity are much lower than our method.

DISCUSSION

Effect of Atlas Number

In this subsection, we investigate the effect of different atlas
numbers on the performance of our proposed method. By
adding more atlases, we report the classification accuracy
achieved by our method in AD versus NC classification and
p-MCI versus s-MCI classification in Figure 9. As shown in
Figure 9, in both AD versus NC and p-MCI versus s-MCI clas-
sification tasks, the accuracy achieved by our method rises
gradually with the increase of atlas number. To demonstrate
the underlying reason, we further analyze the correlation rela-
tionship among multiple atlases used in this study.

As different atlases generally have different anatomical
structures, features from different atlases may be extracted
from different ROIs in the feature extraction stage. In such
case, it could be meaningless to directly compute correla-
tion between feature representations from two atlases. To
model correlation relationship among multiple atlases, we
will first define the correlation coefficient between two
atlases. Let Di and Dj denote the feature dimension in two

TABLE IV. Comparison of AD versus NC classification results reported in the literature using MR imaging data of

ADNI subjects

Method Feature Classifier Subjects Atlas
ACC
(%)

SEN
(%)

SPE
(%)

Cuingnet et al. [2011] Voxel-Direct-D GM SVM 137 AD 1 162 NC Single-atlas 88.58 81.00 95.00

Zhang et al. [2011] 93 ROI GM SVM 51 AD 1 52 NC Single-atlas 86.20 86.00 86.30
Liu et al. [2012] Voxel-Wise GM SRC ensemble 198 AD 1 229 NC Single-atlas 90.80 86.32 94.76
Liu et al. [2014] Patch-Based GM SVM ensemble 198 AD 1 229 NC Single-atlas 92.00 91.00 93.00
Koikkalainen et al.

[2011]
Tensor-Based

Morphometry
Linear regression 88 AD 1 115 NC Multi-atlas 86.00 81.00 91.00

Min et al. [2014a] Data-Driven ROI GM SVM 97 AD 1 128 NC Multi-atlas 91.64 88.56 93.85
Min et al. [2014b] Data-Driven ROI GM SVM 97 AD 1 128 NC Multi-atlas 90.69 87.56 93.01
Proposed method Data-Driven ROI GM SVM ensemble 97 AD 1 128 NC Multi-atlas 92.51 92.89 88.33

ACC denotes accuracy, SEN means sensitivity, and SPE represents specificity.

TABLE V. Comparison of p-MCI versus s-MCI classification results reported in the literature using MR imaging data

of ADNI subjects

Method Feature Classifier Subjects Atlas
ACC
(%)

SEN
(%)

SPE
(%)

Cuingnet et al. [2011] Voxel-stand-D GM SVM 76 p-MCI 1 134 s-MCI Single-atlas 70.40 57.00 78.00
Koikkalainen et al.

[2011]
Tensor-based

Morphometry
Linear

regression
54 p-MCI 1 115 s-MCI Multi-atlas 72.10 77.00 71.00

Min et al. [2014a] Data-driven ROI GM SVM 117 p-MCI 1 117 s-MCI Multi-atlas 72.41 72.12 72.58
Min et al. [2014b] Data-driven ROI GM SVM 117 p-MCI 1 117 s-MCI Multi-atlas 73.69 76.44 70.76
Proposed method Data-driven ROI GM SVM

ensemble
117 p-MCI 1 117 s-MCI Multi-atlas 78.88 85.45 76.06

ACC denotes accuracy, SEN means sensitivity, and SPE represents specificity.
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atlas (i.e., Ti and Tj) spaces (Di5Dj51; 500 in this study),
respectively. Denote C Ti;Tj

� �
as the correlation coeffi-

cient between two atlases Ti and Tj, and C Ti;Tj

� �
can be

computed in the following way:

