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Abstract Non-negative matrix factorization (NMF) is a

popular feature encoding method for image understanding

due to its non-negative properties in representation, but the

learnt basis images are not always local due to the lack of

explicit constraints in its objective. Various algebraic or geo-

metric local constraints are hence proposed to shape the be-

haviour of the original NMF. Such constraints are usually

rigid in the sense that they have to be specified beforehand

instead of learning from the data. In this paper, we propose a

flexible spatial constraint method for NMF learning based on

factor analysis. Particularly, to learn the local spatial structure

of the images, we apply a series of transformations such as or-

thogonal rotation and thresholding to the factor loading ma-

trix obtained through factor analysis. Then we map the trans-

formed loading matrix into a Laplacian matrix and incorpo-

rate this into a max-margin non-negative matrix factorization

framework as a penalty term, aiming to learn a representa-

tion space which is non-negative, discriminative and local-

structure-preserving. We verify the feasibility and effective-

ness of the proposed method on several real world datasets

with encouraging results.

Keywords non-negative matrix factorization, factor analy-

sis, loading matrix, flexible spatial constraints

1 Introduction

Dimensionality reduction or subspace representation plays
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an important role in data analysis and preprocessing. Princi-

pal component analysis (PCA) [1] as a basic method for di-

mensionality reduction and de-noising has been widely used

in various disciplines due to its simplicity and efficiency. Af-

ter the eigenface [2] was proposed, PCA becomes much more

intuitive for understanding the image data. However, there

are many limitations of PCA, such as the lack of encoding

prior information of data and the simplicity of assumptions

made for data noise and manifold. To address these issues,

many variants of PCA were proposed, such as probabilistic

PCA [3] and structured sparse PCA [4], etc. In computer

vision, besides designing more complex models, we are in-

terested in whether the learnt basis vectors are interpretable.

Take face images for example, we may expect that each ba-

sis vector corresponds to a facial component such as nose or

eyes, while the whole face should be the combination of these

components.

Non-negative matrix factorization (NMF) [5] is a famous

work in representation learning. The main difference between

NMF and PCA lies in the former’s non-negative constraints

on basis matrix and coefficient matrix. It seems not to be a

complex model, but it is quite intuitive and consistent with

human cognition. Actually, NMF not only overcomes some

of the flaws of eigenface, but also can extract local basis im-

ages from the data under some conditions. For this reason,

NMF can be viewed as a parts-based representation [6] which

is widely used in data mining and image analysis [7–12].

However, implicit local constraints in NMF is insufficient by

themselves in practice. Prior knowledge of data or features is

significant for a good representation learning and many im-
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provements on NMF are inspired from the following two as-

pects.

Firstly, NMF is unsupervised, which means that the learnt

features may not be good for classification. Actually, the ob-

jective of NMF is to optimally reconstruct the data under non-

negative constraints, leading to a set of problem-independent

features blind to the class labels. To increase the discimi-

nativity of the learnt feature, one can either use Fisher dis-

criminant criterion [1] or max-margin constraints [13]. Par-

ticularly, various discriminative NMF models are introduced

based on the Fisher discriminant criterion [14–16] due to its

well-understood theoretical properties and good performance

in subspace representation. Accordingly, various methods for

the optimization of Fisher NMF [17–20] and for the measure-

ment of with-class and between-class matrix [15,21] are also

proposed. The max-margin constraints, on the other hand,

are classical method in support vector machines (SVM) [1],

but only recently is it embedded into the NMF framework

[22, 23]. These works utilize hinge loss to measure the dis-

criminative value of coefficient vectors but relax the non-

negative constraints on basis vectors.

Secondly, there lacks an explicit local constraint for NMF.

As a result, the local basis images are not unique [24] and

sometimes the basis images are not so local [25]. In fact, the

locality of basis vector is valuable for image processing —

it is well-known that parts-based representation is robust to

occlusion and illumination images [26–30]. Therefore, in-

tensive efforts have been made to embed explicit and rea-

sonable local structures into the basis images over the past

decade. According to Ref. [31], the spatial constraints used

by these works can be roughly divided into two categories:

1) structure-regularized sparsity or correlation, e.g., based on

the correlation between features [32], sparseness regulariza-

tion [25,33] or Hyper-graph [34]; 2) structure-embedded Eu-

clidean distance of pixels, e.g., using pixels density penalty

to constrain the relationship between entries in basis images

[35] or using L1-norm to measure the distance between adja-

cent pixels [36, 37].

Despite the partial success of the above methods, it is

worth mentioning that the requirement of good features for

discriminative power and locality plays quite different roles

[38,39]. Taking face images for example, suppose that a basis

image is about forehead, and this local structure is semantic

and coincident with human cognition, but it may be useless if

using it for gender classification, which makes the subspace

dimension corresponding to this basis vector unhelpful. Rep-

resentation with lots of useless dimensions is not efficient es-

pecially for the low-dimensional subspace. On the other hand,

without locality constraints, it is not easy to integrate useful

spatial structures into the model.

In this paper, we propose a flexible spatial constraint for

max-margin non-negative matrix factorization based on fac-

tor analysis. One major advantage of this method is that we

consider both the discriminative power and the locality of the

features at the same time, which is barely the case in the pre-

vious research. Particularly, compared with the related NMF

models, our model is superior in the following two aspects.

