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Abstract As the early stage of Alzheimer’s disease (AD),
mild cognitive impairment (MCI) has high chance to convert
to AD. Effective prediction of such conversion from MCI to
AD is of great importance for early diagnosis of AD and also
for evaluating AD risk pre-symptomatically. Unlike most pre-
vious methods that used only the samples from a target do-
main to train a classifier, in this paper, we propose a novel
multimodal manifold-regularized transfer learning (M2TL)
method that jointly utilizes samples from another domain
(e.g., AD vs. normal controls (NC)) as well as unlabeled sam-
ples to boost the performance of the MCI conversion predic-
tion. Specifically, the proposed M2TL method includes two

key components. The first one is a kernel-based maximum
mean discrepancy criterion, which helps eliminate the poten-
tial negative effect induced by the distributional difference
between the auxiliary domain (i.e., AD and NC) and the target
domain (i.e., MCI converters (MCI-C) and MCI non-
converters (MCI-NC)). The second one is a semi-supervised
multimodal manifold-regularized least squares classification
method, where the target-domain samples, the auxiliary-domain
samples, and the unlabeled samples can be jointly used for train-
ing our classifier. Furthermore, with the integration of a group
sparsity constraint into our objective function, the proposed
M2TL has a capability of selecting the informative samples to
build a robust classifier. Experimental results on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database validate the
effectiveness of the proposed method by significantly improving
the classification accuracy of 80.1 % for MCI conversion predic-
tion, and also outperforming the state-of-the-art methods.

Keywords Mild cognitive impairment conversion .Manifold
regularization . Transfer learning . Semi-supervised learning .
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Introduction

Alzheimer’s disease (AD) is the most common cause of de-
mentia in people aged 65 or older, and the incidence rate of
AD is doubling every 5 years (Hurd et al. 2013). From a
clinical perspective, it is of great importance to diagnose the
early stage of AD, mild cognitive impairment (MCI), for timely
therapy or possible delay thanks to the pharmacological ad-
vances. In this regard, the prediction of whether an MCI subject
will progress to AD (MCI converter, MCI-C) or not (MCI non-
converter, MCI-NC) within a few years is particularly important.

Early studies mainly focused on brain atrophy measurements
from magnetic resonance imaging (MRI) scans (Chao et al.
2010; Chetelat et al. 2005b; deToledo-Morrell et al. 2004; Fan
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et al. 2008; Li et al. 2012;Misra et al. 2009; Risacher et al. 2009;
Wang et al. 2011b), and used off-the-shelf machine learning
tools to discriminate MCI-C from MCI-NC. However, those
methods were short of high performance for clinical use.
Meanwhile, other studies considered functional changes in the
brain by using the fluorodeoxyglucose positron emission to-
mography (FDG-PET) (Chetelat et al. 2005a; Drzezga et al.
2003; Fellgiebel et al. 2007; Mosconi et al. 2004). In addition,
cerebrospinal fluid (CSF) levels of Aβ42, total-tau (t-tau), and
phosphor-tau (p-tau) have also been considered as biomarkers
for diagnosis and tracking MCI progression (Bouwman et al.
2007; Davatzikos et al. 2011; Lehmann et al. 2012; Vemuri et al.
2009a, b). Recently, there are efforts for fusing multimodal in-
formation for diagnosis, which helps improve performance
compared to the method using the single-modal biomarkers as
demonstrated in (Davatzikos et al. 2011; Jie et al. 2015;
Westman et al. 2012; Zhang et al. 2012a, b). The rationale for
fusing the multimodal information is that different modalities
convey different properties, each of which can provide comple-
mentary information in discriminating MCI-C from MCI-NC.

From a machine learning point of view, the number of
samples available to build a generalized model for the MCI-
C prediction is in general overwhelmed by feature dimension-
ality. In other words, the number of training samples (includ-
ing both MCI-C and MCI-NC subjects) is usually very limit-
ed, while the feature dimensionality is much higher. This so-
called small-sample-size problem has been one of the main
challenges in neuroimaging data analysis. To this end, several
advanced machine learning methods have been proposed to
reduce the feature dimensionality. For example, Zhang et al.
used a multi-task learning method to select informative fea-
tures for joint regression and classification tasks by using
multi-modality data (i.e., MRI, FDG-PET, and CSF), and
achieved an accuracy of 73.9 % on the dataset of 43 MCI-C
and 48 MCI-NC subjects (Zhang et al. 2012b). Cho et al.
adopted a manifold harmonic transform method by using the
cortical thickness data and reported a sensitivity of 63 % and a
specificity of 76 % on the dataset of 72 MCI-C and 131 MCI-
NC subjects (Cho et al. 2012). Duchesne et al. used the mor-
phological factor method based onMRI data and presented an
accuracy of 72.3 % on the dataset of 20 MCI-C and 29 MCI-
NC subjects (Duchesne and Mouiha 2011). Unlike the ap-
proaches of reducing feature dimensionality for addressing
the small-sample-size problem, several groups have applied
a semi-supervised learning (SSL) method by increasing the
number of training samples with unlabeled samples, which
are often much easier to obtain (Cheng et al. 2013a;
Filipovych et al. 2011a, b; Zhang and Shen 2011).

To the best of our knowledge, most of the previous methods
assumed that the training and the testing samples lied in the same
feature space and also shared the same distribution. Therefore,
they only used target-related samples to build a classifier, where
samples not directly related to the target domain cannot be used.

Meanwhile, recent studies have shown that the task of identify-
ingMCI-C fromMCI-NC is related to the task of discriminating
AD and normal control (NC) (Filipovych et al. 2011a).
Although they may follow different data distributions, the
knowledge learned fromAD and NC classification can be trans-
ferred to theMCI-C andMCI-NC classification task, whichmay
further improve the performance of MCI conversion prediction.
In the machine learning community, the use of this kind of
knowledge transfer to build a generalized model is called trans-
fer learning (Duan et al. 2012; Kuzborskij and Orabona 2013;
Pan and Yang 2010; Yang et al. 2007, 2013). Hereafter, we call
the domain of our interest the target domain (i.e., MCI-C and
MCI-NC), while the other domain is an auxiliary domain (i.e.,
AD and NC). Recently, transfer learning techniques have been
successfully introduced into medical imaging analysis (Cheng
et al. 2012, 2013b). For example, a domain transfer Support
Vector Machine (SVM) was proposed for MCI conversion pre-
diction, which achieved enhanced classification performance
with the help of samples from an auxiliary domain (i.e., AD
and NC) (Cheng et al. 2012).

In this paper, we propose a ‘multimodal manifold-
regularized transfer learning’ method, in which we effectively
combine the methods of SSL and transfer learning for MCI
conversion prediction. With regard to the distributional discrep-
ancy between a target domain (i.e., MCI-C and MCI-NC) and
an auxiliary domain (i.e., AD and NC), we use a kernel-based
maximum mean discrepancy criterion. We also design a cross-
domain Laplacian matrix to reflect the relations among samples
of the target domain, samples of the auxiliary domain, and also
the unlabeled samples. Finally, by using a group sparsity con-
straint in our objective function, the proposed method allows us
to select samples informative to predict the target class labels.
We validate the efficacy of our proposed method by conducting
experiments on the publicly available ADNI dataset and com-
pare our method with the state-of-the-art methods.

Materials

ADNI database

The data used in the preparation of this paper were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu/). ADNI
researchers collect, validate and utilize data such as MRI and
PET images, genetics, cognitive tests, CSF, and blood
biomarkers as predictors for Alzheimer’s disease. Data from
the North American ADNI’s study participants, including
Alzheimer’s disease patients, mild cognitive impairment
subjects and elderly controls, are available in this database.
The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
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Administration (FDA), private pharmaceutical companies,
and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test
whether the serial MRI, PET, other biological markers, and
clinical and neuropsychological assessments can be combined
to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials.

The ADNI is the result of efforts of many co-investigators
from a broad range of academic institutions and private cor-
porations, and subjects have been recruited from over 50 sites
across the U.S. and Canada. The initial goal of ADNI was to
recruit 800 adults, aged 55 to 90, to participate in the research
approximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed for
3 years, and 200 people with early AD to be followed for
2 years (see www.adni-info.org for up-to-date information).
The research protocol was approved by each local institutional
review board, and the written informed consent was obtained
from each participant.

Subjects

The ADNI general eligibility criteria are described at www.
adni-info.org. Briefly, subjects are between 55 and 90 years of
age, and have a study partner able to provide an independent
evaluation of functioning. Specific psychoactive medications
were excluded. General inclusion/exclusion criteria are as fol-
lows: 1) healthy subjects: MMSE scores between 24 and 30, a
Clinical Dementia Rating (CDR) of 0, non-depressed, non-
MCI, and non-demented; 2) MCI subjects: MMSE scores be-
tween 24 and 30, a memory complaint, having objectivemem-
ory loss measured by education adjusted scores on Wechsler
Memory Scale Logical Memory II, a CDR of 0.5, absence of
significant levels of impairment in other cognitive domains,
essentially preserved activities of daily living, and an absence
of dementia; and 3) Mild AD: MMSE scores between 20 and
26, CDR of 0.5 or 1.0, and meets the National Institute of
Neurological and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) criteria for probable AD.

MRI, PET, and CSF acquisition

A detailed description of the ADNI data acquisition of MRI,
PET, and CSF can be found in (Zhang et al. 2011).
Specifically, the structural MR scans were acquired from
1.5T scanners. We downloaded raw Digital Imaging and
Communications in Medicine (DICOM) MRI scans from the
public ADNI website (www.loni.ucla.edu/ADNI), reviewed for
quality, and corrected spatial distortion caused by gradient

nonlinearity and B1 field inhomogeneity. The PET images
were acquired 30–60 min post-injection, averaged, spatially
aligned, interpolated to a standard voxel size, intensity
normalized, and smoothed to a common resolution of
8 mm full width at half maximum. The CSF data were
collected in the morning after an overnight fast using a
20- or 24-gauge spinal needle, frozen within 1 h of collec-
tion, and transported on dry ice to the ADNI Biomarker
Core laboratory at the University of Pennsylvania Medical
Center. In this study, we used Aβ42, t-tau, and p-tau as CSF
features.

Image pre-processing and feature extraction

All MRI and PET images were pre-processed by first
performing an anterior commissure-posterior commissure
(AC-PC) correction using the MIPAV software (CIT 2012).
The AC-PC corrected images were resampled to 256×256×
256, and the N3 algorithm (Sled et al. 1998) was used to
correct intensity inhomogeneity. For the MRI images, a skull
stripping method (Wang et al. 2011a) was performed, and the
skull stripping results were manually reviewed to ensure clean
skull and dura removal. The cerebellum was removed by first
registering the skull stripped image to a manually-labeled cer-
ebellum template, and then removing all voxels within the
labeled cerebellum mask. FAST in FSL (Zhang et al. 2001)
was then used to segment the human brain into three different
tissues: grey matter (GM), white matter (WM), and cerebro-
spinal fluid (CSF).We used HAMMER (Shen and Davatzikos
2002) for registration. After registration, the subject-labeled
image was generated based on the Jacob template (Kabani
et al. 1998) that dissects a brain into 93 manually labeled
ROIs. Then, for each of 93 ROIs, we computed the GM tissue
volume in an ROI as a feature. For the PET images, we used a
rigid transformation to align them onto their respectiveMRT1
image of the same subject, and then computed the average
intensity of each ROI as a feature. In total, for each subject,
we extracted 189 features including 93 MRI features, 93 PET
features, and 3 CSF features.

Proposed method

In this section, we describe our method to classify be-
tween MCI-C and MCI-NC. After depicting a general
overview of our framework, we formulate a multimodal
manifold- regularized transfer learning (M2TL) method
and provide an optimization algorithm to solve our objec-
tive function. Then, we explain our classification scheme
with a sample selection procedure by using the proposed
M2TL method.
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Overview

In Fig. 1, we illustrate the proposed framework for MCI con-
version prediction based on our M2TL method. Specifically,
our framework consists of three main components, i.e., (1)
image pre-processing, (2) M2TL-based sample selection,
and (3) M2TL-based classification. As shown in Fig. 1, we
first pre-process all MRI and PET images, and extract features
from each modality as described in the Image pre-processing
and feature extraction section. Then, we select informative

samples for building a generalized model via the proposed
M2TL method. We finally make a decision using both the
sample weights and the modality weights trained in our
M2TL method.

Multimodal manifold-regularized transfer learning (M2TL)

Unlike the previous methods that only considered samples of
the target domain in model training, in this work, we use
samples of different domains as well as unlabeled samples to
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Fig. 1 The system diagram of our framework for MCI conversion prediction using the proposed multimodal manifold-regularized transfer learning
(M2TL) method
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build a generalized model. Furthermore, we use multimodal
samples. Hereafter, we denote M as the number of different
modalities with an index m∈{1,⋯,M} throughout the
whole paper. Assume that we have NA samples with class
labels in the auxiliary domain (i.e., AD and NC), denoted as

Am ¼ xAm;a; y
A
a

n oNA

a¼1
, where xm,a

A is the a-th sample and

ya
A∈{+1,−1} is its corresponding class label (e.g., AD as +1
and NC as -1). Also, assume that we have NT

L labeled samples

of the target domain, denoted as TL
m ¼ xLm;l; y

L
l

n oNL
T

l¼1
, where

xm,l
L is the l-th sample and yl

L∈{+1,−1} is the corresponding
class label (e.g., MCI-C as +1 and MCI-NC as -1). Similarly,
we have NT

U unlabeled samples of the target domain, denoted

as TU
m ¼ xUm;u

n oNU
T

u¼1
. We useNT=NT

L+NT
U to represent the total

number of samples in the target domain, i.e., Tm={Tm
L ∪TmU}.

Also, N=NA+NT
L+NT

U is the total number of all samples.
In this work, we use a traditional regularized least square

method (Belkin et al. 2006) to design our model for classifi-
cation, and use all the available data from the auxiliary domain
as well as the target domain to build a more generalized mod-
el. However, there may be some noise and irrelevant samples
in the auxiliary domain as well as in the target domain, espe-
cially for the case of using multimodal biomarkers. To remove
the noise and irrelevant samples from different modalities
consistently, we introduce an L1/L2-norm based regularizer
on weight matrix (i.e., W2,1), which can simultaneously re-
move a common subset of samples relevant to all modalities
(Zhang et al. 2012b). In addition, by simultaneously
performing sample selection for multimodal data, it is very
helpful to suppress noise in the individual modalities.
Accordingly, the base model can be written as follows:

min
W

1

M

XM
m¼1

λm Y−JKmwmð Þ0 Y−JKmwmð Þ þ μ Wk k2;1 ð1Þ

Where Y is the label vector and Y ¼ ½yA1 ;…; yANA
; yL1 ;…;

yL
NL

T
; 01;…; 0NU

T
�0 , J is a diagonal matrix with the first NA+NT

L

diagonal entries to be 1 and the remaining NT
U diagonal entries

to be 0, λm is a modality weighting factor, W=[w1,w2,..,
wM]∈RN×M denotes a weight matrix whose i-th row wi is the
vector of coefficients associated with the i-th training sample
across different modalities, and μ>0 is a sparsity control pa-
rameter. The symbol ' denotes the transpose of a matrix. It is
worth noting that a ‘group sparsity’ regularization in Eq. (1) is
used for joint selection or un-selection of samples across dif-
ferent modalities based on the L1/L2-norm, i.e., ‖W‖2,
1=∑i=1

N ‖wi‖2. As for the selection of Y and J, according to
the weight matrix W whose elements in some rows are all
zeros, we just select those corresponding samples and their

labels (Y and J) with non-zero weights. In Eq. (1), Km is a
compound cross-domain kernel matrix over Am and Tm. In the
following, we will introduce how to compute this cross-
domain kernel matrix Km for implementing the knowledge
fusion from both auxiliary and target domains (including la-
beled and unlabeled samples).

Here, the instance-transfer approach (Dai et al. 2007) is used
to link the auxiliary domain data to the target domain data. To
be specific, we first define the kernel matrices from the auxil-

iary domain and the target domain as KA;A
m ¼ k xAm;i; x

A
m; j

� �h i

∈RNA�NA and KT ;T
m ¼ k xTm;i; x

T
m; j

� �h i
∈RNT�NT , respectively.

Here, xm,i
A (xm,j

A ) and xm,i
T (xm,j

T ) are samples in the auxiliary and
target domains, respectively, NA and NT are the numbers of
samples in the auxiliary and target domains, respectively.
Then, we define the cross-domain kernel matrices from the
auxiliary domain to the target domain, and also from the target

domain to the auxiliary domain as KA;T
m ¼ k xAm;i; x

T
m; j

� �h i
∈

RNA�NT and KT ;A
m ¼ k xTm;i; x

A
m; j

� �h i
∈RNT�NA , respectively.

Finally, the cross-domain kernel matrix Km can be computed

as: Km ¼ KA;A
m KA;T

m
KT ;A

m KT ;T
m

� �
∈RN�N , which can be seen as the

similarity between pairwise samples in the cross-domain for
the m-th modality. In our study, the linear kernel function is
used.

Note that the base model in Eq. (1) treats the samples from
the auxiliary domain (i.e., AD and NC) and the unlabeled sam-
ples equally as the labeled samples from the target domain (i.e.,
MC-C and MC-NC) with no consideration of their own distri-
butions. However, due to the potential distributional discrepan-
cy between domains, i.e., the target domain (MCI-C and MCI-
NC) and the auxiliary domain (AD and NC), the base model
would not successfully combine them in learning. To this end,
we utilize a maximum mean discrepancy (MMD) criterion
(Borgwardt et al. 2006; Duan et al. 2012), which was originally
designed to measure whether two sets of data are from the same
or different probability distributions. Specifically, we use a
kernel-based MMD criterion formulated as follows:

MMD Am; Tmð Þ ¼ tr KmSð Þ ð2Þ

where S ¼ ss
0
; s ¼ 1

NA
;…; 1

NA
; −1NT

;…; −1NT

h i0

; tr ˙
� �

denotes
a trace of a matrix, and the symbol ' denotes the transpose of a
matrix.

Regarding to the SSL method that utilizes the unlabeled
samples to train a classifier, we define a compound cross-
domain Laplacian matrix on the m-th modality as follows:

Λm ¼ ΛA
m 0
0 ΛT

m

� �
ð3Þ
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where Λm
A=Dm

A−Cm
A and Λm

T =Dm
T −Cm

T are the Laplacian ma-
trices over the auxiliary domain and the target domain, respec-
tively. Here, CA

m ¼ cAi j

h i
∈RNA�NA and CT

m ¼ cTi j

h i
∈RNT�NT

are the similarity matrices for the samples of the auxiliary
domain and the samples of the target domain, respectively,
and DA

m ¼ dAii
� 	

∈RNA�NA and DT
m ¼ dTii

� 	
∈RNT�NT are the di-

agonal matrices with elements dii
A=∑jcij

A and dii
T=∑jcij

T, respec-
tively. In conjunction with the compound cross-domain kernel
matrix Km and the weight coefficient vector wm, we define a
manifold regularization function (Belkin et al. 2006) as
follows:

R Λm;Km;wmð Þ ¼ Kmwmð Þ0Λm Kmwmð Þ ð4Þ

By integrating a kernel-basedMMD criterion in Eq. (2) and
a manifold regularization function in Eq. (4) into the base
model in Eq. (1), we define our objective function as follows:

min
W

F Wð Þ ¼ min
W

1

M

XM
m¼1

λmftr KmSð Þ þ Y−JKmwmð Þ0 Y−JKmwmð Þ

þ γ Kmwmð Þ0Λm Kmwmð g þ μ Wk k2;1

ð5Þ
(5)

where γ>0 is a regularization control parameter. We call our
method a ‘multimodal manifold-regularized transfer learning
method’ (M2TL). In Eq. (5), the first term tr(KmS) is the
kernel-based MMD criterion, which can help eliminate the
potential negative effect introduced by the distributional dif-
ference between the auxiliary domain and the target domain.
The manifold regularization term R(Λm,Km,wm)=(Kmwm)′Λ-

m(Kmwm) can capture the geometry of the probability distri-
bution between the labeled and unlabeled data via the com-
pound cross-domain Laplacian matrix Λm. By minimizing
Eq. (5), we can learn a converged W among multi-domains,
labeled and unlabeled data, and multimodal data. It is worth

noting that, because of using ‘group sparsity’, the elements of
some rows in the common weight matrixW will be all zeros.
For sample selection, we just keep those samples with non-
zero weights.

To solve the optimization problem of Eq. (5), we employ
an accelerated gradient descent (AGD) method (Chen et al.
2009). To be specific, we decompose the objective function of
Eq. (5) into two parts of a smooth term G(W) and a non-
smooth term H(W) as follows:

G Wð Þ ¼ 1

M

XM
m¼1

λmftr KmSð Þ þ Y−JKmwmð Þ0 Y−JKmwmð Þ

þ γ Kmwm
0
Λm KmwmÞð g

�
ð6Þ

(6)

H Wð Þ ¼ μ Wk k2;1 ð7Þ

We then define the generalized gradient update rule as fol-
lows:

Qh W;Wtð Þ ¼ G Wtð Þ þ W−Wt;∇G Wtð Þh i þ h

2
W−Wtk k2F þ H Wð Þ

qh Wtð Þ ¼ argminWQh W;Wtð Þ
ð8Þ

where ∇G(Wt) denotes the gradient ofG(W) at the pointWt at
the t-th iteration, h is a step size, 〈W−Wt,∇G(Wt)〉= tr((W−
Wt)′∇G(Wt)) is the matrix inner product, and ‖ ‖Fdenotes a
Frobenius norm. According to (Chen et al. 2009), the gener-
alized gradient update rule of Eq. (8) can be further
decomposed into N separate sub-problems with a gradient
mapping update approach. We summarize the details of
AGD algorithm in Algorithm 1.

Algorithm 1. AGD algorithm for M2TL in Eq. (5)

1. Initialization: h0 > 0; η > 1;W0;W0 ¼ W0; h ¼ h0 and α0=1.
2. for t=0,1,2,… until convergence of Wt do:
3. Set h=ht
4. while F qh Wt

� �� �
> Qh qh Wt

� �
;Wt

� �
; h ¼ ηh

5. Set ht+1=h and compute

Wtþ1 ¼ argminWQhtþ1
W;Wt

� �
; αtþ1 ¼ 2

tþ3 ; βtþ1 ¼ Wtþ1−Wt and

Wtþ1 ¼ Wtþ1 þ 1−αt
αt

αtþ1βtþ1

end-while
6. end-for

Sample selection and classification

It is noteworthy that, due to the use of the group sparsity
constraint in Eq. (5), after optimization, some row vectors in

the optimized weight matrixW have their l2-norm being close
to or equal to zero. This implies that the corresponding sam-
ples are less informative for classification. This favorable
property allows us to use the proposed M2TL method for
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sample selection in a data-driven manner, and when making a
decision we can only use those selected samples.

We finally build our classifier by performing the proposed
M2TL on the selected samples. After learning the optimal
weight matrix W*= [w1

*,⋯,wM
* ], given a test sample

x={xm}m=1
M , we can then make a decision with the following

multi-kernel SVM function f*(x):

f * xð Þ ¼ sign
XM

M¼1
λmK

*
mw

*
m


 �
ð9Þ

whereKm
* =[k(xm,xm

i )]i=1
N ∈R1×N is the testing sample’s kernel

vector on the m-th modality (between the testing sample xm
and the i-th selected training sample xm

i in the cross-domain).

Results

In this section, we first describe the experimental settings in
our experiments and then evaluate the effectiveness of the
proposed M2TL method on the ADNI dataset, by comparing
with other methods in the literature. In addition, we also use
the M2TLmethod to select the informative unlabeled samples
before classification, and then evaluate the classification per-
formance of M2TL with respect to the use of a different num-
ber of samples from the auxiliary domain and a different num-
ber of unlabeled samples, respectively.

Experimental settings

We used the samples of 202 subjects (51 AD, 43 MCI-C, 56
MCI-NC, and 52 NC), for whom the baseline MRI, PET, and
CSF data were all available. Also, for each of the three mo-
dalities, we included another set of unlabeled samples from
153 randomly selected subjects. We regarded the samples of
43 MCI-C and 56 MCI-NC subjects as the target domain data
and also those of 51 AD and 52 NC subjects as the auxiliary
domain data. It is worth noting that, for all 99 MCI subjects
(43 MCI-C + 56 MCI-NC), during the 24-month follow-up
period, 43 MCI subjects converted to AD and 56 remained
stable.

To evaluate the performances of the proposed method as
well as the competing methods, we used a 10-fold cross-val-
idation strategy by partitioning the target domain data into
training and testing subsets. In particular, 99 MCI samples in
our target domain were partitioned into 10 subsets (each sub-
set with a roughly equal size), and then one subset was suc-
cessively selected as the testing samples and all the remaining
subsets were used for training. To avoid the possible bias
occurring during sample partitioning, we repeated this process
10 times.We reported the performances in terms of area under

the receiver operating characteristic curve (AUC), accuracy
(ACC), sensitivity (SEN), and specificity (SPE).

We compared the proposed method with a standard SVM,
domain transfer SVM (DTSVM) (Cheng et al. 2012), and
manifold-regularized Laplacian SVM (LapSVM) (Belkin
et al. 2006). The main difference among these methods lies
in how much information they use in learning from the avail-
able samples:

& SVM: labeled samples from the target domain;
& DTSVM: labeled samples from both the target and the

auxiliary domains;
& LapSVM: both labeled and unlabeled samples from the

target domain.

The standard SVM method was implemented using the
LIBSVM toolbox (Chang and Lin 2001) with a linear kernel
and a default value for the parameter C (i.e., C=1). We used a
linear kernel for a Laplacian matrix in both M2TL and
LapSVM methods. The optimal model parameters of γ and
μ in our M2TLmethod were chosen from the range of {0.001,
0.01,0.03,0.06,0.09,0.1,0.2,0.4,0.6,0.8} by a nested 10-fold
cross-validation on the training data.

In the experiments, both single-modal and multimodal fea-
tures were used to evaluate the proposed method as well as
other methods. A multi-kernel combination technique (Zhang
et al. 2011) was adopted for multi-modality fusion. To be
specific, the combination weights for multi-kernels were
learned within a nested cross-validation via a grid search in
the range of 0 and 1 at a step size of 0.1. The optimal param-
eter λm in the proposed M2TL method was determined in the
same manner. Before training models, we normalized features
by following (Zhang et al. 2011).

Comparison between M2TL and other methods

Here, we first compare the proposed M2TL method without
sample selection with the competing methods, with results
reported in Table 1. Note that Table 1 shows the averaged
results of the 10-fold cross-validation performed on 10 inde-
pendent experiments. We also presented the ROC curves
achieved by different methods in Fig. 2. From Table 1 and
Fig. 2, we can see that the proposed M2TL method achieved
better performance than DTSVM, LapSVM, and SVM in
terms of both accuracy and sensitivity. At the same time, in
most cases, the proposed M2TL method outperformed the
competing methods in terms of specificity and AUC.
Specifically, by using multimodal data, M2TL achieved a
classification accuracy of 77.8 %, which significantly
outperformed DTSVM (69.4 %), LapSVM (69.1 %), and
SVM (63.8). At the same time, by using single modality, the
proposedM2TLmethod usually achieved better performances
than DTSVM, LapSVM, and SVM. These results validate the
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efficacy of our M2TL method, which uses both labeled and
unlabeled samples from the auxiliary domain (i.e., AD and
NC) and the target domain (i.e., MCI-C and MCI-NC) in
MCI conversion prediction.

Comparison between M2TL with sample selection and other
methods

To investigate the influence of the proposed sample selection
method, we also compare the proposed method without sam-
ple selection (M2TL) and with sample selection (M2TL+SS)
to LapSVM with Sample Selection (LapSVM+SS), and also
DTSVM with Sample Selection (DTSVM+SS). Specifically,
for the methods of LapSVM+SS and DTSVM+SS, we first
applied our M2TL method for sample selection and then
trained the respective LapSVM and DTSVM on the selected
samples. It is worth noting that, because labeled samples from
the auxiliary and the target domains are more informative than
unlabeled samples, we applied the sample selection strategy
only for unlabeled samples. The experimental results are
shown in Table 2.

From Table 2, we can see that M2TL+SS with multimodal
data achieved a classification accuracy of 80.1 %, which is
significantly better than M2TL (77.8 %), LapSVM+SS
(71.6 %), and DTSVM+SS (71.3 %). With single modality,
especially with PET, M2TL+SS still achieved better perfor-
mance than M2TL, LapSVM+SS, and DTSVM+SS.
Recalling the experimental results reported in Table 1, we

could say that the proposed M2TL-based sample selection
method has the effect of promoting the performance of MCI
conversion prediction. These results validate the efficacy of
the proposed M2TL-based sample selection.

Furthermore, we investigated the influence of the number
samples from the auxiliary domain for M2TL+SS and M2TL
by comparing to other transfer learningmethods, i.e., DTSVM
and DTSVM+SS. We randomly chose samples from the aux-
iliary domain and then reported the average accuracies in
Fig. 3, from which we can see that the proposed M2TL+SS
and M2TL consistently outperformed DTSVM+SS and
DTSVM. In addition, with the increase of the number of sam-
ples from the auxiliary domain, the classification accuracy
rises monotonically for M2TL+SS, M2TL, and DTSVM.

Finally, we investigated the influence of the number of
unlabeled samples for the proposed M2TL+SS and M2TL
methods, in comparison to two SSL methods (i.e.,
LapSVM+SS and LapSVM). The average accuracies
achieved by these four different methods are reported in
Fig. 4. Specifically, for M2TL and LapSVM methods, we
randomly chose unlabeled samples and then performed
M2TL and LapSVM for classification, respectively. On the
other hand, for M2TL+SS and LapSVM+SSmethods, we first
conducted sample selection using M2TL to select samples
from unlabeled samples and then performed M2TL and
LapSVM for classification, respectively.

As we can see from Fig. 4, regardless of the number of
unlabeled samples, the proposed M2TL+SS and M2TL
methods outperformed LapSVM+SS and LapSVM in terms
of classification accuracy. As the used number of unlabelled
subjects changes from 0 to 15, there are obvious improve-
ments in accuracy by using four methods, which explicitly
demonstrates that using unlabelled samples can improve clas-
sification performance. In addition, Fig. 4 shows that the clas-
sification accuracies of M2TL and LapSVM methods (based
on random sample selection) rise gradually with the increase
of the number of unlabelled samples. On the other hand, for
M2TL+SS and LapSVM+SS methods, their corresponding
performances are first improved as the number of unlabelled
samples increases, and then dropped when too many (e.g.,
over 75) unlabelled subjects are used. This implies that our
proposed M2TL method for sample selection can effectively
select informative unlabelled samples and also avoid noisy or
irrelevant samples for the underlying classification task.

Discussion

In this paper, we proposed a multimodal manifold-regularized
transfer learning method to identify MCI-C and MCI-NC, in
which we further used the samples of AD and NC and the
unlabeled samples jointly. We evaluated the performance of
our method on 202 labeled and 153 unlabeled baseline

Table 1 Comparison of performances of M2TL, DTSVM, LapSVM,
and SVM for MCI-C/MCI-NC classification using different types of
modalities

Modality Method ACC
(%)

SEN
(%)

SPE
(%)

AUC

Multimodal
(MRI+CSF+PET)

M2TL 77.8 83.9 69.8 0.814

DTSVM 69.4 64.3 73.5 0.736

LapSVM 69.1 74.3 62.1 0.751

SVM 63.8 58.8 67.7 0.683

MRI M2TL 72.1 75.1 68.2 0.768

DTSVM 63.3 59.8 66.0 0.700

LapSVM 65.9 69.6 61.0 0.686

SVM 53.9 47.6 57.7 0.554

CSF M2TL 66.7 74.6 60.5 0.668

DTSVM 66.2 60.3 70.8 0.701

LapSVM 62.1 66.2 56.8 0.660

SVM 60.8 55.2 65.0 0.647

PET M2TL 68.1 71.5 63.7 0.734

DTSVM 67.0 59.6 72.7 0.732

LapSVM 61.6 65.7 56.1 0.661

SVM 58.0 52.1 62.5 0.612

ACC Accuracy, SEN Sensitivity, SPE Specificity
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samples from ADNI database. The experimental results
showed that the proposed method consistently and substan-
tially improved the performance of MCI conversion predic-
tion with a maximum accuracy of 80.1 %.

Use of all available samples in learning

In the field of neuroimaging-based brain disease diagnosis,
there have been studies presenting relations among tasks of
identifying different stages of disease, e.g., AD vs. NC and
MCI-C vs. MCI-NC.Motivated by these studies, in this paper,
we proposed a method that could use samples from different
domains by means of transfer learning. Specifically, we
adopted the AD/NC as an auxiliary domain to help the task

of discriminating MCI-C from MCI-NC. From a machine
learning point of view, transfer learning aims to apply the
knowledge learned from one or more auxiliary domains to a
target domain. However, due to the potential difference in
distributions of auxiliary domains and the target domain, it is
challenging to efficiently use such knowledge in learning. To
handle the distributional discrepancy between domains, we
used an MMD criterion to measure the similarity or dissimi-
larity between two sets of samples from different domains.

While it is difficult to get more labeled samples, it is rela-
tively easy to obtain more unlabeled samples in general. In our
previous work (Cheng et al. 2012), we used labeled auxiliary-
domain samples to foster the generalization of a classifier in a
target domain. In this work, we extended it to use unlabeled

Fig. 2 Comparison of the ROC curves of the proposedM2TLmethod and the competingmethods (DTSVM, LapSVM, and SVM) forMCI-C/MCI-NC
classification using multi-modality and single-modality, respectively
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samples for further performance improvement. To be precise,
we proposed a multimodal manifold-regularized transfer
learning (M2TL) method for automatic selection of informa-
tive samples and also automatic rejection of uninformative
samples to make a decision.

As a naïve way for transfer learning, we can apply the
model trained on AD and NC to the task of MCI conversion
prediction directly (Da et al. 2014; Eskildsen et al. 2013;
Filipovych et al. 2011a; Young et al. 2013). We call this kind

of method as a direct transfer learning (DTL), or direct semi-
supervised transfer learning (DSSTL). In DTL, samples of
AD and NC are treated as training data, while samples of
MCI-C and MCI-NC are used for testing data; In DSSTL,
samples of AD andNC are used as labeled data, while samples
of MCI-C and MCI-NC are regarded as unlabeled data. Then,
the model is trained based on both labeled and unlabeled data.
Finally, samples of MCI-C and MCI-NC are treated as testing
data to evaluate the performance of each learned model. In our
additional experiment, we compared the proposed M2TL
method with DTL and DSSTL using multimodal data (i.e.,
MRI+CSF+PET). The DTL method achieved a classification
accuracy of 66.7 % and AUC of 0.702, and the DSSTL meth-
od achieved a classification accuracy of 70.9 % and AUC of
0.766. These results are much worse than those of the pro-
posed M2TL method that produced the maximum classifica-
tion accuracy of 80.1 % and AUC of 0.852. We believe that
these results validated the advantage of the proposed M2TL
method over other transfer learning methods.

Besides modalities used in this paper, i.e., MRI, PET, and
CSF, there also exist other modalities (e.g., Diffusion Tensor
Imaging (DTI) and Resting-state functional Magnetic
Resonance Imaging (RS-fMRI)) which can be used for AD/
MCI classification (Jie et al. 2014; Supekar et al. 2008; Wang
et al. 2007; Wee et al. 2012, 2014; Zhu et al. 2014). It will be
interesting to further investigate the incorporation of these
modalities into our proposed M2TL model, which will be
one of our future works.

M2TL model for sample selection

According to (Wang et al. 2011b), the sparse weight matrix
can not only consistently select the informative samples from

Fig. 3 The changes of accuracies of M2TL+SS, M2TL, DTSVM+SS
and DTSVM with respect to the used number of samples from the
auxiliary domain

Fig. 4 The changes of accuracies of M2TL+SS, M2TL, LapSVM+SS,
and LapSVM with respect to the used number of unlabeled samples

Table 2 Comparison of performances of M2TL+SS, M2TL,
LapSVM+SS, and DTSVM+SS, for MCI-C/MCI-NC classification
using different types of modalities

Modality Method ACC
(%)

SEN
(%)

SPE
(%)

AUC

Multimodal
(MRI+CSF+PET)

M2TL+SS 80.1 85.3 73.3 0.852

M2TL 77.8 83.9 69.8 0.814

LapSVM+SS 71.6 81.3 58.9 0.751

DTSVM+SS 71.3 84.0 61.4 0.755

MRI M2TL+SS 72.3 75.3 68.4 0.768

M2TL 72.1 75.1 68.2 0.768

LapSVM+SS 66.0 69.7 61.2 0.684

DTSVM+SS 65.6 66.2 65.3 0.686

CSF M2TL+SS 67.8 75.2 62.9 0.670

M2TL 66.7 74.6 60.5 0.668

LapSVM+SS 63.3 67.5 57.9 0.664

DTSVM+SS 67.0 74.0 61.5 0.705

PET M2TL+SS 71.4 74.5 67.5 0.800

M2TL 68.1 71.5 63.7 0.734

LapSVM+SS 66.3 70.0 61.6 0.701

DTSVM+SS 68.1 72.9 60.8 0.726

ACC Accuracy, SEN Sensitivity, SPE Specificity
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different modalities, but also indicate the contributions of dif-
ferent modalities and subjects in the prediction. Accordingly,
we specifically count the number of non-zero elements from
each column weight vector of W. Since we used a 10-fold
cross-validation strategy in the experiments, we should count
the frequency of each subject selected across all folds and all
runs (i.e., a total of 100 times for 10-fold cross-validation with
10 independent runs) on the training set. Then, those subjects
with frequency of 100 (i.e., always selected in all folds and all
runs) are regarded as stable subjects.

For M2TL+SS, we obtained the number and percentage of
stable subjects for different domains on the training set as

follows: Auxiliary (90/103=87.38 %), Labeled target (69/
90=76.67 %), and Unlabeled target (75/153=49.02 %). It
shows that the most selected stable subjects are from the aux-
iliary domain, followed by the target domain. This observation
is reasonable since AD and NC subjects are more separable
than MCI-C and MCI-NC subjects, and thus the former is
more important than the latter for robust classification.

In addition, we compute the sum of absolute values of each
column weight vector, and find that the MRI modality is more
important than the PET modality, and also the PET modality is
more important than the CSFmodality, i.e.,wMRI>wPET>wCSF,
which is consistent with results in Tables 1 and 2. In our current
study, we only report results of excluding subjects (by sample
selection methods), and the experimental results show that ex-
cluding certain subjects can further improve the classification
performance (e.g., as shown in Tables 1 and 2). But we did not
report results of excluding any modality since our previous
works (Cheng et al. 2013a; Zhang et al. 2011) show that using
more modalities often leads to better performance.

Effect of feature selection

To investigate the influence of feature selection on the perfor-
mances of the proposed methods, we further performed a set
of experiments by using an extra feature selection step, i.e.,
based on t-test statistics (Zhang et al. 2011), before sample
selection and classification. Fig. 5 shows the classification
accuracies achieved by our M2TL+SS and M2TL methods
with the t-test based feature selection, with respect to the dif-
ferent number of selected features. As can be seen from Fig. 5,
feature selection can help further improve the classification
accuracy compared with the original methods using all fea-
tures (without feature selection). We expect that the use of

Table 3 Comparison with the state-of-the-art methods for MCI conversion prediction

Method Modalities #Subjects Performances

ACC (%) SEN (%) SPE (%) AUC

Duchesne and Mouiha 2011 MRI 20 MCI-C, 29 MCI-NC 72.3 % 75 % 62 % 0.794

Hinrichs et al. 2011 MRI, FDG-PET, CSF, APOE 119 MCI N/A N/A N/A 0.7911

Davatzikos et al. 2011 MRI, CSF 69 MCI-C, 170 MCI-NC 61.7 % 95 % 38 % 0.734

Zhang et al. 2012a MRI, FDG-PET, CSF 38 MCI-C, 50 MCI-NC 78.4 % 79 % 78 % 0.768

Coupé et al. 2012 MRI 167 MCI-C, 238 MCI-NC 71 % 70 % 72 % N/A

Wee et al. 2013 MRI 89 MCI-C, 111 MCI-NC 75.05 % N/A N/A 0.8426

Westman et al. 2012 MRI, CSF 81 MCI-C, 81 MCI-NC 68.5 % 74.1 % 63 % 0.76

Zhang et al. 2012b MRI, FDG-PET, CSF 43 MCI-C, 48 MCI-NC 73.9 % 68.6 % 73.6 % 0.797

Cho et al. 2012 MRI 72 MCI-C, 131 MCI-NC 71 % 63 % 76 % N/A

Eskildsen et al. 2013 MRI 161 MCI-C, 227 MCI-NC 75.4 % 70.5 % 77.6 % 0.82

Young et al. 2013 MRI, FDG-PET, CSF, APOE 47 MCI-C, 96 MCI-NC 74.1 % 78.7 % 65.6 % 0.795

Proposed method MRI, FDG-PET, CSF 43 MCI-C, 56 MCI-NC 80.1 % 85.3 % 73.3 % 0.852

Fig. 5 Classification accuracies of M2TL+SS and M2TL methods using
a feature selection based on t-test statistics (namely M2TL+SS(+t-test)
and M2TL(+t-test)), with respect to the different number of selected
features for the multimodal case. Here, ‘MRI+PET’ denotes the
selected MRI and PET features. For comparison, the classification
accuracies of M2TL+SS and M2TL methods without feature selection
are also provided by the two dash lines
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more advanced feature selection methods in the future could
further improve the performance of our M2TL model.

In the current study, we adopt a linear kernel to compute the
kernel matrix, because it has been shown effective for multi-
modal classification of AD and MCI in our previous works
(Zhang et al. 2011, 2012b). In future work, we will inves-
tigate using other kernel functions (e.g., Gaussian kernel)
for computing a kernel matrix, which may provide more
precise similarity measurement of the cross-domain kernel
matrix.

Comparison with the state-of-the-art methods

Recently, many groups have focused on predicting the con-
version of MCI to AD, i.e., identifying MCI-C and MCI-
NC subjects (Cho et al. 2012; Coupé et al. 2012; Cuingnet
et al. 2011; Davatzikos et al. 2011; Duchesne and Mouiha
2011; Eskildsen et al. 2013; Hinrichs et al. 2011; Lehmann
et al. 2012; Leung et al. 2010; Misra et al. 2009; Wee et al.
2013; Westman et al. 2012; Young et al. 2013; Zhang et al.
2012a, b). In Table 3, we compare the performances of the
proposed M2TL method with those of the state-of-the-art
methods in terms of accuracy, sensitivity, specificity, and
AUC, although some metrics are not available for certain
studies. It should be noted that different modalities and
different numbers of samples were used for different stud-
ies. Nevertheless, we would like to emphasize that, in most
of performance measurements, our proposed method
achieved better performance than the state-of-the-art
methods in MCI conversion prediction.

Limitations

The proposed method is based on multimodal data (e.g., MRI,
PET, and CSF) and thus requires each subject to have the
complete dataset. Such a requirement prevents the proposed
method from utilizing a huge amount of available samples
with incomplete data, i.e., missing of one or two modalities.
For example, in the ADNI database, many subjects have in-
complete data due to unavailability of certain modalities.
Hence, only a small number of subjects with complete data
were used in our study. It will be our future research work to
extend our method to deal samples with incomplete data for
further performance improvement.

In addition, in our current study, the proposedM2TLmodel
mainly focused on sample selection and classification rather
than feature selection. Therefore, our proposed M2TL model
is not able to directly identify the relevant biomarkers (i.e.,
features). In the future work, we will also extend our M2TL
model to include a feature selection step for multimodal bio-
markers selection.

Conclusions

In this paper, we proposed a novel method for jointly
exploiting data from the auxiliary domain (i.e., AD and NC)
and unlabeled data to enhance performance in distinguishing
MCI-C fromMCI-NC. By integrating the kernel-basedMMD
criterion and also a manifold regularization function into the
sparse least squares classification model, we formulated a
multimodal manifold-regularized transfer learning method
(M2TL) for MCI conversion prediction. Also, with the further
introduction of group sparsity regularization into the objective
function, the proposed method can automatically select infor-
mative samples for classification. In the experiments, we com-
pared the proposed method with those related methods in the
literature, and presented its efficacy by achieving the maxi-
mum classification accuracy of 80.1 % and AUC of 0.852.
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