C Ti;Tj

� �
5

1

2

1

Di

XDi

p51

max
q51; ���;Dj

Corrðf i
p; f j

qÞ

0
@

1
1

Dj

XDj

q51

max
p51; ���;Di

Corrð f j
q; f

i
pÞ

1
A

(7)

where f i
p denotes the pth feature vector on the training sam-

ples in the atlas Ti, f i
p denotes the qth feature vector on the

training samples in the atlas Tj, and Corrðf i
p; f

j
qÞ represents

the PC coefficient between f i
p and f

j
q. Note that

C Ti;Tj

� �
5C Tj;Ti

� �
, and a larger value of C Ti;Tj

� �
denotes

that the atlas Ti and the atlas Tj tend to be more correlated.
Based on the definition in Eq. (7), we plot the correlation
coefficients among 10 atlases (i.e., T1 to T10) in Figure 10.

As can be seen from Figure 10, these atlases are not
highly correlated, with relatively low pairwise correlation

Figure 9.

Results of our proposed method by adding the atlas number

from 1 to 10 in both the AD versus NC classification (a line

with circle markers) and the p-MCI versus s-MCI classification

(a line with triangle markers). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 10.

Correlation coefficients among ten atlases computed according

to Eq. (7). Here, red and yellow indicate high correlation coeffi-

cients, while blue and green denote low coefficients. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 11.

The diversity-error diagrams of classifiers in (a) AD versus NC classi-

fication and (b) p-MCI versus s-MCI classification using RS, Lasso and

our proposed method. The final ensemble is composed of ten classi-

fiers. The x-axis represents the diversity of a pair of classifiers eval-

uated by the kappa measure, and y-axis represents the average

classification error of a pair of classifiers. The green, blue and red

squares denote the centroids of RS, Lasso, and our proposed

method classifier clouds, respectively. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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coefficients. For example, the correlation coefficients of
atlas T9 and other atlases are consistently smaller than 0.5.
Conversely, results in Figures 9 and 10 imply that, if mul-
tiple atlases are not highly relevant, using features from
more atlases tends to help improve the classification result.
This could partly explain why increasing the number of
atlases can boost the classification performance of our
method.

Analysis of Diversity

To understand how our ensemble approach works, we
use the kappa measure to plot the diversity-error diagram,

which evaluates the level of agreement between the out-
puts of two classifiers [Rodriguez et al., 2006]. In Figure
11, we show the diversity-error diagrams of RS, Lasso,
and our proposed method in AD versus NC classification
and p-MCI versus s-MCI classification tasks. For each
method, the corresponding ensemble contains 10 individ-
ual classifiers that correspond to 10 different atlases. The
value on the x-axis of a diversity-error diagram denotes
the kappa diversity of a pair of classifiers in the ensemble,
while the value on the y-axis is the averaged individual
error of a pair of classifiers. As a small value of kappa
diversity indicates better diversity and a small value of
averaged individual error indicates a better accuracy, the
most desirable pairs of classifiers will be close to the

Figure 12.

Results of AD versus NC classification with different parameter values for k1 and k2. Note that

k1 and k2 are chosen from {2210, 229, � � �, 20}. Here, ACC denotes accuracy, SEN means sensi-

tivity, SPE represents specificity, and AUC denotes the area under ROC curve. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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bottom left corner of the graph. It is worth noting that, as
shown in Figure 11a, there are a small number of points
for RS and our method in AD versus NC classification,
because many classifier pairs have the same diversity and
classification errors. For visual evaluation of the relative
positions of the clouds of Kappa-error points, we also plot
the centroids of clouds for three methods in Figure 11.

From Figure 11a,b, we can observe that, in both AD ver-
sus NC classification and p-MCI versus s-MCI classifica-
tion, our proposed method achieves much higher diversity
as well as many fewer errors than those of RS. At the
same time, our proposed method is not as diverse as
Lasso, but apparently, it has more accurate base classifiers
than Lasso. As shown in Tables II and III, our proposed
method outperforms Lasso in both AD versus NC and p-
MCI versus s-MCI classification tasks. It seems that our
proposed method can achieve a better trade-off between
accuracy and diversity than the compared methods. That
is, it builds a classifier ensemble based on the reasonably
diverse but markedly accurate individual components
[Rodriguez et al., 2006].

Effect of Parameters

In this subsection, we evaluate the influence of parame-
ters on the performance of our proposed method. In the
experiments, we vary the values of k1 and k2 in the range
of {2210, 229, � � �, 20}, and record the corresponding classifi-
cation results achieved by our method in AD versus NC
classification. The experimental results are shown in Fig-

ure 12. From Figure 12a,b, we can clearly see that the clas-
sification accuracy and sensitivity slightly fluctuate in a
small range with the increase of k1 and k2. At the same
time, Figure 12c,d reveal that the specificity and AUC
value achieved by our method are generally stable with
respect to these two parameters (i.e., k1 and k2).

Furthermore, we investigate the influence of different
weighting values for the main-view group (i.e., að1Þ) and
the side-view group (i.e., að2Þ) on the performance of our
proposed method. In this group of experiments, we gradu-
ally increase the value of að1Þ (where að2Þ512að1Þ), and
record the corresponding classification results achieved by
our method. The classification results versus different
weighting values for the main-view group (i.e., að1Þ) in AD
versus NC classification and p-MCI versus s-MCI classifi-
cation are shown in Figure 13.

As shown in Figure 13, in both classification tasks, the
accuracy obtained by our proposed method gradually
becomes worse with the increase of the weighting value
for the main-view (i.e., að1Þ) in a large scale. For example,
in AD versus NC classification, our method achieves
higher classification accuracy when the value of að1Þ is
smaller than 0.3, and achieves the worst performance with
að1Þ50:9 (i.e., að2Þ50:1). In p-MCI versus s-MCI classifica-
tion, we can find the similar trend as in AD versus NC
classification. It is worth noting that, in our proposed
method, a small value of að1Þ (as well as a large value of
að2Þ) indicates that more features are selected from the
main-view group (i.e., main atlas), while relatively less fea-
tures are selected from the side-view group (i.e., supple-
mentary atlases). The results in Figure 13 imply that
focusing on a certain atlas, along with extra guidance from
other atlases (as done in our proposed method), can offer
more accurate diagnosis results.

Clinical Relevance and Limitations

This study proposes a novel VCMA classification
method for AD diagnosis. Compared with the conven-
tional ways of simple feature concatenation and averaging,
our method provides a unified way to combine features
generated from multiple atlases. Experimental results on
459 subjects from ADNI database demonstrate that our
method can consistently and substantially outperform the
existing multiatlas based classification methods. Specifi-
cally, our method can achieve high accuracies of 92.51%
and 78.88% for AD versus NC classification and p-MCI
versus s-MCI classification, respectively. It is worth noting
that our method is general for various disease diagnosis
applications where multiview (or multimodality) features
can be obtained.

In recent studies, several works have shown that feature
representations from multiple atlases may contain comple-
mentary information for AD diagnosis [Cuingnet et al.,
2011; Koikkalainen et al., 2011; Min et al., 2014a, 2014b;
Wolz et al., 2011]. However, most existing studies simply

Figure 13.

Classification accuracy achieved by our proposed method with

different weighting values of a(1) for the main-view group in AD

versus NC classification (a line with circle markers) and p-MCI

versus s-MCI classification (a line with triangle markers). Note

that the weighting values for the main-view group range from

0.1 to 0.9 with step 0.1, while other two parameters k1 and k2

are chosen from {2210, 229, � � �, 20} through cross-validation.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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average or concatenate these multiple feature representa-
tions, thus ignore potentially important diagnosis informa-
tion related to the anatomical differences of individual
atlases. Conversely, as features are extracted from multiple
atlases, they could be redundant, which increases the dif-
ficluty for the subsequent learning process. As an effective
way to eliminate such redundant features, feature selection
is commonly used for identifying discriminative bio-
markers for AD and MCI. For example, researchers in
[Min et al., 2014a] proposed a correlation-and-relevance-
based feature selection method using the concatenation of
features from multiple atlases, and thus ignores the redun-
dancy of complementary information conveyed in multiat-
las data. To this end, we propose a VCMA feature
selection method, where each time we focus only on one
atlas with the extra guidance from other atlases. The good
classification results achieved by our method indicate its
good diagnostic power. As can be seen from Tables II and
III, our method achieves superior performance over the
compared methods.

In this study, we also propose an ensemble classification
method by combining the results of multiple classifiers
corresponding to multiple atlases. As can be seen from
Tables II and III, the methods using ensemble strategy
(including PC, Lasso, and our proposed method) often
perform better than other methods, demonstrating the
effectiveness of the ensemble strategy in boosting the clas-
sification results based on multiatlas data. In Figure 11, we
plot the diversity-error diagram to understand how our
ensemble approach works. It can be seen that our pro-
posed method achieves a better trade-off between accuracy
and diversity than the compared methods in both AD ver-
sus NC and p-MCI versus s-MCI classification tasks.

Furthermore, in Tables IV and V, we compare our
method with the recent state-of-the-art methods for MRI-
based AD/MCI classification. It is clear that our method
achieves the best classification accuracy and sensitivity.
To investigate the influence of parameters on the per-
formance of our method, we further perform experiments
by varying the parameter values (i.e., k1 and k2) and
record their corresponding results, as shown in Figure 12.
We can see that our method is not sensitive to the selec-
tion of parameter values. In addition, we study the influ-
ence of the weighting value for the main view (i.e., að1Þ),
with experimental results given in Figure 13. It can be
seen that focusing on a certain atlas (along with the extra
guidance from other atlases) can offer more accurate
diagnosis results.

However, this study is limited by the following factors.
First, our method has high computational cost due to the
use of multiple atlases for image registration. Second, only
the regional features are extracted for feature representa-
tion, while other morphometric features such as Jacobian
determinants can also be used in our method. Third, we
only use MRI data to learn the classification model,
although there are other types of biomarkers, such as fluo-
rodeoxyglucose positron emission tomography (FDG-PET).

Specifically, the use of multiple biomarkers can potentially
further boost the learning performance of our method, as
confirmed in many recent works [Zhang and Shen, 2012;
Zhang et al., 2011]. Finally, we only use the MRI baseline
data in ADNI in our experiments. In the future, we will
use both baseline data and longitudinal data to character-
ize the spatiotemporal development pattern of brain atro-
phy for better diagnosis and prediction of brain disease.
For example, the longitudinal changing patterns can be
captured using multiple atlases, and thus the longitudinal
features from different atlases can be used as multiview
features for classification with our proposed view-
centralized classification method. All these will be our
future work for further improving the diagnosis perform-
ance with new features, multimodality data, and longitudi-
nal images.

CONCLUSION

In this study, we propose a novel VCMA classification
method, which can better exploit the useful information in
different feature representations from multiple atlases.
Specifically, we first register all brain images onto multiple
atlases individually, for extracting the respective feature
representation in each atlas space. Then, we apply the pro-
posed view-centralized multi-atlas feature selection
method to select the most discriminative features corre-
sponding to each atlas, using other atlases as extra guid-
ance. Finally, for each atlas, we learn a SVM classifier
using the selected features specific to each atlas, and fur-
ther combine multiple SVM classifiers corresponding to
multiple atlases through a classifier ensemble strategy for
making a final decision. Experimental results on 459 sub-
jects from the ADNI database have demonstrated signifi-
cant performance improvement for both AD versus NC
classification and p-MCI versus s-MCI classification. In the
current study, we evaluate the proposed method on AD/
MCI classification. Actually, our method can also be used
in other brain analysis applications, such as autism and
schizophrenia diagnosis, which will be our future work.
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