1) Representation is more robust and discriminative. Due

to the locality constraint, prior knowledge about the data is

integrated in basis vectors, yielding more interpretable rep-

resentation. Furthermore, an extra basis vector (i.e., the pro-

jection) is utilized to undertake the discriminative constraint,

such that the confliction goal between reconstruction and dis-

criminant on coefficient vectors can be resolved (see Section

3 for details).

2) The spatial constraint is more flexible. Our spatial con-

straint is based on a generative model on variables. We learn

independent local structures according to the correlation be-

tween variables and each latent variable, and embed these

into basis images. Meanwhile, different data result in dif-

ferent correlations. So our spatial constraints are adaptive to

data, which is more practical compared to the aforementioned

rigid methods.

This paper is organized as follows. Related work on NMF

is introduced in Section 2. The model and optimization

method is described in Section 3. Extensive experiments on

two face datasets are given in Section 4 and we conclude this

paper in Section 5.

2 Related work

In this section, we review the NMF method and some of its

variants with locality or discriminative constraints embedded.

Although the eigenface gives a nice explanation of PCA

for face image data, there are negative entries in basis images

which are difficult to explain. According to human cognition,

all the things are composed of parts. Each part is non-negative

and the whole thing is the non-negative combination of these

parts. Based on this insight, Lee and Seung proposed a non-

negative matrix factorization1):

1) In fact, the essential of NMF was proposed much earlier in chemometrics [40] and was reinvented by a Finnish group of researchers in the middle of the
1990s [41]. Lee and Seung popularized it and gave it a better explanation as NMF.
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min
B,hi

1
N

N∑

i=1

||xi − Bhi||22
s.t. B � 0, hi � 0,

(1)

where xi is an image, B is the basis matrix with non-negative

constraints, and hi is the non-negative coefficient vector of

xi on B. Due to the non-negative constraint, parts-based ba-

sis images can be extracted. This can explain, e.g., using a

set of gray-scale images, which are data points lying in the

positive orthant of feature space. Without loss of generality,

some points may lie on the coordinate axes. The objective of

NMF is then to find a set of vectors (i.e. basis vectors) in the

positive orthant to optimally reconstruct these data points. As

entries in coefficient vector are the weights for each basis vec-

tor, the basis vectors are mainly responsible for the structures

of data points. So there must be zero entries in basis vectors

to reconstruct those data points on the axes, and the localized

basis images would emerge from that.

However, the non-negative constraint on basis matrix B
and coefficient matrix H does not necessarily lead to parts-

based basis images. In order to ensure the locality of ba-

sis images, various of extra constraints are proposed. Local-

ized NMF (LNMF) [32] is one of the previous researches

imposing explicitly local constraints onto the objective of

NMF, focusing on the orthogonality between basis vectors

and the expressiveness of coefficient vectors, i.e., ||BTB||1 and

−trace(HHT ). Hoyer [25] proposed an indirect way to extract

local basis images, by constraining the sparsity of basis vec-

tors and coefficient vectors.

The spatial location of pixels in a two-dimensional image

is an important prior which is worth being exploited. Based

on the assumption that pixels adjacent in the image should

not be dispersed in basis images, Zheng et al. [35] proposed

to combine a pixel dispersion penalty with NMF. The pixel

dispersion penalty is measured as follows:

D(bi) = bT
i {

a∑

x=1

b∑

y=1

a∑

x′=1

b∑

y′=1

l([y, x], [y′, x′])×ey,xe
T
y′,x′ }bi, (2)

where [y, x] and [y′, x′] are two coordinates in basis im-

ages b2D
i respectively, l([y, x], [y′, x′]) is the L1-normdistance

measure, δ and ey,x are the indicator functions. Intuitively this

term ensures that if two pixels are adjacent in the images,

they should both be in the same local areas of basis images

and hence the responses of them should be large. Otherwise,

if the two pixels are far away from each other in the images,

only one of them could be in the local areas at most.

Instead of using the L1-norm to measure the distance of

all the pixels, Chen et al. [36] proposed a modified Neumann

discretization [42] to penalize the correlation of adjacent pix-

els [36], which is described as follows,

Dl
1 = pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0

−1 1

· · ·
−1 1

0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Dl
2 = pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0

1 −2 1

· · ·
1 −2 1

0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G2
m(b) =

∑

l=1,2

1
pl

pl∑

τ=1

||Dl
mb(τ,l)||2,m = 1, 2, (3)

where G2
m(b) is the penalty on the smoothness of the basis

vector b, pl, l = 1, 2 is the dimension of row or column,

and b(τ,l) is a sub-vector of b corresponding to either the τ-

th row or the τ-th column of the rectangle. Note that all these

work [35, 36] can be thought of as a rigid way to impose lo-

cality constraints since the spatial parameters have to be set

beforehand. Instead, the information about spatial regularity

of the data is learnt automatically in this work.

The information about the distribution structure of the

whole data set can also be useful in data representation

[43, 44]. Among others, discriminative NMF (DNMF) [15]

is a typical supervised non-negative matrix factorization. The

constraints are based on the Fisher discriminant criterion, i.e.,

the coefficient vectors of within-class should be close and

those of between-class should be far away from each other.

The within-class scatter S w and the between-class scatter S b

are defined as follows:

Sw =
1
C

C∑

i=1

1
ni

ni∑

j=1

(h j − ui)(h j − ui)T , (4)

Sb =
1

C(C − 1)

C∑

i=1

C∑

j=1

(ui − u j)(ui − u j)T , (5)

where C is the class number, ni is the data number of class i,

ui is the mean value of class i.

Another type of supervised NMF was based on the max-

margin constraint, i.e., max-margin semi-NMF (MNMF)

[23]. The discriminant is based on the hinge loss of coeffi-

cient vectors. Meanwhile, the non-negative constraints on ba-

sis vectors is relaxed, so it is called semi-NMF. By contrast,
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we do not make such relaxation, due to the fact that the non-

negativeness is a natural property for some data types (such

as face images considered here).

3 Max-margin non-negative matrix factoriza-
tion with flexible spatial constraints

3.1 The motivations and the proposed model

In this section, we give details on how to impose both the lo-

cality structure and discriminative constraints simultaneously

onto the NMF model.

Firstly, from the perspective of matrix factorization, data

and dimension is equivalent in data matrix X, hence NMF

could be regarded as not only data reconstruction with non-

negative constraints but also feature reconstruction. There-

fore, it is natural to use the method of Laplacian regulariza-

tion (e.g., [45]) to encode the preferred correlation between

features. Before giving the details of this, let us describe how

and what kind of discriminative constraints can be incorpo-

rated into the model.

Secondly, although many works on discriminative NMF

are based on the Fisher discriminant criterion, in our opin-

ion, this strategy has one limitation which is difficult to deal

with. That is, the discriminative constraints imposed on the

coefficient vectors through fisher criterion are inherently con-

flicting with the original data reconstruction constraints on

the same set of coefficient vectors by NMF objective. To un-

derstand this, we write the relationship between coefficient

vectors and basis images as follows [5],

Bkl = Bkl

∑

j

Xk jHl j

(BH)l j
. (6)

This equation shows that the coefficient vectors have a direct

influence on the structure of basis images. It turns out that the

discriminative constraints imposed on h make the model be

in favor of basis images with some spatial locality [46]. Un-

fortunately, this conflicts with the goal of data reconstruction

constrains of the original NMF model (Eq. (1)) which prefers

a global basis vector.

One way to address this issue is to use an alternative project

vector w to encode the discriminative information of the coef-

ficient vectors instead of penalizing them through scatter ma-

trix [15]. Actually this project vector can be thought of as an

extra basis besides B, which allows us to impose locality con-

straints on the basis images of NMF without worrying about

the aforementioned discriminativity-reconstruction dilemma.

With the above two aspects in mind, we propose the fol-

lowing max-margin non-negative matrix factorization with

flexible spatial constraints:

min
B,hi,(w,b)

1
2

∑

i

||xi − Bhi||22 +
α

k
trace

(
BT LB

)

+
∑

i

max(1 − yi(wThi + b), 0)

s.t. B � 0, hi � 0, ||w||22 � 1,

(7)

where xi and hi are respectively a data vector and its coeffi-

cient vector, L is the Laplacian matrix learnt for spatial con-

straints, α is the regularization parameter and k is the sub-

space dimension. Note that we use the hinge loss to maxi-

mize the function margins of coefficient vectors. This model

bears some similarity with that of max-margin semi-NMF

(MNMF) [23], but there are two major differences between

these two:

1) MNMF relaxes the non-negative constraint on basis

vectors and we do not. One reason for this is that for im-

age data, all the features are naturally non-negative, e.g.,

the local structures of a face in basis images should also

be non-negative. Hence in our opinion, preserving the non-

negativeness of basis vectors is of significant importance.

2) There is no explicit local constraint on MNMF. Actually

the relaxation of non-negativeness of basis vectors in MNMF

makes locality of learned basis images even worse. By con-

trast, our model enjoys a flexible spatial constraint on the ba-

sis images, learnt automatically from the data based on factor

analysis, as described below.

3.2 Learning flexible spatial constraints via factor analysis

In Section 2, we reviewed several methods to explicitly em-

bed spatial structures of image data into the NMF model.

However, these methods have one limitation in common: as

the position of pixels in images are fixed for different data,

the embedded spatial structures are essentially the same, in-

dependent of the content of images. Hence it is interesting

to investigate alternative methods with flexible spatial con-

straints adaptive to the data.

The key idea of our method is as follows. We think of

features as the realizations of a group of random variables,

and hence the local structures is actually the correlations of

these variables and we adopt the classic factor analysis (FA)

method [47] to capture such correlations. The FA explains

the observed covariance structures by assuming that the vari-

ables of data are generated by latent factors. Formally, it can

be formulated as follows:

x = f × Z + μ + ε

⇔ cov(X) = F × FT + Λε,
(8)
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where x is a data vector, μ is the mean vector of the data, ε is

called uniqueness and Λε is its covariance matrix, f is called

factor loadings which is a column of loading matrix F, while

in the second equation, cov(X) is the covariance matrix of

data, and Z is called factors (or latent variables). The factor

obeys N(0, I) and the uniqueness obeys N(0, σ2).

To derive the correlation among variables, one can read

them from loading matrix. Particularly, the variables corre-

sponding to higher loadings in each f vector are generated

by the same factor, and hence they can be thought of as cor-

related. In other words, each latent factor represents one lo-

cality structure of interest. However, the raw loading vectors

yielded from factor analysis are not ideal for our purpose, so

two further processing steps are needed.

3.2.1 Factor rotation

Usually more than one entry in each row of loading ma-

trix has high loading values, and this feature overlapping

would weaken the locality. Fortunately, due to the indepen-

dence between latent variables, the loading matrix is rotation-

invariant, and one can use this property to remedy this prob-

lem. In this work, we adopt the equamax method [47], which

aims to find a orthogonal rotation matrix such that each vari-

able is correlated with only one latent variable, as follows:

min
R,T

∑

i

∑

j

(R2
i j − μi)2

s.t. R = TF,TTT = TTT = I,
(9)

where R is the rotated loading matrix, T is the orthogonal ro-

tation matrix to be found, and μi is the squared mean loading

of each row of F.

3.2.2 Thresholding

After rotation, each loading vector (the same size of the input

image) encodes a particular spatial pattern of interest. We can

refine it using a thresholding method to exclude some of load-

ings (e.g., those lower than the predefined threshold) out of

the spatial pattern. However, choosing an appropriate thresh-

old value is difficult in general. Here we adopt a k-means-

based strategy with spatial information incorporated.

Specifically, we first choose the position corresponding to

the highest loading in each loading vector as the anchor point,

which can be viewed as the indicator of where the local struc-

ture is in a loading image. Then we construct a distance ma-

trix based on the L2-norm, encoding the pairwise distance

between the position of each pixel and the anchor point. The

distance matrix is further constructed to be a similarity matrix

S as follows,

S i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
||pi, j − p0||2 , if pi, j � p0;

1, otherwise,
(10)

where pi, j is the coordinate of a pixel in the loading image,

and p0 is the coordinate of the anchor point.

To this end, we augment each loading vector with the sim-

ilarity vector (i.e., the vectorized S) obtained above side by

side, and use the normal k-means algorithm to cluster these 2-

dimensional data elements into two clusters. Finally we bina-

rize them by setting all the data elements belonging to the first

cluster (i.e., with higher loading values) to 1 and those in the

other cluster 0. Note that there are other natural choices for

clustering, e.g., a good alternative worth trying is the mean-

shift clustering which finds the mode of distribution of values

in a loading vector, but this alternative is beyond the scope of

this work. Figure 1 illustrates the local structures (shown in

the light area) found using this k-means-based thresholding

method on the AR face dataset [48].

Fig. 1 Loading faces on the expression images of AR database, where the
light areas are the local structures found

3.2.3 Laplacian reguarlization

As the final step to impose flexible spatial constraints, we

need to map the transformed loading matrix to a laplacian

matrix used for regularization (c.f., Eq. (7)). Particularly, a

Laplacian matrix comes from a similarity matrix, that is,

L = D − A, (11)

where, L is the Laplacian matrix, A is a similarity matrix with

element Ai j and D is a diagonal matrix,

Di j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑

k

Aik, if i = j;

0, otherwise.
(12)

In our case, each loading vector fk represents a local struc-

ture of interest and we construct a separate similarity matrix

Ak for each of them, which is as follows,

Ak
i j =

⎧⎪⎪⎨⎪⎪⎩
1, if fk,i = fk, j = 1;

0, otherwise.
(13)
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where fk,i denotes the ith element of the vector fk. The equa-

tion means that any two elements of fk in the same local

structure are correlated and hence being similar to each other.

Suppose that we learn M latent factors from the data,

we accordingly construct M similarity matrices Ak, k =

1, 2, . . . ,M, one for each (Eq. (13)). These are further mapped

to M Laplacian matrices Lk, k = 1, 2, . . . ,M via Eq. (11).

Our next task is to use these matrices to impose the spatial

constrains onto the objective of NMF (c.f., Eq. (7)). Ideally,

different spatial structures should be imposed on different

basis images. Unfortunately, we cannot know which spatial

prior should be applied to which basis image if no further in-

formation is available. In this work, we take a simple average

pooling strategy and leave the more complex basis-specific

constraints problem to the future. Particularly, here we as-

sume that at least some of the basis images should meet the

requirement of the locality constraints, hence the final Lapla-

cian matrices L used for regularization can be calculated as

L =
1
M

∑

k

Lk.

In our implementation, a weighted average pooling strat-

egy is adopted,

L =
M∑

k=1

αkLk, (14)

where the weight αk is defined as follows,

αk =
d

Vk × Rk
, (15)

where d is the dimension of loading factors, Vk is the total

size of correlated features in the kth loading factor (i.e., the

number of elements being “1” in that factor) while Rk is the

number of connected regions. In other words, we prefer a lo-

cality constraint that has small number of correlated features

and small number of connected regions.

To this end, our laplacian regularization used for flexible

spatial constraints can be understood as follows,

tr
(
BTLB

)
=
∑

i

bT
i Lbi, (16)

=
∑

i

bT
i (

M∑

k=1

αkLk)bi, (17)

=
∑

k

αk tr(BT LkB). (18)

In words, we prefer the basis images B learnt by NMF to

satisfy every spatial constraint according to its quality.

The algorithm of learning Laplacian matrix is summarized

in Algorithm 1.

Algorithm 1 Learning Laplacian matrix for spatial contraints

Input:

Training Data X;

Steps:

1. Calculate loading matrix F (Eq. (8));

2. Perform factor rotation on F according to Eq. (9);

3. Normalize the rotated loading matrix (denoted as Frot);

4. Use k-means to cluster each column of Frot and do the thresholding to
find out spatial structures in each loading vector of Frot ;

5. Calculate similarity matrix Ak according to Eq. (13);

6. Map Ak to Laplacian matrix Lk via Eq. (11);

7. Calculate the weights of each loading faces via Eq. (15);

8. Derive the final Laplacian matrix L via Eq. (14).

3.3 Optimization

In order to simplify the optimization, we transform our model

to the following formulation:

min
B,hi,(w,b),{ξi}

1
2

∑

i

||xi − Bhi||22 +
α

k
trace

(
BT LB

)

+
1
2
||w||22 +

∑

i

ξi

s.t. B � 0, hi � 0, ξi � 0, yi(wT hi + b) � 1 − ξi,
i = 1, . . . , n. (19)

This objective can be alternatively optimized. Specifically, all

the variables are divided into three groups: the coefficient ma-

trix (H), variables about max-margin projection (w, b, ξi) and

the basis matrix (B). Two of them are fixed and the remaining

one is optimized alternatively.

3.3.1 Update the projection vector and the coefficient ma-

trix

As the basis matrix and the coefficient matrix can be initial-

ized via the method of matrix factorization, the basis matrix

and the coefficient matrix are fixed firstly. This is the inner

alternative optimization, and can be done in two steps:

• Update the projection vector and slack variables. When

the coefficient matrix and the basis matrix are fixed, the

objective is simply a standard support vector machine:

min
(w,b),{ξi}

1
2
||w||22 +

N∑

j=1

ξi

s.t. ξi � 0, yi(wT hi + b) � 1 − ξi, i = 1, . . . , n. (20)

• Update the coefficient matrix. When other variables are

fixed, the optimization of the coefficient matrix is trans-
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formed to quadratic programming:

min
{hi}

1
2

∑

i

||xi − Bhi||22
s.t. hi � 0, yi(wT hi + b) � 1 − ξi, i = 1, . . . , n, (21)

and the objective can be decoupled further because of

the independence of data:

min
h

1
2
||x − Bh||22

s.t. h � 0, y(wT h + b) � 1 − ξ. (22)

The Lagrangian of above objective function is:

L = ||x− Bh||2 − αT h− β[y(wT h− b)− 1+ ξ], α, β > 0,

(23)

where α and β are lagrangian multipliers, specifically α

lagrangian multipliers vector.

Under the KKT conditions, we get:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2BT Bh − 2BT x − α − βyw = 0,

1T h = 0,

y(wT h − b) − 1 + ξ = 0.

(24)

Transform Eq. (24) into matrix form and we get:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2BT B 1T y(wT h − b) − 1 + ξ

1T 0 0

ywT 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

α

β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

yb + 1 − ξ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

where 1 is a unit vector whose size is the same as h, 0
is the zero vector. Then we can derive h by solving Eq.

(25).

3.3.2 Update the basis matrix

The model is transformed to a non-negative matrix factoriza-

tion with spatial constraint:

min
B

1
2
||X − BH||2F +

α

k
trace

(
BT LB

)

s.t. B � 0. (26)

Due to the non-negative constraints, projected gradient de-

scent method is adopted to solve it.

Specifically, the gradient of Eq. (26) is:

Grad = 2BHHT − 2XT HT − 2αLB. (27)

So we get Bnew = max(B − λGrad, 0), where λ is the step

length.

The algorithm on max-margin non-negative matrix factor-

ization with flexible spatial constraints based on factor anal-

ysis is summarized in Algorithm 2:

Algorithm 2 Max-margin non-negative matrix factorization with flexi-
ble spatial constraints based on factor analysis

Input:

Training Data and parameter: Data Matrix X, the Laplacian matrix
about the spatial structure L, parameter of the regularization α;

Initialization: Initialize the basis matrix B0 and the coefficient matrix
H0, let t = 0;

Steps:

Repeat

Let s = 1, B = Bt , Hs = Ht;

Repeat

Fix B and Hs, estimate (ws+1 , bs+1) and {ξs+1i } via Eq. (20);

Fix B, (ws+1 , bs+1) and {ξs+1i }, estimate Hs+1 via Eq. (22);

s = s + 1;

Until reaches the maximal iteration number;

Let t = t + 1, Ht = Hs, wt = ws, bt = bs and ξti = ξ
s
i ;

Learning the new basis matrix Bt via (??);

Until Eq. (19) converges or reaches the max. iter. number

Return: Bt , Ht , {(wt , bt)}, {ξti }.

3.3.3 On the convergence of the algorithm

The objective is non-convex and usually we can only wish

to obtain a sub-optimal solution with local minimum. In our

implementation we initialize the algorithm using the method

of Ref. [35]. In addition, as it is a triple alternative optimiza-

tion and the results of inner alternative optimization are sen-

sitive to those of the outer alternative optimization, the max-

imal iteration number of inner optimization is set to be much

smaller than that of the outer loop. In experiments, we set the

iteration number of inner alternative optimization to 30, and

100 for the outer optimization. Figure 2 illusrates a typical

convergence curve of the objective function on the AR face

dataset.

4 Experiments

In this section, in order to demonstrate the effectiveness of the

learnt locality and discrimination, we give our experimental

results on two publicly available face datasets, i.e., the AR

face database [48] and the extended YaleB database [49] for

face recognition, USPS digit database [50] for handwriting

digit recognition and KTH [51] database for action recogni-

tion.
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Fig. 2 Convergence curve of the proposed model on the AR dataset

4.1 Databases and settings

• AR database [48] There are 126 people composed by 70

males and 56 females in AR database. Every person has 26

face images, where the first 13 images are taken under four

kinds of expression, three kinds of illumination and two kinds

of occlusion. The remaining 13 images are taken in another

time under the same condition. Here we use 100 people (50

males and 50 females) for experiments. All the images would

be cropped and down sampled to 25 × 25 in experiments.

• Extended YaleB database [49] There are 16 128 face im-

ages of 28 individuals in extended YaleB. The images were

taken under hine kinds of poses and 64 kinds of illumination

conditions. For illumination face images, the light source di-

rection with respect to the camera axis is at different degrees

azimuth and degrees elevation. We use illumination images

for experiments. All the images are down sampled to 20× 25

in pixel in our experiments.

• USPS digit database [50] The dataset contains 9 298 im-

ages of 16 × 16 recording handwriting digits from 0 to 9, as

shown in Fig. 3. Traditionally, it has been used in a splitting

of 7 291 images for training and 2 007 images for testing.

However, these two sets are actually collected in slightly dif-

ferent ways leading that the images in the test set are much

harder than those in the training set [52]. In order to get rid of

the impacts on local structures from outliers, we concatenate

both sets, randomly reshuffel the images and divide images

of each class into three parts. Two-thirds of images in each

class are for training and the rest part for test.

•KTH action database [51] This video database contains six

kinds of human actions(boxing, hand waving, hand clapping,

jogging, running and walking) performed by 25 subjects in

four scenarios: outdoors, outdoors with scale variation, out-

doors with different clothes and indoors. In our experiment,

we “naively” chosen (not time-scaled) nine frames from each

scenarios of the subjects. In order to align the frames better,

we extract bounding boxes of size 80 × 64 around the objects.

Part of derived images are shown in Fig. 4.

Fig. 3 Samples in USPS digit database

Fig. 4 Samples in KTH action database

For performance comparison, we use the original NMF

algorithm and its several variants, including LNMF [32],

NMF with sparseness constraints (NMFsc) [25], Spatial

NMF [35], Spatial non-negative component analysis (Spatial

NCA) [35], max-margin semi-NMF (MNMF) [22] and Fisher

non-negative matrix factrization (FNMF) [14].

In classification, we use SVM as the classifier. Since the

experiments are multi-class classification, one-versus-all cri-

terion is used. The labels of test coefficient vectors are pre-

dicted by max-win. Additionally, since FNMF is not suitable

for multi-class classification, all-vs-all strategy is specifically

used for FNMF.

Parameters of these methods are set to be same in both

databases, and described as follows: α in our method is set to

0.7; the structure constraints on basis images and coefficient

vectors in LNMF are 0.1; the sparsity degrees of the basis

vectors and coefficients are both 0.5 in NMFsc; the param-
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eter for pixel dispersion penalty is 0.1 in spatial NMF and

spatial NCA; and the parameter for S w and S b is 1 in FNMF.

4.2 Face recognition under illumination variations

The first series of experiments are about face recognition un-

der illumination variations, which is one of the main chal-

lenges for face system designers. Specifically, on the AR

database, we randomly choose six face images from each

subject with expression variations (but without any lighting

changes) for training and six faces with lighting changes for

testing. Figure 5 demonstrates some samples of one subject

for training and test, respectively.

Fig. 5 Samples for (a) training and (b) test in the AR database

While on the extended YaleB database, two groups of face

images with different lighting conditions are constructed re-

spectively for training and test. Particularly, we choose 19 il-

lumination images whose light source direction with respect

to the camera axis is less than 35 at degrees azimuth and ele-

vation for training, while the remaining 45 faces with differ-

ent lighting conditions for testing. Figure 6 illustrates some

face images on this dataset.

Fig. 6 Samples for (a) training and (b) test in the extended YaleB database

Figure 7 gives mean accuracies (of ten experiments in to-

tal) of various methods on the two databases as a function of

different subspace dimensions. It can be seen from the fig-

ures that the proposed method consistently performs better

than the compared methods on both databases. Particularly,

we have the following observations.

1) Compared with two NMF variants with spatial con-

straints, i.e., Spatial NMF [35] and Spatial NCA [35]:

The accuracy of our method is about 8.0% higher than

these two on the AR lighting subset (94.6% vs. 85.0%

and 85.9%), while on the extended YaleB lighting set,

our method is also superior to them by over 7.0% in

terms of accuracy. This reveals that although explicit

spatial constraints are useful, e.g., on the AR lighting

subset, the accuracy of the NMF baseline algorithm is

about 79.7%, which is much worse than both Spatial

NMF and Spatial NCA, our method with flexible spa-

tial constraints effectively improves the performance.

2) Compared with the two NMF variants with discrim-

inative constraints, i.e., Fisher non-negative matrix

factrization (FNMF) [14] and max-margin semi-NMF

(MNMF) [22]: The figure shows that exploiting super-

vision information is helpful to improve the discrimi-

native performance of the learnt basis, e.g, on the AR

subset, the methods of FNMF and MNMF respectively

improve the performance from 79.7% of the baseline

to 88.67% and 86.67%, while our method outperforms

both discriminatively trained NMF variants by 6.0%.

Additionally, one can see that the MNMF works worse

than both our method and FNMF, one possible explana-

tion is that it drops the non-negative constraints on the

basis, which are important for non-negative data type

such as image data.

3) Compared with other NMF variants, i.e., LNMF [32]

and NMF with sparseness constraints (NMFsc): Al-

though both LNMF and NMFsc methods improve per-

formance on both datsets over the original NMF algo-

rithm, such improvement is limited (less than 3.0% on

both datasets ) compared to other variants of NMF. Note

that both methods impose very general constraints on

the NMF model, e.g., basis orthogonality or sparsity,

without explicitly exploiting useful domain knowledge

(e.g., spatial structure for images) or side information

(e.g, data labels). On the other hand, our model takes

both factors into account and achieves the best perfor-

mance among the compared ones.

4.3 Face recognition with partial occlusions

Due to variety of occlusion size and randomness of occluded

parts, recognizing the identity of occluded face images is an-

other challenging issue on face recognition. In AR database,

the occlusion is a scarf or glasses in Fig. 8(a). Since there are

no occlusion images in extended YaleB database, partial oc-
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clusion is simulated by randomly removing some rectangular

patches from test samples (c.f., Fig. 8(b)). The size of oc-

clusion patches are 20% of the image size in extended YaleB

database.

Fig. 7 Performance comparison of our method with various methods. (a)
Mean accuracy on the AR database; (b) Mean accuracy on the extended
YaleB database

Fig. 8 Samples for test in (a) AR and (b) extended YaleB database

Mean accuracies on different subspace dimensions are

demonstrated in Figs. 9(a) and 9(b). Similar to face recogni-

tion on illumination, our method on partial occlusions outper-

forms compared methods. Particularly, for the two NMF vari-

ants with spatial constraints, the accuracies on AR occlusion

subset are 69.1% and 72.6%, while our accuracy is 80%. On

the extended YaleB occlusion set, our method is superior to

them by about 10.0%. Meanwhile, compared with NMF vari-

ants with discriminative constraints, the improvements of our

method are about 5% and 8% on the two subsets, respectively.

Due to the deficiency of discriminative and spatial constraint,

the performance of other NMF variants are not comparable

to that of discriminative NMF and spatial constrained NMF.

Overall, compared with the performances on the AR subsets,

all the methods have better accuracies on extended YaleB oc-

clusion set due to the simplicity of occlusion .

Fig. 9 Mean accuracy in (a) AR database and (b) extended YaleB database
on occlusion images

4.4 Digit recognition

Besides face recognition, digit recognition is another com-

mon application to check the robustness of representation.

The complexity mainly comes from the variants of digits

written by different people and similarities between some

specifical digits such as 2 and 7, 1 and 7, etc. Hence, the
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robustness of representation is more dependent on spatial

constraints and local structures. Meanwhile, each digit has

its own label, and the discriminative power is another vital

property for good representation. However, some variants of

NMF in comparison lack these considerations. Specifically,

LNMF and NMFsc do not have spatial constraints, while spa-

tial NMF is not so flexible. In this series of experiments, com-

parisons are mainly focused on NMF, Spatial NCA, FNMF,

MNMF and ours.

Tabel 1 gives the results of accuracies in USPS databas.

It can be seen that the proposed method performs the best

among the compared methods consistently over various di-

mensions of projected subspace. This reals that imposing

both spatial constraints and discriminative constraints are im-

portant for this task. Figure 10 shows the basis images learnt

by various methods. One can see that the basis images of

our method effectively capture the most discriminative local

structures of handwritten digits, while the local structures in

basis images of MNMF, for example, are difficult to under-

stand, due to the lack of non-negative constraints.

Table 1 Accuracies in USPS database/%

Dim. NMF Spatial NCA FNMF MNMF Ours

10 63.62 81.71 88.71 88.11 91.83

20 66.54 89.73 89.91 91.73 93.64

30 69.32 91.58 90.60 93.97 97.00

40 71.88 92.70 94.37 92.30 96.19

50 70.35 93.22 93.50 92.37 94.82

4.5 Action recognition

In this section, we show how to use middle-level descrip-

tors to improve the robustness of our method against mis-

alignment, which could be a major challenge for any algo-

rithm that tries to exploit the spatial layout of the objects.

Particularly, we conduct our experiments on the KTH action

database [51]. As shown in Fig. 4, the manually cropped im-

ages are not aligned well to each other, which may seriously

influence the performance.

To deal with this issue, we use the HoG features [53] as the

feature descriptor. The HoG features are extracted by creating

a non-overlapping spatial grid with size of 8 × 8, which im-

proves its tolerance against misalignment. However, the orig-

inal HoG representation is essentially built on concatenated

histograms over each cells, without preserving the spatial in-

formation of the images. Therefore, instead of concatenating

those local histograms at each cell, we transform each image

into nine feature maps according to the nine orientational bins

per histogram in the Hog space. For an input image with size

of H ×W in pixels, the size of the feature map is �H
8
� × �W

8
�.

Then, we run our algorithm separately on each of the nine

feature maps and fuse the results at the decision level.

Fig. 10 The basis images of different models in USPS digit database. (a)
NMF; (b) Spatial NCA; (c) FNMF; (d) MNMF; (e) ours

Tabel 2 gives the results of accuracies in KTH database. It

can be seen that compared to the gray-scaled features, work-

ing on the HoG features significantly improves the perfor-

mance despite of the misalignment on this dataset.

Table 2 Accuracies in KTH database

Method NMF MNMF Ours(gray) Ours(HoG)

Accuracy/% 67.1 71.6 28.7 74.2

4.6 Discussions

In this section, we give some discussions on details of the

proposed method.

4.6.1 The contribution of each component

The proposed method contains several components, mainly

about non-negative constraints and spatial constraints. Figure

11 illustrates the effect of removing each of these two con-

straints in turn while leaving the remaining in place (the com-

parison is thus against our full model) on the lighting datasets

of AR and extended Yale B, respectively. In general, each of

constraints is beneficial, but most performance loss occurs if
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both constraints are removed. This indicates that both of these

constraints are necessary in practice.

Fig. 11 Influence of the individual constraint of our model on the lighting
datasets of (a) AR database and (b) extended Yale B database

4.6.2 Quality of basis images in face recognition

The aim of representation learning is to learn a new efficient

representation of data. As the most relevant part to represen-

tation, basis vectors are crucial to the system performance.

There are two main aspects reflecting the quality of basis

vectors. One is the locality of basis images. If local basis im-

ages are semantically meaningful, the corresponding repre-

sentation would be more interpretable. Furthermore, locality

is vital to the robustness of representation. The other one is

related to the reconstruction error of basis images, which re-

flects how much characteristic of data is inherited to basis

vectors.

To this end, we use three kinds of criteria to measure the

quality of basis images: 1) Pixel based mean squared error

(PMSE). PMSE is defined as mean squared error (MSE) di-

vided by the pixel number to measure the mean reconstruc-

tion error for each pixel. Therefore the smaller PMSE is, the

better it is for reconstruction; 2) Sparseness degree(SD) [25].

SD measures the average number of zero entries in basis

vectors. Sparseness is the prerequisite of locality but not all

sparse basis images have local structures; 3) Pixel dispersion

degree (PDD) [35]. PDD measures the spatial compactness

of variables in basis vectors. The smaller PDD becomes, The

more compact the response regions are in basis images. Note

that locality requires that the neighboring entries in basis im-

ages should be compactly distributed, and hence the density

of high intensity variables in basis vectors could indirectly

reflect the locality.

Additionally, one can jointly use SD and PDD to measure

the locality of basis vectors. Specifically, a big SD value and a

small PDD value usually indicate scattered structures in basis

images, while a big PDD value and a small SD value could

mean a big connected region in basis images. Additionally,

in order to merge all these quality measurements, we define

quality of basis (QoB) as QoB = normalized PMSE + nor-

malized PDD − normalized SD, and the smaller the better.

Considering the negativity of basis images of MNMF, its

quality is not measured here. Meanwhile, since the basis im-

ages of Spatial NCA and Spatial NMF are quite similar, we

choose Spatial NCA as the representation of NMF with spa-

tial constraint because of its better performance. Since it is

difficult to obtain locality and good reconstruction jointly in

the low-dimensional subspace, experiments in this part are

conducted on the subspace dimensions of 10 and 30, respec-

tively. Tables 3 and 4 give the results of basis images in

AR database and extended YoleB database, and Figs. 12 and

13 demonstrate all the basis images learnt by the compared

methods.

Fig. 12 The basis images of different models in AR database: (a) NMF,
(b) LNMF, (c) NMFsc, (d) Spatial NCA, (e) Spatial NMF, (f) FNMF, (g)
MNMF, (h) ours



Dakun LIU et al. Max-margin non-negative matrix factorization with flexible spatial constraints based on factor analysis 13

Table 3 Analysis on basis images in AR database

Method NMF LNMF Spatial NCA FNMF Ours

PMSE 125 1 532.7 1 003.8 1 450.31 363.1

SD 0.282 3 0.63 0.548 0.672 7 0.61

PDD/106 8.22 32.2 3.72 33.7 29.33

QoB 0.034 0.793 2 –0.024 3 0.713 8 0.06

Table 4 Analysis on basis images in extended YaleB database

Method NMF LNMF Spatial NCA FNMF Ours

PMSE 317.18 1 242.1 1 046.95 1 251.71 511.4

SD 0.350 6 0.645 3 0.583 4 0.603 3 0.480 8

PDD/107 8.19 4.45 0.745 5.10 1.85

QoB 0.500 5 0.385 8 0.061 1 0.462 6 0.006 0

Fig. 13 The basis images of different models in extended YaleB database.
(a) NMF; (b) LNMF; (c) NMFsc; (d) Spatial NCA; (e) Spatial NMF; (f)
FNMF; (g) MNMF; (h) ours

Several observations can be made from these results:

1) Spatial constraint is an efficient way to derive local ba-

sis images. To measure the locality, we could use the

difference of normalized PDD and normalized SD. It

is found that the NMF variants with spatial constraints

have better locality. Specifically, the locality values of

these methods (i.e.,NMF, LNMF, Spatial NCA, FNMF,

and ours) are respectively 0.15, 0.11, –0.67, 0, –0.04

on AR database, and 1, –0.5, –0.7, –0.31, –0.35 on

extended YaleB database. From this, we see that spa-

tial NCA always has the best locality value on the two

databases, while our method ranks the second and third

best on the two databases respectively.

2) Flexibility of spatial constraints leads to self-adaptive

basis images. For Spatial NCA and Spatial NMF,

the spatial constraints are the same on the two face

databases. This explains why their basis images are

similar to each other on both databases. