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Abstract

In recent years, the problem of human face-based age estimation has attracted
increasing attention due to its extensive applicability and motivated a vari-
ety of approaches being proposed, in which the method based on the coding
of cumulative attribute (CA) achieves competitive performance by taking in-
to account both the neighbor-similar and the ordinal characteristics of ages.
However, in their learning, the inherent mutual relations between the CA codes
have not been exploited, thus leaving us a performance space that can be im-
proved. To this end, in this work we first derive such relations by performing
the difference-like operation between the CA codes in certain order to construct
so-called 0-order and 1-order relation matrices and then incorporate them as
two corresponding regularization terms, coined as CA-oriented ordinal struc-
ture regularization (CAOSR) and CA-oriented adjacent difference orthogonal
regularization (CAADOR), into the objective of the multi-output regressor.
Consequently, corresponding CA-based regressors regularized with the mutu-
al relations are developed. Finally, through extensive experiments on three
human aging datasets, the FG-NET and the Morph Album 1 and Album 2,
we demonstrate the effectiveness of our strategies in improving CA-based age
estimation.

Keywords: Age Estimation; Cumulative Attribute; Mutual Relation;
Regularization; LS-SVR; Ridge Regression

1. Introduction

In machine learning, large numbers of problems are related to human face due
to that rich information is contained in it, such as facial expression, gender, race
and age, in which the problem of human face-based age estimation has aroused
increasing attention due to its wide applications such as web security control
(Guo et al., 2008a; Lanitis et al., 2004), ancillary identity authentication (Jain
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et al., 2004), and advertisement recommendation (Romano J.R. and Fjermestad,
2006), etc.

In order to conduct age estimation based on human face, a variety of ap-
proaches have been proposed to date. Generally, they fall into three categories:
classification-based, e.g., (Lanitis et al., 2004; Geng et al., 2013; Ueki et al., 2006;
Alnajar et al., 2012; Sai et al., 2015), regression-based, e.g., (Lanitis et al., 2002;
Fu et al., 2007; Luu et al., 2009; Yan et al., 2007b,a; Geng et al., 2007; Chang
et al., 2011; Li et al., 2012a,b), and their hybrid, e.g., (Guo et al., 2008a,b; Kohli
et al., 2013).

When we consider each age as a separate class, the age estimation can be
made under ordinary classification framework. For example, Lanitis et al. (Lani-
tis et al., 2004) extracted AAM features from facial images and respectively
applied the nearest neighbor classifier and artificial neural networks for age es-
timation and achieved comparable performance. Geng et al. (Geng et al., 2013)
specially designed a three-layer conditional probability neural network (CPNN)
to capture the age contribution information for age classification. Moreover,
Ueki et al. (Ueki et al., 2006) conducted age group classification by building
Gaussian mixture models after discriminative dimensionality-reduction and re-
ceived promising results respectively for male and female on several famous age
datasets. More recently, Alnajar et al. (Alnajar et al., 2012) employed the soft
coding to extract codebooks for age group classification and received better es-
timation on an unconstrained real-life dataset than the hard coding approaches.
And Sai et al. (Sai et al., 2015) even used the extreme learning machines to
perform age group estimation and obtained competitive results.

Actually, the age estimation is more of a regression problem than a generic
multi-class classification due to the continuity of aging. According to this char-
acteristic, many attempts have been made. For instance, Lanitis et al. (Lanitis
et al., 2002) established a quadratic function to fit the ages with facial images
represented by AAM features. Fu et al. (Fu et al., 2007) borrowed the multiple
linear regression to learn an aging prediction function in the manifold space.
And Luu et al.(Luu et al., 2009) employed the off-the-shelf ξ-SVR (Vapnik,
1998) for aging function learning. Moreover, to handle the uncertainty of anno-
tations of age labels, Yan et al. (Yan et al., 2007b) constructed a semi-definite
programming (SDP) regression model to train an aging regressor. Although the
SDP regressor can relatively model the age labels’ uncertainty better, the learn-
ing is very time-consuming. To reduce the time complexity, they (Yan et al.,
2007a) then proposed to speed up the SDP learning by using the Expectation-
Maximization (EM). Furthermore, Geng et al. (Geng et al., 2007) proposed the
aging pattern regressing (AGES) to generate age labels for missing patterns.
Although the methods afore-mentioned can yield age estimation performance
to different extents, they ignored the fact that there exists natural ordinality
among ages (Chen et al., 2013; Chang et al., 2011). To this end, Chang et al.
(Chang et al., 2011) specially designed an ordinal hyperplanes ranker (OHRank)
for age estimation and on FG-NET dataset they obtained better performance
than AGES. Later, Li et al. (Li et al., 2012a) presented a distance-based or-
dinal regressor for age estimation, in which the ordinal information of ages is
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incorporated into the metric and on FG-NET they obtained competitive perfor-
mance. Moreover, they (Li et al., 2012b) took the ordinality and local manifold
structure preserving ability as a criterion to perform feature selection and con-
ducted age regression with much competitive results. More recently, they (Li
et al., 2014) presented an ordinal metric learning method for image ranking by
preserving both the local geometry information and the ordinal relationship of
the data.

Although the methods reviewed above can perform encouraging human age
estimation with different performance, they have not exploited another essen-
tial characteristic of the ages that neighboring ages are generally more similar
in facial appearance than those apart. For example, the facial appearance of
11-year-old is more similar to that of 13 compared to that of 30, as exhibit-
ed in Figure 2 (in Section 2). This characteristic is of help in estimating the
ages, especially when the age distribution is imbalanced (Chen et al., 2013),
because similar ages can be used to partially depict their neighboring ages that
are absent in the learning and thus alleviate the imbalance. Therefore, such
neighbor-similarity of ages should also be incorporated into the estimation. To
simultaneously consider both the ordinality and the neighbor-similarity of the
ages1, Chen et al. (Chen et al., 2013) proposed the cumulative attribute (CA)
coding to represent the age. Concretely, they first used the multivariate ridge
regression (mRR) (An et al., 2007) to transform the instance from its original
input feature to a CA code; and then applied a second-layer scalar-output re-
gressor to map the CA code to a scalar age label. The flowchart of the two-layer
regression is shown in Figure 1, and by this way they obtained competitive age
estimations.

Figure 1: The flowchart of CA-based human age estimation.

Although the characteristics of ordinality and neighbor-similarity of the ages
are considered in the CA coding, the inherent mutual relations explicitly or im-
plicitly existing between the CA codes have not been exploited for learning,
thus leaving us a room of promoting its performance. To this end, in this work
we first derive such relations by performing difference-like operations on the

1Please note the difference between the ordinality and the neighbor-similarity of ages. The
ordinality defines the global order relationship of the ages while the neighbor-similarity states
the similarity of facial appearances at close ages. Moreover, the neighbor-similarity is also
conceptually different from the local manifold geometry relationships (Li et al., 2012b, 2014)
of the ages. The local manifold geometry structures describe the neighbor relationship of ages
in manifold space, while the neighbor-similarity stated in this paper depicts the biological
similarity of facial appearances of neighboring ages.

3



CA coding matrix 2 to construct so-called 0 -order and 1 -order relation matrices
3, respectively. Then, we formulate the relation matrices as two correspond-
ing regularization terms, coined as CA-oriented ordinal structure regulariza-
tion (CAOSR) and CA-oriented adjacent difference orthogonal regularization
(CAADOR), respectively. And, in order to take the mutual relations into the
CA learning, we regularize the first-layer regressor (as shown in Figure 1) by
embedding the regularization terms, CAOSR and CAADOR, into its objective.
Finally, through extensive experiments, we demonstrate the effectiveness of our
strategies in improving CA learning on human age estimation.

The rest of this paper is organized as follows. In Section 2, we briefly review
related work on CA coding. In Section 3, We derive two types of regularization
terms, coined as CAOSR and CAADOR, to depict the mutual relations among
the CA codes, and embed them into the objectives of the mRR and mLS-SVR,
both of which act as the first-layer regressor in the CA learning, in Section 4.
In Section 5, we conduct experiments to evaluate our strategies. Finally, we
conclude the paper in Section 6.

2. Related Work

Following the spirit of literature such as (Mahajan et al., 2011), Chen et al.
(Chen et al., 2013) presented the cumulative attribute (CA) coding for learning
in such scenarios as human age estimation. Concretely, given a set of N training
samples {xi, li} ∈ <D × <, li ∈ {1, 2, ...,K}, i=1,2,...,N, where xi denotes
the i -th instance and li is its corresponding scalar label, D denotes the feature
dimensionality of xi and K is the number of classes (e.g., the scale of the aging
range). Here for the i -th sample xi, its scalar label value li, e.g., the age value,
is transformed into a K-dimensional vector yi, named as cumulative attribute
(CA) code, whose j -th element is defined as

yji =

{
1, j ≤ li
0, j > li

where j =1,2,...,K. As a comparison, the non-cumulative attribute (NCA) is given
as well with the j -th element defined as

yji =

{
1, j = li

0, j 6= li

As argued for age estimation, the CA coding can relatively well capture the
characteristic that the attribute values at neighboring ages should be more sim-
ilar than those further apart. Moreover, it can alleviate the challenge of the

2The CA coding matrix refers to such a matrix in which each column corresponds to a CA
code for an instance from some class, as shown in Figure 3 (a).

3For why just extracting the 0 -order and 1 -order relation matrices, please refer to the
Remark in Section 3.
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insufficient and imbalanced sample distribution within the entire aging range,
while the NCA coding cannot. The appealing characteristic of CA coding can
be intuitively demonstrated in Figure 2.

Figure 2: Demonstration of CA coding on age representation (the digit under
each facial image represents the facial age).

Just as shown in Figure 2, the facial age appearances between (a) and (b)
obviously are more similar than those between (a) and (c), which is consistent
with the coding differences between their corresponding CA, i.e., the difference
of 2 years between (a) and (b) is smaller than that of 19 between (a) and
(c). However, using NCA, the age difference between (a) and (b) and that
between (a) and (c) are the same and both equal to 1, by which the similarity
of neighboring ages is not reflected at all, according to its definition above.
Therefore, the coding way of CA is reasonable and desirable to depict human
facial age.

Now given a human facial image, xi, in order to learn a mapping yi =
WTxi +B from its original feature xi to the CA representation yi, where W =
[w1, .., wK ] ∈ <D×K is the weight matrix and B ∈ <K is the bias, Chen et
al. (Chen et al., 2013) used the mRR because of its robustness in regression,
formulated as

min
W,B

1

2

N∑
i=1

‖yi − (WTxi +B)‖2F +
λ

2
‖W‖2F , (1)

where λ is a regularization pamameter. Eq. (1) is a non-constrained quadratic
programming (QP) problem and the W and B can be solved with an analytical
solution. Due to space limitation, we here omit the details, which can be referred
to (Chen et al., 2013).

After obtaining the W and B by solving (1), we can predict the CA value
for a given sample xi by performing the first-layer regression as in (Chen et al.,
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2013), and then adopt any off-the-shelf regressor or classifier as the second-layer
estimator, such as Support Vector Regression (SVR) (Smola and Schölkopf,
2004), ridge regressor (RR) (Montgomery et al., 2012), and the nearest neigh-
bor classifier (Garcia et al., 2012), to map the resulting CA vector yi to its
corresponding scalar value li. The whole flowchart is shown in Figure 1.

3. Two Types of CA-oriented Regularization

According to the definition of CA coding in Section 2, for the given K ordinal
classes, we can demonstrate their CA codes together in a CA coding matrix as
shown in Figure 3 (a).
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Figure 3: Demonstration of CA coding corresponding to K ordinal classes.
(a): original CA coding matrix (b): CA-oriented adjacent difference matrix

3.1. Motivation

Although both the progressive, continuous aging and the ordinal character-
istics of the ages are already reflected in the CA coding as reported in (Chen
et al., 2013), the inherent mutual relations hidden between the CA codes have
not been exploited into learning, thus leaving us an opportunity to promote its
performance. By analyzing the structure of the CA coding matrix (as shown
in Figure 3(a)), we can discover some mutual relations explicitly or implicitly
hidden between the CA codes along the row direction, which motivates us to
derive such mutual relations by performing difference-like operations along cer-
tain directions of the CA coding matrix to construct so-called relation matrices,
which explicitly reveal some mutual relations among the original CA codes, as
shown in Figure 3 (a) and (b). Then, we formulate the mutual relations as prior
information and thus incorporate them into the CA learning.

3.2. Notations

Before presenting our work, first let us introduce some notations that will be
used below. Let X = [X1, X2, ..., XK ] ∈ <D×N denote the entire set of training
instances, where Xk, k = 1, 2, ...,K, denotes the set of samples from the k -th
class with size Nk and

∑K
k=1Nk = N . In addition, let Y = [Y1, Y2, .., YK ] =

6



[(Y 1)T , (Y 2)T , ..., (Y K)T ]T ∈ <K×N denote the corresponding CA coding matrix
(each column corresponds to one instance) and L = [L1, L2, ..., LK ] ∈ <1×N

the scalar class labels of the training set X, in which Yk ∈ <K×Nk , Y k ∈
<1×N and Lk = [lk1 , l

k
2 , ..., l

k
Nk

] ∈ <1×Nk , k = 1, 2, ...,K. In addition, W =

[w1, w2, ..., wK ] ∈ <D×K and B = [b1, b2, ..., bK ]T ∈ <K×1 respectively are the
weight matrix and bias vector in the projection of

Yk = WTXk +BeNk

T , k = 1, 2, ...,K, (2)

where eNk
∈ <Nk is a vector with all elements equal to 1.

3.3. CA-oriented Ordinal Structure Regularization (CAOSR)

From Figure 3 (a), we can find that the original CA coding matrix (i.e., the
0-order relation matrix 4) of the K classes is an upper-triangle matrix. Such
a characteristic can be exploited to depict the explicit mutual relation between
the CA codes and thus incorporated into the CA learning. Inspired by this, we
unfold Eq. (2) with respect to the W and X and get the detailed formulation5

as

Y :=


Y 1 : (wT1 X1)∗ (wT1 X2)∗ (wT1 X3)∗ . . . (wT1 XK)∗

Y 2 : (wT2 X1)∗ (wT2 X2)∗ (wT2 X3)∗ . . . (wT2 XK)∗

Y 3 : (wT3 X1)∗ (wT3 X2)∗ (wT3 X3)∗ . . . (wT3 XK)∗

...
...

...
...

. . .
...

Y K−1 : (wTK−1X1)∗ (wTK−1X2)∗ (wTK−1X3)∗ . . . (wTK−1XK)∗

Y K : (wTKX1)∗ (wTKX2)∗ (wTKX3)∗ . . . (wTKXK)∗

 (3)

According to Figure 3 (a) and the analyses above, all elements of the block
lower-triangle of Y in Eq. (3) should be equal to zeros, i.e.,

(wTi Xj)
∗ := wTi Xj + bieNj

T = 0TNj
, i, j = 1, 2, ...,K, (j < i) (4)

where 0Nj
∈ <Nj represents a zero vector with dimension Nj . Along this way,

we can incorporate this prior knowledge as a regularization term, coined as CA-
oriented ordinal structure regularization (CAOSR), into the objective of the
first-layer multi-output regressor by minimizing the following term

LCAOSR =
K∑
k=1

k−1∑
c=1

‖[wk; bk]T [Xc; e
T
c ]‖2

=
K∑
k=1

‖w̃Tk X̃Rk‖2,

(5)

where w̃k = [wk; bk] is an augmented weight vector with dimension D+1 for wk,
Rk = diag(I∑k−1

c=1 Nc
,0∑K

c′=k
Nc′

) is an auxiliary square matrix of order N with

I∑k−1
c=1 Nc

being an identity matrix of order
∑k−1
c=1 Nc and 0∑K

c′=k
Nc′

an all-zero

square matrix of order
∑K
c′=kNc′ , k = 1, 2, ...K, and X̃ = [X; eN ] ∈ <(D+1)×N .

4Without losing the generality, here we also call the original CA coding matrix as the
0-order relation matrix.

5Due to space limitation, here (wT
i Xj)∗ represents wT

i Xj + bieNj
T .
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3.4. CA-oriented Adjacent Difference Orthogonal Regularization (CAADOR)

Besides the explicit mutual relation depicted by the CAOSR above, per-
forming the 1 -order differentiating operation on the original CA coding matrix
along the row direction yields its 1 -order relation matrix, as shown in Figure
3(b). Interestingly, the 1 -order relation matrix reveals an exciting rule: any
two rows are mutually orthogonal to each other. It can be exploited to depict the
implicit mutual relation between the CA codes. For this purpose, we attempt
to develop another variety of regularization scheme to take advantage of the
implicit mutual relation for CA learning. Specifically, we perform the 1 -order
differentiating operation over every two adjacent rows of the CA coding matrix
Y , shown in Eq. (3), and consequently obtain the following derivation Ydiff

6,
exhibited as

Ydiff :=


Y 1 − Y 2 : ((w1 − w2)TX1)∗ ((w1 − w2)TX2)∗ . . . ((w1 − w2)TXK)∗

Y 2 − Y 3 : ((w2 − w3)TX1)∗ ((w2 − w3)TX2)∗ . . . ((w2 − w3)TXK)∗

...
...

...
. . .

...
Y K−1 − Y K : ((wK−1 − wK)TX1)∗ ((wK−1 − wK)TX2)∗ . . . ((wK−1 − wK)TXK)∗

Y K : (wTKX1)∗ (wTKX2)∗ . . . (wTKXK)∗

 .

(6)
As a result, any two rows of Ydiff should be orthogonal to each other, i.e., the
inner product between any two of them is zero. According to the analysis, we
come to propose the second CA-oriented regularization term, coined as CA-
oriented adjacent difference orthogonal regularization (CAADOR), to express
the implicit mutual relation between the CA codes. Similarly, the empirical risk
LCAADOR over the CAADOR should also be minimized

LCAADOR =
K−1∑
k=1

K−1∑
c 6=k

‖(w̃k − w̃k+1)T X̃(Y c − Y c+1)T ‖2

+

K−1∑
k=1

‖(w̃k − w̃k+1)T X̃(Y K)T ‖2

+
K∑
k=K

∑
c 6=k

‖w̃Tk X̃(Y c − Y c+1)T ‖2.

(7)

Note that the CAADOR is calculated in two cases: k = 1, 2, ...,K−1 and k = K
respectively corresponding to the first two terms and the last one in Eq. (7).

Remark
Theoretically, besides the CAOSR (on the 0 -order relation matrix) and the

CAADOR (on the 1 -order relation matrix), other more types of relation regular-
ization terms can be similarly developed based on higher-order relation matrices.
However, in this work we consider just on the 0 -order and the 1 -order relation

6Due to space limitation as well, the ((wi−wi+1)TXj)∗ here represents (wi−wi+1)TXj +
(bi − bi+1)eNj

T , i = 1, 2, ...,K − 1; j = 1, 2, ...,K.
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matrices of the original CA coding matrix, due to that, 1) too many regulariza-
tion terms usually come with proportional amount of hyper-parameters and thus
heavily increase the computational complexity, 2) as mentioned in Sections 3.3
and 3.4, the CAOSR and CAADOR already can depict the explicit and implic-
it mutual relations between the CA codes, respectively, and more importantly
3) developing other much higher-order relation regularization terms, associated
with corresponding order relation matrix, is trivial, because it can be achieved
by referring to our strategies afore-mentioned.

4. Regularized mRR and mLS-SVR with the CAOSR and CAADOR

To validate the effectiveness of the two derived regularization terms, CAOSR
and CAADOR, in incorporating the mutual relations between the CA codes into
the learning and thus promoting the performance, we take the mRR as the first-
layer regressor as in (Chen et al., 2013) by embedding them into the objective to
regularize its learning. In addition, to evaluate the popularization ability of the
terms, we also conduct evaluations in the framework of large-margin learning
by taking the mLS-SVR as the first-layer regressor.

4.1. Regularized mRR

For the given augmented training set X̃ (cf. Section 3.3) and its correspond-
ing CA coding set Y , we can rewrite Eq. (1) of mRR as

min
w̃1,w̃2,...,w̃K

1

2

K∑
k=1

‖Y k − w̃kX̃‖2 +
λ

2

K∑
k=1

‖w̃k‖2. (8)

Then we can derive the regularized variant of mRR by adding the two regular-
ization terms, LCAOSR and LCAADOR, into (8) as

min
w̃1,w̃2,...,w̃K

1

2

K∑
k=1

‖Y k − w̃kX̃‖2 +
λ1
2

K∑
k=1

‖w̃k‖2 +
λ2
2
LCAOSR +

λ3
2
LCAADOR,

(9)
where λ1, λ2 and λ3 are regularization parameters. With the LCAOSR and
LCAADOR being respectively substituted by Eqs. (5) and (7), Eq. (9) can then
be rewritten as

min
w̃1,w̃2,...,w̃K

1

2

K∑
k=1

‖Y k − w̃kX̃‖2 +
λ1
2

K∑
k=1

‖w̃k‖2 +
λ2
2

K∑
k=1

‖w̃Tk X̃Rk‖2

+
λ3
2

(K−1∑
k=1

K−1∑
c 6=k

‖(w̃k − w̃k+1)T X̃(Y c − Y c+1)T ‖2

+
K−1∑
k=1

‖(w̃k − w̃k+1)T X̃(Y K)T ‖2

+
K∑
k=K

∑
c6=k

‖w̃Tk X̃(Y c − Y c+1)T ‖2
)
.

(10)
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In order to solve for the w̃k, k = 1, 2, ...,K, we calculate the derivatives of Eq.
(10) with respect to w̃k, k = K,K−1, ..., 17, and thus can obtain their analytical
solutions as

w̃k =



(
X̃X̃T + λ1ID+1 + λ2X̃R

k(Rk)T X̃T

+λ3X̃ΥkX̃
T
)−1(

λ3X̃ΥkX̃
T w̃k+1 + X̃(Y k)T

)
, k = 1, 2, ...,K − 1

(
X̃X̃T + λ1ID+1 + λ2X̃R

k(Rk)T X̃T

+λ3X̃ΥKX̃
T
)−1(

X̃(Y K)T
)
, k = K

(11)

where ID+1 is a (D+1)-order identity matrix, Υk =
∑K−1
c6=k (Y c − Y c+1)T (Y c −

Y c+1) + (Y K)T (Y K), k = 1, 2, ...,K − 1, and ΥK =
∑
c6=K(Y c − Y c+1)T (Y c −

Y c+1). And the complete procedure of solving the regularized mRR is summa-
rized in Table 1.

Table 1: Algorithm for Regularized mRR.

Input: Training data: X̃ and Y with CA coding;
Parameters: λ1, λ2, λ3, and K.

Output: W̃ = [w̃1, ..., w̃K ].
1. Compute w̃K using (11) with the case of k = K;
2. for k = K − 1,K − 2, ..., 1 do
3. Compute w̃k using (11) with the case of k 6= K.
4. end for

With obtained W̃ = [w̃1, w̃2, ..., w̃K ], for an unseen test instance x̃u, its CA

coding vector yu can be calculated through yu = W̃T x̃u.

4.2. Regularized mLS-SVR

In accordance with (Bishop and Nasrabadi, 2006) and the notations afore-
introduced, we write the mLS-SVR as

min
w̃1,w̃2,...,w̃K

1

2

K∑
k=1

‖w̃k‖2 +
λ

2

K∑
k=1

N∑
i=1

ξ2k,i

s.t. yk,i = w̃Tk x̃i + ξk,i, k ∈ {1, 2, ...,K}, i ∈ {1, 2, ..., N}.

(12)

7From the following Eq. (11), it can be found that the analytical solution for w̃k is involved
with w̃k+1, except for the w̃K . Therefore, we can solve the w̃k in descending order in terms
of the subscript k, from K to 1.
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Similar to (9), we introduce the two regularization terms, LCAOSR and LCAADOR,
into (12) as well and thus obtain its regularized variant as

min
w̃1,w̃2,...,w̃K

1

2

K∑
k=1

‖w̃k‖2 +
λ1
2

K∑
k=1

N∑
i=1

ξ2k,i +
λ2
2
LCAOSR +

λ3
2
LCAADOR

s.t. yk,i = w̃Tk x̃i + ξk,i, k ∈ {1, 2, ...,K}, i ∈ {1, 2, ..., N}.

(13)

After the LCAOSR and LCAADOR are substituted by (5) and (7), respectively,
Eq. (13) then can be rewritten as

min
w̃1,w̃2,...,w̃K

1

2

K∑
k=1

‖w̃k‖2 +
λ1
2

K∑
k=1

N∑
i=1

ξ2k,i +
λ2
2

K∑
k=1

‖w̃Tk X̃Rk‖2

+
λ3
2

(K−1∑
k=1

K−1∑
c6=k

‖(w̃k − w̃k+1)T X̃(Y c − Y c+1)T ‖2

+
K−1∑
k=1

‖(w̃k − w̃k+1)T X̃(Y K)T ‖2

+
K∑
k=K

∑
c 6=k

‖w̃Tk X̃(Y c − Y c+1)T ‖2
)
.

s.t. yk,i = w̃Tk x̃i + ξk,i, k ∈ {1, 2, ...,K}, i ∈ {1, 2, ..., N},

(14)

in which Y k = [yk,1, yk,2, ..., yk,N ], k = 1, 2, ...,K. Eq. (14) is an equality-
constrained convex optimization problem with analytical solution, which can
be solved by means of Lagrangian multiplier theorem (Bishop and Nasrabadi,
2006). To this end, we introduce the Lagrangian multipliers αk,i, k = 1, 2, ...,K,
i = 1, 2, ..., N , and consequently derive

L =
1

2

K∑
k=1

‖w̃k‖2 +
λ1
2

K∑
k=1

N∑
i=1

ξ2k,i +
λ2
2

K∑
k=1

‖w̃Tk X̃Rk‖2

+
λ3
2

(K−1∑
k=1

K−1∑
c6=k

‖(w̃k − w̃k+1)T X̃(Y c − Y c+1)T ‖2

+
K−1∑
k=1

‖(w̃k − w̃k+1)T X̃(Y K)T ‖2

+
K∑
k=K

∑
c6=k

‖w̃Tk X̃(Y c − Y c+1)T ‖2
)

−
K∑
k=1

N∑
i=1

αk,i

(
w̃Tk x̃i + ξk,i − yk,i

)
.

(15)

In accordance with the conditions of optimality of L with respect to wk, ξk,i
and αk,i, respectively, which are detailed in the Appendix, we can obtain the
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optimal solution as

w̃k =


H−1k Θk +H−1k X̃A−1k

(
(Y k)T − X̃TH−1k Θk

)
, k = 1, 2, ...,K − 1

H−1K X̃A−1K (Y K)T , k = K

(16)

where

Hk = ID+1 + λ2X̃R
k(Rk)T X̃T + λ3X̃

K−1∑
c 6=k

(
(Y c − Y c+1)T (Y c − Y c+1)

)
X̃T

+ λ3X̃(Y K)T (Y K)X̃T ,

Θk = λ3X̃
K−1∑
c6=k

(
(Y c − Y c+1)T (Y c − Y c+1)

)
X̃T w̃k+1

+ λ3X̃(Y K)T (Y K)X̃T w̃k+1,

Ak = X̃TH−1k X̃ +
1

λ1
IN , k = 1, 2, ...,K − 1,

HK = ID+1 + λ2X̃R
K(RK)T X̃T + λ3X̃

K−1∑
c=1

(
(Y c − Y c+1)T (Y c − Y c+1)

)
X̃T

AK = X̃TH−1K X̃ +
1

λ1
IN .

As shown in (16), since the analytical solution of w̃k is also involved with w̃k+1

(expect for the w̃K), therefore we compute w̃k in a descending order in terms
of the subscript k (from K to 1), as shown in Table 2.

Table 2: Algorithm for Regularized mLS-SVR.

Input: Training data: X̃ and Y with CA coding;
Parameters: λ1, λ2, λ3, and K.

Output: W̃ = [w̃1, ..., w̃K ].
1. Compute w̃K using (16) with the case of k = K;
2. for k = K − 1,K − 2, ..., 1 do
3. Compute w̃k using (16) with the case of k 6= K.
4. end for

Then, for an unseen test instance x̃u, we can compute its CA coding vector
yu by performing yu = W̃T x̃u with W̃ = [w̃1, w̃2, ..., w̃K ].

4.3. Time Complexity Analysis

According to the algorithm for solving regularized mRR shown in Table
1, it can be analyzed that the time complexity of computing each w̃k, k =
1, 2, ...,K−1, is about O

(
(D+1)2(3N+D+3)+(D+1)(2N2+N)+(K−1)N2

)
12



= O
(
max(D2N,D3, DN2,KN2)

)
and it costs about O

(
(D + 1)2(3N + D +

2) + (D + 1)(2N2 + N) + (K − 1)N2
)

= O
(
max(D2N,D3, DN2,KN2)

)
for

computing w̃K , where N is the total number of training samples, D denotes
the feature dimension and K indicates the number of classes (e.g., the size
of aging range). Therefore, the total complexity of solving regularized mRR
is O

(
max(KD2N,KD3,KDN2,K2N2)

)
. As for regularized mLS-SVR, from

Table 2 it can be analyzed that the time complexity of computing each w̃k, k =
1, 2, ...,K−1, is about O

(
(D+1)2(4N+D+2)+(D+1)(4N2+2N)+(K−1)N2+

N3
)

= O
(
max(D2N,D3, DN2,KN2, N3)

)
while it costs O

(
(D+1)2(4N +D+

1)+(D+1)(4N2+N)+(K−1)N2+N3
)

= O
(
max(D2N,D3, DN2,KN2, N3)

)
for computing w̃K . As a result, the total complexity of solving regularized mLS-
SVR is O

(
max(KD2N,KD3,KDN2,K2N2,KN3)

)
.

5. Experiments

In this section, we conduct experiments to validate the effectiveness of our
regularization schemes in capturing the mutual relations among the CA codes to
improve the CA-based human age estimation. Specifically, first we make a gen-
eral comparison with related methods, by experimenting with data represented
with high-level (i.e., Active Appearance Model) and low-level (i.e., raw-pixel)
features, respectively; Then, to detailedly evaluate the ability of our strategies
in improving CA-based age estimation with increasing training samples, age
classes, especially when the aging range is incomplete with some ages lost, we
conduct experiments with raw-pixel representation to eliminate the effect caused
by high-level feature representation. Finally, through experiments on a larger
human age dataset, we evaluate the effectiveness of the proposed strategies in
improving larger scale age estimation.

5.1. Datasets and Settings

Prior to reporting the experimental results, we first make an introduction
on the datasets used and experimental settings, respectively.

Datasets: In this work we conduct experiments on three commonly used
benchmark aging datasets, i.e., FG-NET (Guo et al., 2008a), Morph Album 1
(Ricanek and Tesafaye, 2006), and Morph Album 2 (Ricanek and Tesafaye, 2006;
Mu et al., 2009). The FG-NET dataset consists of 1,002 facial images taken from
82 individuals of European, and the age ranges from 0 to 69 years. As for the
Morph Album 1, it contains 1,690 images from about 631 individuals mainly of
African and European, and the age of the images ranges from 15 to 68 years.
In regard to the Morph Album 2, it consists of about 5,475 white individuals
as well as other ethnic individuals, averagely with about 2 to 3 pictures per
person aging from 16 to 77. Image examples from the three datasets are shown
in Figure 4.

Settings: In the experiments, all the hyper-parameters involved are tuned
by using the cross-validation scheme depending on the specific dataset. And,
we adopt the mean absolute error (MAE) as performance measure, in which

13
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Figure 4: Image examples from the FG-NET (a), the Morph Album 1 (b) and
the Morph Album 2 (c).

MAE := 1
N

∑N
i=1 |l̂i− li| with li and l̂i denoting the ground-true and predicted

values, respectively.

5.2. Evaluation on the Whole Aging Range

Firstly, to generally evaluate the effectiveness of the proposed regularization
strategies as well as explore the effect of feature representation to human age
estimation, we conduct comparative experiments with state-of-the-art methods.
Specifically, we extract Active Appearance Model (AAM) feature representation
due to its favourable performance on age estimation (Chen et al., 2013; Geng
et al., 2007; Chang et al., 2011; Geng et al., 2013), as well as the raw-pixels
from the FG-NET and the Morph Album 1, respectively and follow the same
leave-one-person-out setting as in (Chen et al., 2013). Due to the state-of-the-
art performance of CA-SVR proposed in (Chen et al., 2013), so here we just
compare with it. Moreover, without loss of generality, we also adopt the SVR
as the second-layer regressor. And, we report the experimental results in Tables
3 and 4, respectively. From the results, we can find that,

Table 3: Comparison of age estimation performance (MAE in years) with AAM
representations.

(a) On FG-NET

first-layer
regressor

mRR mLS-SVR

kernel type1 RBF linear RBF linear

CA-SVR 4.42 5.62 4.40 5.59
Regularized

CA-SVR
4.38 5.52 4.37 5.52

(b) On Morph Album 1

first-layer
regressor

mRR mLS-SVR

kernel type RBF linear RBF linear

CA-SVR 4.73 4.98 4.72 4.96
Regularized

CA-SVR
4.71 4.93 4.69 4.92
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Table 4: Comparison of age estimation performance (MAE in years) with raw-
pixel representations.

(a) On FG-NET

first-layer
regressor

mRR mLS-SVR

kernel type RBF linear RBF linear

CA-SVR 6.54 7.26 6.53 7.24
Regularized

CA-SVR
6.41 7.08 6.42 7.03

(b) On Morph Album 1

first-layer
regressor

mRR mLS-SVR

kernel type RBF linear RBF linear

CA-SVR 5.82 5.92 5.83 5.90
Regularized

CA-SVR
5.73 5.70 5.75 5.71

• The CA-based human estimations regularized with the proposed regular-
ization terms are better than those without, especially when linear kernel is
employed in the second-layer regression (mapping the CA coding to a scalar age
label). For example, the MAE value is reduced by about 4 percentage points
from 5.92 to 5.70, as shown in Table 4(b), which demonstrates the effectiveness
of the proposed regularization strategy in improving CA-based age estimation.
• By comparing the MAEs reported in Table 3 with those in Table 4, it

can be found that the formers are much lower than the latter ones. It demon-
strates that such high-level feature representations as the AAM can significantly
help improve the performance of age estimation, compared with those low-level
features such as the raw-pixel representation.

5.3. Evaluation on Selected Aging Range

From the age distributions of the FG-NET and the Morph Album 18, demon-
strated in Figures 5 and 6, we can find that the distributions are imbalanced.
More concretely, the samples of FG-NET mainly range from 0 to about 19 years,
while those of Morph Album 1 from 16 to around 38 years.

As a result, besides the evaluations reported in Section 5.2, below we con-
duct more empirical study on these two aging ranges to provide a detailed
evaluation on the proposed regularization strategies with raw-pixels as feature
representation, eliminating the performance effect caused by high-level feature
representations such as the AAM. Specifically, from the FG-NET we randomly
select 23 samples from each age ranging from 0 to 19 years, accounting for to-
tally 20 age classes. As for the Morph Album 1 dataset, we pick 23 age classes
from 16 to 38 years, each containing 31 samples. Then, on the selected FG-
NET and Morph sets, we uniformly crop the interested face regions from the
raw images and normalize them into 32×32 pixels based on eyes’ centers. After
that, we directly extract raw-pixels from the cropped face regions and apply the

1The kernel type in Tables 3 and 4 specifically indicates which kind of kernel function is
employed in the second-layer regression.

8Since the age distribution of Morph Album 2 is similar to that of Album 1, so here we
make evaluations just on the FG-NET and the Morph Album 1.
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Figure 5: Sample distributions of the ages on FG-NET.
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Figure 6: Sample distributions of the ages on Morph Album 1.

PCA (Jolliffe, 2005) to acquire about 95 percentage components as the feature
representations.

With the extracted features, below we perform experiments to explore the
ability of the proposed regularizations in improving the age estimation with
increasing training samples, age classes, and especially when the aging range is
incomplete with some ages lost randomly, respectively.

5.3.1. Evaluation with Increasing Training Samples From Each Age

In this subsection we explore the performance improvement of the proposed
regularizations with increasing training samples from each age. Specifically, we
randomly select certain number of samples from each age class for training and
the rest for test, and report the averaged results over 10 runs in Figures 7 and
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Figure 7: Comparison between results of mRR and its variants.
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Figure 8: Comparison between results of mLS-SVR and its variants.

• With the number of training samples in each age class increasing, MAEs
of all methods including the prototypes and their variants all decrease. It wit-
nesses that an increasing number of training samples generally can improve the
generalization ability of a regressor, which is consistent with statistical learning
theorem (Vapnik, 1998).
•MAEs of the methods with CA coding, mRR(CA) and mLS-SVR(CA), are

correspondingly higher than those of mRR(NCA) and mLS-SVR(NCA) with

9In the legends of Figures 7 and 8, the CA (or NCA) indicates that current method is
associated with cumulative attribute (or non-cumulative attribute) coding output in the first-
layer regression, and it refers to the same meaning in the legends of the following figures if
any.
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NCA coding. Again, it shows the superiority of CA coding in human age esti-
mation, compared with NCA.
• The regularized variants of mRR and mLS-SVR with the CAOSR and

CAADOR as well as the CA coding both can yield better age estimation re-
sults (with relatively lower MAEs) than corresponding non-regularized mR-
R(CA) and mLS-SVR(CA), respectively. It demonstrates the effectiveness of
the CAOSR and CAADOR in optimizing CA learning and thus improving the
age estimation. More importantly, it indicates that besides the regression frame-
work, our regularization strategies can also work well in the large-margin learn-
ing since mLS-SVR is designed within it.

5.3.2. Evaluation with Increasing Age Classes

In this subsection, we make detailed evaluations on the two proposed CA-
oriented regularization terms, CAOSR and CAADOR, with increasing age class-
es (i.e., increasing aging range). More concretely, we conduct experiments by
selecting increasing sizes of aging range from the FG-NET and Morph with the
size from 4 (i.e., 0 to 3 years on FG-NET and 16 to 19 years on Morph Album 1,
respectively) to 16 (i.e., 0 to 15 years on FG-NET and 16 to 31 years on Morph
Album 1, respectively), in which about 75 percentage of the samples randomly
selected for training and the rest for test in each age, and show the averaged
results over 5 runs from Tables 5 to 8 as below, in which the results written in
bold followed by “•” show they have significant superiority in performance after
the t-test with the p-value set at 0.05. From them, we can find that,

Table 5: Performance comparison (MAE ± STD, in years) with increasing size
of aging range on FG-NET with the mRR as the first-layer regressor.

size of
aging range

mRR
mRR

(with CAOSR)
mRR

(with CAADOR)
mRR

(with CAOSR+CAADOR)

4 1.0858 ± 0.0568 0.9840 ± 0.0681 1.0265 ± 0.0633 0.9561 ± 0.0739•
6 1.2458 ± 0.0865 1.2302 ± 0.0699 1.2298 ± 0.0731 1.1701 ± 0.0826
8 1.4158 ± 0.0687 1.4100 ± 0.0702 1.4056 ± 0.0869 1.4032 ± 0.0965
10 1.7390 ± 0.0496 1.6857 ± 0.0562 1.6973 ± 0.0638 1.6489 ± 0.0539•
12 2.1008 ± 0.0635 2.0265 ± 0.0701 2.0761 ± 0.0639 2.0169 ± 0.0890
14 2.3132 ± 0.1032 2.2589 ± 0.0861 2.2690 ± 0.1005 2.2188 ± 0.0981
16 2.6460 ± 0.0967 2.6049 ± 0.0895 2.6051 ± 0.0868 2.5704 ± 0.0994

Table 6: Performance comparison (MAE ± STD, in years) with increasing size
of aging range on FG-NET with the mLS-SVR as the first-layer regressor.

size of
aging range

mLS-SVR
mLS-SVR

(with CAOSR)
mLS-SVR

(with CAADOR)
mLS-SVR

(with CAOSR+CAADOR)

4 0.9686 ± 0.0824 0.9206 ± 0.0806 0.9358 ± 0.0807 0.8589 ± 0.0795•
6 1.2158 ± 0.1068 1.1968 ± 0.0908 1.2005 ± 0.0799 1.1562 ± 0.0980
8 1.4124 ± 0.0936 1.4105 ± 0.0936 1.3969 ± 0.0991 1.3941 ± 0.0856
10 1.7062 ± 0.0657 1.6755 ± 0.0821 1.6821 ± 0.0737 1.6598 ± 0.0902
12 2.0855 ± 0.1032 2.0214 ± 0.0980 2.0689 ± 0.1068 2.0185 ± 0.1072
14 2.3028 ± 0.1005 2.2668 ± 0.1162 2.2864 ± 0.1082 2.2201 ± 0.1036
16 2.6452 ± 0.0869 2.6088 ± 0.0989 2.6081 ± 0.1251 2.5715 ± 0.1098
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Table 7: Performance comparison (MAE ± STD, in years) with increasing size
of aging range on Morph Album 1 with the mRR as the first-layer regressor.

size of
aging range

mRR
mRR

(with CAOSR)
mRR

(with CAADOR)
mRR

(with CAOSR+CAADOR)

4 1.2068 ± 0.0486 1.0760 ± 0.0504• 1.1908 ± 0.0419 1.0732 ± 0.0467•
6 1.5189 ± 0.0425 1.4509 ± 0.0436• 1.5019 ± 0.0618 1.4474 ± 0.0401•
8 1.9559 ± 0.0268 1.8608 ± 0.0360• 1.9462 ± 0.0263 1.8592 ± 0.0485•
10 2.3356 ± 0.0492 2.3121 ± 0.0382 2.3268 ± 0.0401 2.3082 ± 0.0371
12 2.6825 ± 0.0901 2.6625 ± 0.0725 2.6726 ± 0.0913 2.6330 ± 0.0604
14 3.1062 ± 0.0682 3.0668 ± 0.0701 3.0852 ± 0.0565 3.0579 ±0.0895
16 3.4408 ± 0.0983 3.4095 ± 0.1030 3.4207 ± 0.892 3.3765 ± 0.0916

Table 8: Performance comparison (MAE ± STD, in years) with increasing size
of aging range on Morph Album 1 with the mLS-SVR as the first-layer regressor.

size of
aging range

mLS-SVR
mLS-SVR

(with CAOSR)
mLS-SVR

(with CAADOR)
mLS-SVR

(with CAOSR+CAADOR)

4 1.1986 ± 0.0435 1.0757 ± 0.0551• 1.1865 ± 0.0435 1.0703 ± 0.0527•
6 1.5135 ± 0.0504 1.4520 ± 0.0403 1.4989 ± 0.0568 1.4389 ± 0.0404•
8 1.9560 ± 0.0266 1.8609 ± 0.0483• 1.9353 ± 0.0259 1.8590 ± 0.0481•
10 2.3350 ± 0.0485 2.3117 ± 0.0382 2.3157 ± 0.0385 2.3082 ± 0.0357
12 2.6811 ± 0.0895 2.6625 ± 0.0768 2.6753 ± 0.0869 2.6325 ± 0.0634
14 3.1001 ± 0.1035 3.0659 ± 0.0977 3.0853 ± 0.1035 3.0571 ± 0.0980
16 3.4388 ± 0.1151 3.4101 ± 0.1032 3.4304 ± 0.0993 3.3721 ± 0.1016

• Generally, the MAEs (listed in the last column of the Tables 5 to 8) of the
CA-based age estimation regularized with both the CAOSR and CAADOR are
lower than those without the proposed regularization terms (listed in the first
column of the four tables), and the improvement is significant when the size of
aging range is relatively small, especially on the Morph dataset no matter which
estimator is employed as the first-layer regressor, either the mRR or the mLS-
SVR. For example, in all cases with the size of aging range equal to 4, the MAEs
yielded by regularizing with both the CAOSR and the CAADOR are reduced
by over 10 percentage points from those without the regularizations. It further
demonstrates the effectiveness of our strategies in capturing the code-between
mutual relations and thus improving the CA learning.
• By comparing between the MAEs yielded by regularizing just with the

CAOSR (corresponding to λ3 = 0 in Eqs. (11) and (16)) and those just with
the CAADOR (corresponding to λ2 = 0 in Eqs. (11) and (16)), it can be found
that regularizing with the CAOSR can relatively improve the CA-based age es-
timation with much lower MAEs than that just with the CAADOR, although
regularizing with both of them simultaneously can always yield the best per-
formance. Therefore, the results show that the CAOSR is preferable to the
CAADOR in terms of improving performance (additionally, the computational
complexity of the former is also much lower than that of the latter, by comparing
their respective formulations Eq. (5) and Eq. (7)).
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5.3.3. Evaluation on Incomplete Aging Range with Some Ages Lost

In real-world, usually the human age distribution of samples collected is
imbalanced or say incomplete with some ages lost (i.e., missing), just as shown in
Figures 5 and 6. So, next we evaluate the ability of the proposed regularizations
in improving the CA-based age estimation in such cases. To this end, we conduct
experiments by eliminating certain number of age classes randomly to simulate
such a scenario and report the averaged results over 10 runs in Figures 9 and
10, with below analyses,
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Figure 9: Performance comparison between mRR and its variants with increas-
ing number of age classes that are randomly eliminated.
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Figure 10: Performance comparison between mRR and its variants with increas-
ing number of age classes that are randomly eliminated.

•With the increasing number of age classes lost (or say missing), the MAEs
of all the methods generally grow higher, especially the ones using NCA coding,
which implies that incomplete distribution of the aging range affects the age
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estimation unfavorably. In spite of this, the methods with CA coding still gen-
erate relatively lower MAEs than those with NCA coding, which witnesses the
superiority of CA coding over the NCA, in handling such age classes-incomplete
cases.
• The regularized mRR and mLS-SVR just combined with the CAOSR (cor-

responding to λ3 = 0 in the (11) and (16)), which we denote as Regularized-
mRR(CA:CAOSR) and Regularized-mLS-SVR(CA:CAOSR), respectively, can
effectively promote age estimation with relatively lower MAEs than the non-
regularized. It shows the effectiveness of the CAOSR in improving the CA
learning even when the age classes are distributed incomplete.
• The regularized mRR and mLS-SVR incorporated with both the CAOSR

and CAADOR, i.e., Regularized-mRR(CA:CAOSR+CAADOR) and Regularized-
mLS-SVR(CA:CAOSR+CAADOR), yield the lowest MAEs, which demonstrates
that besides the CAOSR, the CAADOR can further help perform age estima-
tion with incomplete age distributions, although its significance relatively is not
so great as the CAOSR.

5.4. Evaluation on Larger Aging Dataset

Besides the above evaluations, next we conduct experiments on the relative-
ly larger Morph Album 2 dataset to evaluate the effectiveness of the proposed
regularization strategies. Specifically, we extract the bio-inspired features (BIF)
(Mu et al., 2009) from face images of white individuals and then acquire about
95% principal components as feature representations. With the extracted rep-
resentations, we randomly select 10 samples10 from each age for training, and
the remaining for test. In addition, besides the MAE criterion, here we also
adopt the Cumulative Score (CS ) (Geng et al., 2006) as another performance
measure which is defined as CS(j) = Ne≤j/N × 100% with N being the total
number of test samples while Ne≤j the number of test samples on which the age
estimation makes an absolute error no higher than j years. And we report the
average results over 10 random runs in Tables 9 and 10.

Table 9: Performance comparison
(
MAE ± STD, CS(j)

)
between mRR and its

regularized variants (as the first-layer regressor) on Morph Album 2.

aging range(
j of CS(j)

) mRR
mRR

(with CAOSR)
mRR

(with CAOSR+CAADOR)

16-19 (2) 1.1496 ± 0.0619 (71) 0.9789 ± 0.0009 (79)• 0.9358 ± 0.0105 (83)•
16-23 (4) 2.0374 ± 0.0818 (85) 1.7780 ± 0.0039 (91)• 1.6959 ± 0.0078 (93)•
16-27 (6) 2.7569 ± 0.0898 (90) 2.6950 ± 0.0184 (95) 2.6387 ± 0.0151 (97)•
16-35 (6) 4.2329 ± 0.1050 (70) 4.2036 ± 0.1104 (71) 4.1789 ± 0.1039 (73)
16-55 (6) 5.3037 ± 0.0785 (60) 5.2597 ± 0.0987 (61) 5.2209 ± 0.0753 (63)
16-77 (6) 5.7387 ± 0.0862 (56) 5.7085 ± 0.0806 (57) 5.6741 ± 0.0915 (58)

10If the total number of samples in some age is less than 10, we select all the samples for
training.
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Table 10: Performance comparison
(
MAE ± STD, CS(j)

)
between mLS-SVR

and its regularized variants (as the first-layer regressor) on Morph Album 2.

aging range(
j of CS(j)

) mLS-SVR
mLS-SVR

(with CAOSR)
mLS-SVR

(with CAOSR+CAADOR)

16-19 (2) 1.1302 ± 0.0507 (72) 0.9708 ± 0.0008 (79)• 0.9438 ± 0.0021 (83)•
16-23 (4) 1.9839 ± 0.0365 (86) 1.7806 ± 0.0016 (90)• 1.7308 ± 0.0019 (92)•
16-27 (6) 2.7052 ± 0.0693 (90) 2.6800 ± 0.0703 (91) 2.6507 ± 0.0603 (92)
16-35 (6) 4.2037 ± 0.1035 (70) 4.1803 ± 0.1134 (70) 4.1507 ± 0.1307 (72)
16-55 (6) 5.1893 ± 0.0708 (62) 5.1686 ± 0.0705 (62) 5.1039 ± 0.0547 (63)
16-77 (6) 5.5968 ± 0.0651 (58) 5.5639 ± 0.0572 (58) 5.5389 ± 0.0657 (59)

From the results shown in Tables 9 and 10, it can be found that the age
estimations of regularized methods by our strategies are all superior to those of
the original methods, either the mRR or the mLS-SVR as first-layer regressor.
Particularly, when the size of aging range is less than 12 (e.g., from 16 to 27
years), the performance improvement is significant in MAE by about 13% to 18%
reduction, or in CS by about 6% to 12% increase. Therefore, it demonstrates
the effectiveness of the proposed strategies in capturing the mutual relations
between CA codes and thus improving age estimation on the Morph Album 2.

6. Conclusions

In this work, in order to exploit and incorporate the mutual relations exist-
ing explicitly or implicitly between the CA codes into learning on human age
estimation, we first derived the so-called 0 -order and 1 -order relation matrices
by performing the difference-like operations on the CA codes, and formulated
them correspondingly as two regularization terms, coined as the CAOSR and
the CAADOR, respectively. Then, we embedded the two regularization terms
into the objective of the mRR and mLS-SVR which act as the first-layer re-
gressor in CA learning (as shown in Figure 1), by which the mutual relations
between the CA codes are artfully taken into their learning. Finally, we experi-
mentally evaluated the effectiveness of the regularization terms in depicting the
mutual relations and thus improving the CA learning, with the conclusions that
1) both the CAOSR and CAADOR are effective in improving the CA-based
age estimation, especially when the size of aging range is not large (e.g., not
greater than 8 in our experiments), 2) the CAOSR is relatively preferable to
the CAADOR in terms of improving performance, and 3) our regularization s-
trategies can work as well in cases of aging range incomplete. More importantly,
besides the CA coding, the proposed regularization strategies can be similarly
extended to other types of codings such as ECOC (Ciompi et al., 2014), etc.
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Appendix:

According to the Eq. (15) and Lagrangian optimization theorem (Bishop
and Nasrabadi, 2006), the weight vectors w̃1, w̃2, ..., w̃K here can be calculated
separately in descending order w.r.t. the index k from w̃K down to w̃1. Specif-
ically, we solve for w̃k, k = K,K − 1, ..., 1, by calculating the derivatives on Eq.
(15) respectively w.r.t. w̃k, ξk and αk and obtaining their saddle points as

a) For k = K,

∂L
∂w̃K

=
(
ID+1 + λ2X̃R

K(RK)T X̃T + λ3X̃
∑
c 6=K

(
(Y c − Y c+1)T (Y c − Y c+1)

)
X̃T
)
w̃K

−X̃αK = 0;

∂L
∂ξK

= λ1ξK − αK = 0;

∂L
∂αK

= w̃TKX̃ + ξTK − Y K = 0.

Solving the three equations above together results in the solution for w̃K .

b) For k = K − 1,K − 2, ..., 1,

∂L
∂w̃k

=
(
ID+1 + λ2X̃R

k(Rk)T X̃T + λ3X̃
∑
c6=k

(
(Y c − Y c+1)T (Y c − Y c+1)

)
X̃T
)
w̃k

−λ3X̃
∑
c6=k

(
(Y c − Y c+1)T (Y c − Y c+1)

)
X̃T w̃k+1 − X̃αk = 0;

∂L
∂ξk

= λ1ξk − αk = 0;

∂L
∂αk

= w̃Tk X̃ + ξTk − Y k = 0.

Similarly, solving the three equations above together results in the solution
for w̃k, k = K − 1,K − 2, ..., 1.
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