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Ordinal regression (OR) is a learning paradigm lying between classification and regression and has been
attracting increasing attention in recent years due to its wide applications such as human age estimation.
To date, there have been a variety of methods proposed for OR, among which the category of
threshold-based OR becomes one of the representatives with preferable performance. Typical
threshold-based methods, such as discriminant learning for OR (i.e., KDLOR), OR via manifold learning
(i.e., MOR), usually seek an OR projection direction along which to maximally separate classes by a
sequence of ordinal thresholds. Although having yielded encouraging results, they still leave a perfor-
mance space that can be further improved since (1) the thresholds involved are optimized independently
from each other, and (2) the ordinal constraints just associate with class means (or say centroids) which
are generally under-represented for class distributions. Motivated by the analysis, in this work we
propose to jointly learn the thresholds across samples and class centroids by seeking an optimal direction
along which all the samples are distributed as in order as possible and maximally cater for
nearest-centroid distributions, which we call Ordinal Nearest-Centroid Projection (OrNCP) and is
formulated as a combinatorial optimization problem. For efficiency of optimization, we further relax
the problem to a quadratic programming (QP-OrNCP) that in form covers the KDLOR and MOR as its
special cases. Finally, through extensive experiments on synthetic and real ordinal datasets, we
demonstrate the superiority of the proposed method, over state-of-the-art methods.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the community of machine learning, ordinal regression (OR)
has been attracting increasing attentions due to its dual nature of
discrete regression and ordinal classification, and especially wide
applications in recommender system [1], web page ranking [13],
image retrieval [32], medical image diagnosis [33], and facial age
estimation [5,6].

To date, many varieties of methods have been proposed to
implement OR, which mainly can be grouped into three categories.
The main idea of the first family is to conduct OR straightforwardly
by means of the off-the-shelf regressors. For example, Kramer et al.
[15] first converted the ordinal labels into real values, and then
borrowed the standard regressor for ordinal learning. However,
an associated problem is that it is usually difficult to naturally
measure the distance between the ordinal labels [4].

The methods of the second category reported in literature perform
OR by referring to classification with single or multiple output
codings. In [9], Frank et al. represented the ordinal labels with a
batch of binary numbers, and then obtained the OR result by
combining the outputs of many nested binary classifiers that are
independent to each other. Along the line of Frank and Hall [9],
Waegeman and Boullart [31] further assigned weights for the
involved binary classifiers to promote the generalization ability. To
better achieve the goal of ordinal learning with a single augmented
binary classifier, Cardoso and De Costa [4] took the way of training
data replication. And recently, Lin and Li [16] even unified the
methods of this family through modeling with cost matrix.

In order to more naturally conduct OR learning in accordance
with its nature of lying between the classification and the regres-
sion, the third category assumes that the naturally ordinal classes
can be orderly separated by a sequence of monotonous thresholds
along the projection direction, thus which is also called the
threshold-based. Along this way, the proportional odds model
(POM) proposed in McCullagh [20] is the first attempt by modeling
a linear combination of the training data for ordinal output, which
later was extended non-linearly by neural network [19] and kernel
mapping [24], respectively. After the POM, Crammer et al. [8]
introduced a set of separation thresholds to the perception algo-
rithm to perform online OR learning. Shashua and Levin [27] car-
ried out the OR learning based on the principle of fixed-margin
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Fig. 1. Comparison between different OR projection directions, in which the
direction of w1 represents the one trained via MOR or KDLOR which encourages
the OR learning to cater for their ordinal constraints built between class means of
the data, whereas a more desirable direction may be the w2 as it is relatively more
consistent with the distribution trend of the classes.

1 Unless otherwise specified, in this paper we do not explicitly distinguish between
the linear and non-linear cases.
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and sum-of-margin, respectively. Based on the work of Kramer
et al. [15], Chu and Keerthi [7] developed ordinal variations of
the SVM, called SVOR-IMC and SVOR-EXC, respectively associated
with implicit and explicit ordinal thresholds. More recently, in
order to generate a more discriminative OR estimator, Sun et al.
[28] developed a discriminative OR learning model, KDLOR, by
imposing order constraints between each two neighboring class
means, and experimentally demonstrated the superiority of
KDLOR to the SVORs. Considering the success of KDLOR,
Pérez-Ortiz et al. [23] proposed to optimize the thresholds by
means of maximum likelihood estimations; and in Tian et al.
[30], Tian et al. incorporated the spatial information of images into
the OR. Using the same form of ordinal constraints as in Sun et al.
[28], Liu et al. [17] proposed the manifold ordinal regression (MOR)
by preserving geometrical manifold embedded in data. More
recently, Sun et al. [29] and Liu et al. [18], respectively, extended
their methods to multidirectional versions, with the same form
of ordinal constraints in each direction as in KDLOR or MOR.
With a same goal of seeking for multidirectional OR projections,
Gutiérrez et al. [12] even employed the complex neural networks
to train a set of concentric hyperspheres for OR. Considering that
in most cases unidirectional OR can be similarly extended to
corresponding multidirectional counterpart, so in this work we just
focus on the unidirectional OR. As typical unidirectional OR
methods with preferable performance, although the KDLOR and
MOR can yield more competitive results than other ones including
the SVORs, they still mainly suffer from two problems:

1. Their ordinal constraints are built on a sequence of partial order
constraints each of which just associates with one threshold
between two neighboring classes. That is, the thresholds
involved are optimized independently from each other such
that the global optimality is difficult to guarantee.

2. The constraints involved associate with just class means (i.e.,
class centroids), which may be under-represented for the indi-
vidual distributions of data classes, as demonstrated in Fig. 1.

Motivated by the above analysis, as well as the threshold-based
OR decision rule (i.e., actually, a test instance is assigned into the
ordinal class whose centroid is nearest to the instance), in this work
we propose to jointly learn the ordinal thresholds across training
samples and class centroids through seeking for an optimal projec-
tion direction along which all the samples are distributed as in
order as possible and maximally cater for a nearest-centroid distri-
bution for each class. As a result, such a learning problem can be
formulated as a combinatorial optimization problem. For efficiency
of implementation, we relax the problem to a quadratic program-
ming that can be easily solved and makes the KDLOR and MOR
become its reduced cases. Finally, through extensive comparative
experiments on a toy problem, hand-written digit recognition
and human facial age estimation, we demonstrate the superiority
of our strategy in performing OR. To our knowledge, this is the
first work to learning OR directly from the perspective of
threshold-based OR decision rule.

Our main contributions in this paper are as follows:

� Propose a novel ordinal regression (OR) learning strategy,
namely Ordinal Nearest-Centroid Projection (OrNCP), specially
following the threshold-based OR decision rule and formulate
it as a combinatorial optimization problem.
� For efficiency of implementation, relax the OrNCP to a quadratic

programming problem (QP-OrNCP) that covers two typical OR
approaches KDLOR and MOR as its special cases.
� Experimentally demonstrate the effectiveness and superiority

of our strategy in performing OR, on both synthetic and
real-world datasets, in which we also investigate the influences
of the form and the granularity of the ordinal constraints on OR
performance, finding that our ordinal nearest-centroid
constraints imposed across class centroids and data samples
are superior to those either just on class centroids or just on
class samples.

The rest of this paper is organized as follows. In Section 2, we
briefly review two typical threshold-based OR methods, i.e., the
KDLOR and MOR, and especially show their strategy in preserving
the order of data. In Section 3, we propose our learning strategy for
OR, directly following the threshold-based OR decision rule. And to
evaluate the effectiveness of our strategy, we conduct comparative
experiments on synthetic and real world datasets in Section 4.
Finally, we conclude the paper in Section 5.
2. Related work

Prior to introducing our work, we first give a brief review for the
KDLOR and MOR, two typical threshold-based OR methods
closely-related to our work, and analyze their limitations in OR
learning.
2.1. KDLOR

In Sun et al. [28], an ordinal counterpart of discriminant learn-
ing (i.e., KDLOR1) was proposed for catering for ordinality of data
classes. With the goal of minimizing the within-class scatter and
simultaneously preserving the order structure among the data
classes, Sun et al. designed the following formulation

min
w;q

wT � Sw �w� C � q

s:t: wT � ðmkþ1 �mkÞP q; k ¼ 1;2; . . . ;K � 1;
ð1Þ

where Sw denotes the whole within-class scatter matrix, C is a
trade-off parameter, mk represents the class mean of the kth class,
and q denotes the margin between two neighboring classes after
projected along the w.
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2.2. MOR

Based on the assumption that many observations usually com-
ply with certain low-dimensional manifold distribution, Liu et al.
[17] proposed to employ the manifold learning to OR, and
presented the ordinal regression with manifold preservation,
called MOR formulated as

min
w;q

wT � X � L � XT �w� C � q

s:t: wT � ðmkþ1 �mkÞP q; k ¼ 1;2; . . . ;K � 1;
ð2Þ

in which X denotes the training data matrix, L is the Laplacian
matrix as defined in Belkin and Niyogi [2], and the meanings of
other symbols here are the same as those in Section 2.1.

2.3. Limitations of the KDLOR and MOR

Comparing Eqs. (1) and (2), it can be seen that the ordinal con-
straints of

wT � ðmkþ1 �mkÞP q; k ¼ 1;2; . . . ;K � 1; ð3Þ

are the same in the form, which restrict the projected means of
classes to be arranged in order by combining a sequence of partial
order constraints between the means of two neighboring classes.
However, such type of constraints leaves a performance space that
can be further improved, since that

1. The thresholds, lying between every two neighboring classes,
just associate with their corresponding partial order constraint
and are optimized independently from each other, by which the
global ordinal optimality is difficult to guarantee.

2. The partial order constraints are built upon the means of
classes, which are generally under-represented for distributions
of data classes. As a result, the performance of OR learning will
be deteriorated, as demonstrated in Fig. 1.

3. Proposed method

To mitigate the problems aforementioned, in what follows we
propose a novel strategy to jointly learn the ordinal thresholds
across training samples and class centroids (i.e., class means),
motivated by the analysis of threshold-based OR decision rule.

3.1. Methodology: Ordinal Nearest-Centroid Projection (OrNCP)

Through the literature review about the threshold-based OR
methods aforementioned in Section 1, we can summarize the main
idea of threshold-based OR learning as follows:

� In the training phase: on the training set, seek for an optimal
projection direction (here denoted as w) along which all the
samples are arranged as consistent with their orders as possible
and every two neighboring classes are separated by thresholds,
which are constrained to be ordinal.
� In the test phase: for a new test instance, project it along the

direction w, and compare its resulting projection with the OR
thresholds to make an order decision.

From the analysis above, it can be seen that the threshold-based
OR learning is quite similar to the nearest-centroid projection
learning [10], as demonstrated in Fig. 2. More importantly, in the
learning of the nearest-centroid projection, the distances of each
sample to class-centroids of all classes are considered together.
That is, in seeking for the optimal nearest-centroid projection
direction, all the thresholds associated between classes are
adjusted simultaneously.
Motivated by the analysis above, in what follows we propose a
novel OR learning strategy to jointly learn the thresholds involved
across samples and class centroids through seeking for an optimal
direction along which all the samples are distributed as in order as
possible and meanwhile maximally cater for a nearest-centroid
distribution for each class, coined as OrNCP. More concretely, we

assume that there are a set of fxigN
i¼1 samples associated with ordi-

nal class labels flgK
l¼1 from totally K classes and the kth class-set as

fxk
j g

Nk

j¼1
. In addition, let Xk denote the class mean of the kth class.

Then, the optimization objective for the nearest-centroid
projection, as demonstrated in Fig. 2, can be formulated as

max
w

PK
k¼1

PNk
i¼1

P
p–kI½jwTðxk

i � XpÞj > jwTðxk
i � XkÞj�PK

k¼1NkðK � 1Þ
; ð4Þ

where j � j represents the absolute value operator, w denotes the opti-
mal projection vector to seek and I[�] is the indicator function
which returns 1 if the argument is true and 0 otherwise.
However, it can be seen that the ordinal relationship among the
classes has not been reflected in Eq. (4) yet. Therefore, we reformu-
late (4) by taking the ordinal information into account to cater for
the OR and thus propose our OR strategy, which we call ordinal
nearest-centroid projection learning, or OrNCP for short, whose
objective is formulated as

max
w

PK
k¼1

PNk
i¼1

P
l<kwikl � I ½wTðxk

i � XlÞ > k� l�PK
k¼1NkðK � 1Þ

þ
PK

k¼1

PNk
i¼1

P
h>kwikh � I½wTðXh � xk

i Þ > h� k�PK
k¼1NkðK � 1Þ

þ
PK

k¼1

PNk
i¼1I½jwTðxk

i � XkÞj < 1�PK
k¼1NkK

;

ð5Þ

where wikl (and similarly wikh) denotes the ordinal weight defined
jointly on the ith sample from the kth class and the class cen-
troids of the kth and pth classes. It can be found that by taking
account of the ordinal relationships among data classes into
learning, the nondirectional nearest-centroid projection learning
of (4) is transformed into an ordinal counterpart of (5). More
specifically, instead of selecting a projection for nondirectional
nearest-centroid distribution, we propose to seek for an optimal
projection along which all class samples are distributed as in
order as possible and maximally cater for a nearest-centroid dis-
tribution for each class, as depicted by the first two terms and
the third one of (5). It is worth to point out that it is these
critical modifications that casts the ordinary nearest-centroid
projection learning into an ordinal counterpart for OR, and by
optimizing Eq. (5), the ordinal thresholds involved between the
classes can be jointly learned, which, to our knowledge, is
the first work to perform OR specifically following the
threshold-based OR decision rule.
3.2. Relaxation of OrNCP: QP-OrNCP

Although the OrNCP formulated in Eq. (5) shows us a novel
strategy to perform OR directly according to the threshold-based
OR decision rule, the OrNCP itself is a bit difficult to be optimized
since that it is a combinatorial optimization problem. In practice, it
is extremely time-consuming to seek for the optimal solution,
especially when the size of training set is large.

To reduce the computational complexity, we relax (5) by intro-
ducing the hinge loss function [11] and enforcing the with-class
scatters to be compact to approximate the first two and the third
indicator functions I[�] in (5), respectively. As a result, we can
reformulate (5) as



Fig. 2. Demonstration of nearest-centroid rule. Here, w denotes the projection vector, f ðw; XkÞ represents the new centroid of kth class after projection along w by function f ð�Þ
with Xk being the original class centroid, and thresholdk is the separation threshold between the (k � 1)th class and kth class.
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min
w

XK

k¼1

XNk

i¼1

X
l<k

wikl �max ðk� lÞ �wTðxk
i � XlÞ; 0

� �
þ
XK

k¼1

XNk

i¼1

X
h>k

wikh �max ðh� kÞ �wTðXh � xk
i Þ; 0

� �
þ
XK

k¼1

XNk

i¼1

kwTðxk
i � XkÞk2

:

ð6Þ

For simplicity of deriving the dual problem, we rearrange (6) into an
equivalent quadratic programming (QP) problem, as the
optimization surrogate to approximate OrNCP, and we call the QP
problem QP-OrNCP and write it as

min
w;n

wT � Sw �wþ k �
XK

k¼1

XNk

i¼1

X
p–k

wikp � nikp

s:t: wTðxk
i � XlÞP ðk� lÞ � nikl

nikl P 0 k ¼ 1;2; . . . ;K; l ¼ 1;2; . . . ; k� 1

wTðXh � xk
i ÞP ðh� kÞ � nikh

nikh P 0 k ¼ 1;2; . . . ;K; h ¼ kþ 1; kþ 2; . . . ;K

ð7Þ

in which Sw represents within-class scatters matrix, wikp
2 denotes

the ordinal weight defined jointly on the ith sample from the kth
class and the class centroids of the kth and pth classes, k is the
trade-off parameter to control the model complexity, and nikp

denotes the slack variables to regularize the solution space. It can
be seen that the QP problem in (7) seeks for an optimal projection
vector w along which (1) the within-class scatters are compacted
maximally, i.e., the sum of distances of samples to their individual
class centroids are minimized, as formulated in the objective of
(7), and (2) the distances of samples from each class to the centroids
of all the other classes are enlarged proportionally to corresponding
class centroid–centroid discrepancies, as expressed in the con-
straints of (7). When taking the (1) and (2) together into account,
the QP-OrNCP of (7) can be seen as a relaxation approximation to
the OrNCP of (5). More importantly, compared with OrNCP of (5),
QP-OrNCP can be more efficiently optimized.

As a standard QP problem, the QP-OrNCP of (7) can be solved by
a variety of off-the-shelf optimization algorithms, such as interior
point [21] and conjugate gradient descent [22], etc. On the other
hand. we can also derive and optimize its dual problem instead,
which is also a QP problem written as

min
a

1
4
aT � AT � S�1

w � A � a� B � a

s:t: 0 6 a 6 k � vecðWÞT ;
ð8Þ

where A :¼ ½X2 � x1
1;X3 � x1

1; . . . ; xK
NK
� XK�1�; B :¼ ½1;2; . . . ;1�, 3 W is

a tensor with the ikpth entry wikp being the ordinal weight defined as
in Eq. (7), and vecð�Þ is the vectorization operator. Once the dual
2 In this work, we set wikp ¼ jk� pj. Actually, other reasonable definitions are
acceptable as well.

3 Note that the A and B in Eq. (8) are defined in order according to the left-hand
and right-hand terms of the first and third lines of constraints in Eq. (7), respectively.
variable a has been obtained by optimizing Eq. (8), the primal
ariable w can be calculated by

w ¼ 1
2

S�1
w Aa: ð9Þ

With the projection vector w, the order of an unseen instance x
can be predicted by the following decision rule4:

f ðxÞ ¼min
k
fk : wT x� bk < 0g; ð10Þ

where bk :¼ wTðNkþ1Xkþ1 þ NkXkÞ=ðNkþ1 þ NkÞ.
3.3. Non-linear case of QP-OrNCP

To better handle the real-world possible non-linear OR prob-
lems, we can extend the QP-OrNCP to its non-linear counterpart
by using kernel trick. In accordance with the Representer
Theorem [26] associated with a feature mapping function
/ : x # /ðxÞ, the original projection vector w can be represented
by a combination of the training set as

w ¼
XN

i¼1

bi/ðxiÞ: ð11Þ

Substituting w by (11) into (7), we can derive the non-linear version
of QP-OrNCP as

min
b;n

bT �H � bþ k �
XK

k¼1

XNk

i¼1

X
p–k

wikp � nikp

s:t: bTðKerk
i � KerlÞP ðk� lÞ � nikl

nikl P 0 k ¼ 1;2; . . . ;K; l ¼ 1;2; . . . ; k� 1

bTðKerh � Kerk
i ÞP ðh� kÞ � nikh

nikh P 0 k ¼ 1;2; . . . ;K; h ¼ kþ 1; kþ 2; . . . ;K

ð12Þ

where H :¼
PK

k¼1KerkðI � 1Nk
ÞKerT

k with I being an identity matrix
and 1Nk

a matrix of all entries equaling 1
Nk
;Ker denotes the N-by-N

kernel matrix with the ijth entry defined as Kerij :¼ /ðxiÞT � /ðxjÞ,
the N-by-Nk matrix Kerk, corresponding to the kth class, is a

sub-matrix of Ker;Kerk :¼ ½ 1
Nk

PNk
i¼1/ðxk

i Þ
T � /ðx1Þ; . . . ; 1

Nk

PNk
i¼1/ðxk

i Þ
T �

/ðxNÞ�T denotes the new centroid of the kth class in the mapped

feature space, and Kerk
i :¼ ½/ðx1ÞT � /ðxk

i Þ; . . . ;/ðxNÞT � /ðxk
i Þ�

T
stands

for the ith column of Kerk. Through substituting the inner-product

/ð�ÞT � /ð�Þ defined in Eq. (12) with Mercer kernel functions such
as radial basis function (RBF), we can map the samples from original
feature space into a higher or even infinite-dimensional space.
In form, the non-linear QP-OrNCP of (12) is analogous to its linear
case of (7) and thus can be solved in a similar way.
4 It is worth to point out that for simplicity, the nearest centroid rule can also be
used for decision making.



5 For interpretation of color in Fig. 3, the reader is referred to the web version of
this article.

6 available at: http://www.liacc.up.pt/�ltorgo/Regression/DataSets.html.
7 The terminology ‘‘granularity’’ of data in this paper refers to such an unit for data

partition, in which the class sample corresponds to a single data point, while the class
centroid to an entire class, hence the granularity of the latter is larger than that of the
former.
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3.4. Complexity analysis of QP-OrNCP

In this subsection, we provide a complexity analysis to the
QP-OrNCP. After analyzing the QP-OrNCP upon its primal and dual
formulations, it can be found that solving the primal QP problem in
(7) involves a d� d Hessian matrix associated with a total of
2NðK � 1Þ linear constraints, where d denotes the feature dimen-
sion and N is the size of training set, while its dual problem in
(8) involves a ½NðK � 1Þ� � ½NðK � 1Þ� Hessian matrix also with
totally 2NðK � 1Þ linear constraints. In our implementations, we
adopt the interior-point algorithm [3] to solve the QP-OrNCP by
optimizing its primal problem or dual form, respectively with a

total complexity Oðd3Þ and OðN3ðK � 1Þ3Þ, and it depends on the
original feature dimension, the number of data classes, and the size
of training set to whether solve the primal QP-OrNCP or its dual
problem.

3.5. Relationship between KDLOR/MOR and QP-OrNCP

KDLOR vs QP-OrNCP: Comparing KDLOR of (1) with QP-OrNCP of
(7), it can be proved that KDLOR actually is a reduced case of
QP-OrNCP. Specifically, if we just consider two neighboring classes
with equal ordinal weight wikp ¼ 1 in the constraints of (7), then it
degenerates into the following form

min
w;n

wT � Sw �wþ k �
XK

k¼2

XNk

i¼1

nik

s:t: wTðxk
i � Xk�1ÞP 1� nik; k ¼ 2;3; . . . K; i ¼ 1;2; . . . ;Nk;

nik P 0; k ¼ 2;3; . . . K; i ¼ 1;2; . . . ;Nk:

ð13Þ

Summing up all the constraints associated with the Nk samples of
the kth class and making an average, then Eq. (13) degenerates into

min
w;r

wT � Sw �wþ k �
XK

k¼2

rk

s:t: wT 1
Nk

XNk

i¼1

xk
i � Xk�1

 !
P 1� rk; k ¼ 2;3; . . . K;

rk P 0; k ¼ 2;3; . . . K;

ð14Þ

that is,

min
w;r

wT � Sw �wþ k �
XK

k¼2

rk

s:t: wTðXk � Xk�1ÞP 1� rk; k ¼ 2;3; . . . K;

rk P 0; k ¼ 2;3; . . . K;

ð15Þ

where rk :¼ 1
Nk

PNk
i¼1nik. Till here, it can be found that (15) is essen-

tially equivalent to KDLOR of (1) in strategy for OR, despite they
differ in the scale of the thresholds. Therefore, KDLOR can be viewed
as a reduced case of our QP-OrNCP.

MOR vs QP-OrNCP: Comparing (2) with (15), it can be found that
if we define the Sw in (15) as the X � L � XT in (2), then MOR, in form,
can also be regarded as a reduced case of QP-OrNCP, and the
inference is similar to that for KDLOR above (from (13)–(15)).

Moreover, empirical comparisons between KDLOR/MOR and
QP-OrNCP will be conducted in Section 4.

4. Experiments

To make evaluations on our proposed OR learning strategy, in
this section we conduct a series of comparative experiments on
synthetic and real-world datasets, respectively.
4.1. Experimental setup

In all experiments, we adopt the cross-validation technique for
model selection. In non-linear cases, we uniformly adopt the RBF

as mapping function, defined as /ðx1ÞT � /ðx2Þ :¼ exp �ðx1�x2Þ2

d2

� �
where the bandwidth d is tuned in the range of

f0:01D;0:1D; 0:2D; . . . ;0:9D;D;10Dg with D :¼
PN

i¼1

PN
j¼1
ðxi�xjÞ2

N2 .
We apply the Mean Absolute Error (MAE) as the performance

measure, defined as MAE :¼ 1
N

PN
i ðbyi � yiÞ with byi and yi denoting

the predicted and ground-truth OR values, respectively.
4.2. Synthetic dataset

In order to make an intuitive comparison between our method
(referring to the QP-OrNCP) and the KDLOR and MOR on their
ability of performing OR, especially the ability to learn according
to the distributions of data classes, in this subsection we conduct
comparative experiment on a synthetic dataset.

For convenience of visual illustration, we generate a set of
totally 4 ordinal classes, each with 20 two-dimensional examples
sampled randomly (15 for training and the rest 5 for test), accord-
ing to the specified means and covariances listed in Table 1. On the
generated dataset, we respectively seek for the optimal OR
projection direction using the KDLOR, MOR, and our method, and
show the comparative results in Fig. 3.

As shown in Fig. 3, compared with the projection direction
(represented by the line in orange-yellow5) trained using either
the KDLOR or MOR, the direction (according to the line drawn in
green) trained via our method, QP-OrNCP, can coincide more with
the distribution trend of training data. Moreover, our method can
yield a much smaller MAE of 0.3010 opposite to 0.3209 by the other
two methods.

The experiment above shows the superiority of our method in
performing OR, especially in capturing the distributions of
data classes and taking such distribution information as
side-information to optimize the solution space, compared with
such typical methods like KDLOR and MOR.
4.3. Real-world datasets

To make further evaluation on the effectiveness of our strategy
in handling real-world OR, in this section we conduct experiments
on eight widely-used ordinal benchmark datasets,6 hand-written
digit recognition and human facial age estimation, respectively.
Moreover, Besides the KDLOR and MOR, we also introduce the
SVOR-IMX [7] and OHRank [6] into experiments for comparison
due to their promising performance on OR. More importantly, to fur-
ther investigate (1) the effectiveness of our strategy in jointly learn-
ing the thresholds and (2) the influence of granularity7 of ordinal
constraints on OR, we specially design two Foil methods for compar-
ison, namely OR-M2M and OR-S2S, both of which share the same
form of objective as QP-OrNCP of (7) but are imposed ordinal con-
straints, respectively just on class centroids and just on class samples
(please refer to the Appendix for their detailed formulations).

http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html
http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html


Table 1
The means and covariances of the four classes.

Class Mean Covariance

1 [0 0] [100 0.1; 0.1 1]
2 [10 10] [1 0.1; 0.1 100]
3 [20 20] [100 0.1; 0.1 1]
4 [30 30] [100 0.1; 0.1 100]
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Fig. 3. Comparison of the projection directions trained by the KDLOR, MOR, and our
method, respectively. Along their individual projection directions for OR test, our
method QP-OrNCP yields a smaller MAE of 0.3010 opposite to 0.3209 by the KDLOR
or MOR. Note that in this case, the projection direction of the KDLOR happens to
coincide with that of the MOR.
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4.3.1. OR on ordinal benchmark datasets
Firstly, we make comparative experiments on the eight bench-

mark ordinal datasets to evaluate the effectiveness and superiority
of our proposed OR learning strategy (i.e., the QP-OrNCP) in opti-
mizing the thresholds in a joint way. Specifically, we group each
of the 8 datasets into 10 equal-frequency bins (i.e., 10 classes),
and report the comparative results over 10 random trials in
Table 2.

It can be found from the results shown in Table 2 that among
the 6 typical threshold-based OR methods, the proposed
QP-OrNCP generates the lowest MAEs on the latter 5 of the totally
8 datasets. It is worth noting that in most cases, the QP-OrNCP
defeats the SVOR-IMX which optimizes the thresholds automati-
cally and jointly. It demonstrates the effectiveness and superiority
of the proposed learning strategy in optimizing the ordinal thresh-
olds on the eight benchmark datasets.

4.3.2. Hand-written digit recognition
We also conduct digit OR on two widely-used digit datasets8

USPS and MNIST. Specifically, the USPS database contains a total of
11,000 samples for digits ‘0’ to ‘9’, each with 1100 samples. As for
MNIST, it also consists of 10 digits of ‘0’ to ‘9’, and each digit has a
quantity of 6313 samples. To exclude the interference caused by fea-
ture representation, we directly extract raw-pixels to represent the
digit samples, and with consideration of mitigating the over-fitting,
we uniformly normalize the digit images to 8 � 8 and the resulting
feature dimension is 64. Examples from the USPS and MNIST are
shown in Fig. 4(a) and (b), respectively.

For the hand-written digit recognition on the USPS and MNIST
databases, we adopt 5-fold cross-validation for model selection,
and show the experimental results averaged over 5 random runs
in Figs. 5 and 6, respectively. From them, it can be found that,

1. Generally, MAEs of all the methods are decreasing with
increasing training data. Moreover, in non-linear cases the
performance difference among the methods is not so obvious
as in linear cases, especially on USPS shown in Fig. 5(b). The
reason can be found from the fact that MAEs of non-linear cases
shown in Figs. 5(b) and 6(b) are correspondingly smaller than
those of linear cases shown in 5(a) and 6(a), respectively, so
the performance space is relatively smaller in non-linear
feature space than in linear.

2. In most cases, the MAEs of OR-M2M are respectively smaller
than those of KDLOR. By comparing (1) for KDLOR with (16)
for OR-M2M, it can be found that the key difference between
them relies on the form of constraints: in the OR-M2M the ordi-
nal constraints are jointly imposed on all the class centroids
(except for the difference in constraint granularity, OR-M2M
takes the same form of ordinal constraints as our method
QP-OrNCP), while in KDLOR the ordinality is imposed on a
sequence of partial order constraints between neighboring
two class centroids. Therefore, it demonstrates the superiority
of jointly optimizing the ordinal thresholds.
8 Note that the hand digit datasets may be used for cost-sensitive estimations,
besides for OR [17].
3. In all cases, the MAEs of QP-OrNCP are respectively smaller than
those of OR-M2M, which demonstrates that relatively coarse
granularity of constraints unfavorably influences the OR perfor-
mance and may be insufficient to preserve the ordinality of
data. On the other hand, excessively fine granularity of ordinal
constraints not only increases the computing complexity, but
also likely to lead to over-fitting with poor OR performance as
the OR-S2S which purely imposes ordinal constraints on the
samples. Therefore, it demonstrates that the granularity of
constraints is another crucial factor to OR.

4. Interestingly, the MAEs of the QP-OrNCP (the proposed method)
are mostly lower than those of the SVOR-IMX which optimizes
the thresholds in a joint and automatic way. It demonstrates the
effectiveness, especially the superiority, of the QP-OrNCP in
performing OR.

4.3.3. Human age estimation
Besides the above OR experiments, human age estimation is

another typical real-world OR problem. So in this subsection we
additionally conduct experiments on two well known aging data-
sets: the FG-NET and Morph.

In the experiment, to generate equal amount of samples for
each age class, we respectively select a subset from the FG-NET
and the Morph Album 1. More concretely, from FG-NET we
randomly select 23 images for each age ranging from 0 to 19 years
old, accounting for 20 age classes and some examples are shown in
Fig. 7(a). As for Morph dataset, we randomly pick a number of
23 age classes from 16 years old to 38, each containing 31 images
as shown in Fig. 7(b). Then, on the selected FG-NET and Morph sets,
we uniformly crop the interested face regions from the raw images
and normalize them to 16 � 16 pixels based on eye centers. With
consideration of excluding the performance benefit brought by
feature representation, we directly extract raw pixels as feature
representation with dimension 256. Moreover, to mitigate the
small samples problem as possible, we adopt the PCA [14] on the
feature to extract 95 percent principle components as new feature
representation with resulting dimension of 10 and 18, on the
FG-NET and Morph, respectively.

On the generated aging datasets FG-NET and Morph, we
perform age estimation using related OR methods, in which we
uniformly adopt 2-fold cross-validation for optimal model



Table 2
Comparison (MAE ± STD) between different OR methods on the eight benchmark ordinal datasets.

Dataset KDLOR MOR OR-M2M OR-S2S SVOR-IMX QP-OrNCP

Pyrimidines 1.97 ± 0.09 1.96 ± 0.08 1.96 ± 0.08 2.00 ± 0.08 2.02 ± 0.10 1.98 ± 0.08
MachineCPU 1.16 ± 0.07 1.17 ± 0.05 1.17 ± 0.05 1.20 ± 0.04 1.17 ± 0.04 1.17 ± 0.06
Boston 1.15 ± 0.04 1.13 ± 0.04 1.14 ± 0.07 1.18 ± 0.04 1.14 ± 0.04 1.14 ± 0.06
Abalone 1.22 ± 0.06 1.20 ± 0.04 1.20 ± 0.10 1.26 ± 0.06 1.19 ± 0.03 1.17 ± 0.05
Bank 3.55 ± 0.03 3.52 ± 0.04 3.55 ± 0.04 – 3.58 ± 0.05 3.50 ± 0.06
Computer 1.23 ± 0.04 1.20 ± 0.03 1.15 ± 0.02 – 1.08 ± 0.02 1.08 ± 0.01
California 3.16 ± 0.02 3.15 ± 0.02 3.13 ± 0.02 – 3.14 ± 0.02 3.10 ± 0.03
Census 3.50 ± 0.03 3.50 ± 0.03 3.48 ± 0.05 – 3.47 ± 0.05 3.41 ± 0.03

Note: The ‘‘–’’ denotes that the results were not generated within 48 h in a computing platform with 16 GB memory and 4 CPU cores.
The results in bold are the best ones along each row.

(a) USPS (b) MNIST

Fig. 4. Some examples from USPS and MNIST.
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Fig. 5. Comparison of digit OR results on USPS.
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Fig. 6. Comparison of digit OR results on MNIST.
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Fig. 7. Some normalized examples from the FG-NET (a) and Morph (b), where the number under each image denotes its corresponding facial age.
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Fig. 8. Comparison of human facial age OR results on FG-NET.
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(b) Non-linear case

Fig. 9. Comparison of human facial age OR results on Morph.
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Fig. 10. Comparison (MAE with the standard deviation) of ensemble learning on human age estimation. Here, the Ensemble(SVM+SVOR-IMX) stands for the ensemble method
with the SVM and the SVOR-IMX as the binary and three ordinal classification methods, respectively.
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selection. The experimental results averaged over 5 random runs
are shown in Figs. 8 and 9, respectively. And it can be found from
them that,

1. In all cases, the MAEs yielded by our method QP-OrNCP are
correspondingly smaller than those by OR-M2M, OR-S2S,
KDLOR and MOR. More importantly, compared with the
state-of-the-art age estimation approach OHRank, our method
QP-OrNCP can yield quite competitive estimation results, espe-
cially on the FG-NET. The results above prove the effectiveness
and superiority of our learning strategy in performing ordinal
age estimation.

2. The MAEs of the methods on Morph are correspondingly about
2 up to 3 times larger than those on FG-NET, which implies that
the Morph dataset is relatively more difficult to identify than
the FG-NET.

4.4. QP-OrNCP with ensemble learning

Following the success of ensemble learning in OR [25], we here
consider to incorporate the QP-OrNCP as the ordinal classification
method in ensemble learning for OR. Specially, without loss of gen-
erality, we respectively take the binary SVM and the QP-OrNCP as
binary and three-class ordinal classification methods to construct
our ensemble model, coined as Ensemble(SVM+QP-OrNCP). To eval-
uate the effectiveness of the QP-OrNCP in promoting the ensemble
learning, we make experimental comparisons on the relatively
complex OR problem-human age estimation, and present the
comparative results in Fig. 10.

By making a comparison between Figs. 10(a) and 8(a), and
between Figs. 10(b) and 9(a), it can be found that:

1. The age estimation MAEs yielded by the ensemble methods are
significantly lower than corresponding those by the standalone
OR methods. It shows the superiority of ensemble strategy over
the standalone.

2. The MAEs of the Ensemble(SVM+QP-OrNCP) are mostly lower
than those of the Ensemble(SVM+SVOR-IMX), especially on the
Morph. It demonstrates that besides in the standalone OR
learning, our proposed OR strategy, i.e., the QP-OrNCP, is also
effective in promoting the ensemble based OR.

5. Conclusion

To perform better OR, in this work we proposed a novel strategy
to jointly learn the thresholds that separate two neighboring ordi-
nal classes across samples and class centroids through seeking for
an optimal OR projection direction along which all the samples are
distributed as in order as possible and simultaneously cater for a
nearest-centroid distribution for each class. We call such a learning
strategy ordinal nearest-centroid projection learning and for
efficiency of optimization, we further relaxed it to a quadratic
programming problem that in form covers the KDLOR and MOR
as its special cases. Through extensive experiments on synthetic
and real ordinal datasets, we demonstrated the effectiveness and
superiority of our strategy in either standalone or ensemble OR
learning.
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Appendix A

OR-M2M: Shares the same form of objective as QP-OrNCP of (7)
but has global ordinal constraints imposed just on class centroids,
formulated as

min
w;n

wT � Sw �wþ k �
XK

k¼1

X
p–k

Wkp � nkp

s:t: wTðXk � XlÞP ðk� lÞ � nkl

nkl P 0 k ¼ 1;2; . . . ;K; l ¼ 1;2; . . . ; k� 1

wTðXh � XkÞP ðh� kÞ � nkh

nkh P 0 k ¼ 1;2; . . . ;K; h ¼ kþ 1; kþ 2; . . . ;K

ð16Þ

where all the notations here have the same meanings as those in
(7).

OR-S2S: Shares the same form of objective as QP-OrNCP of (7)
but has global ordinal constraints imposed just on class samples,
formulated as

min
w;n

wT � Sw �wþ k �
XK

k¼1

X
p–k

XNk

i¼1

XNp

j¼1

Wkpij � nkpij

s:t: wTðxk
i � xl

jÞP ðk� lÞ � nklij

nklij P 0 k ¼ 1;2; . . . ;K; l ¼ 1;2; . . . ; k� 1

wTðxh
j � xk

i ÞP ðh� kÞ � nkhij

nkhij P 0 k ¼ 1;2; . . . ;K; h ¼ kþ 1; kþ 2; . . . ;K:

ð17Þ

The problems (16) and (17) are in form similar to (7), therefore,
both can be solved by the same way for (7).
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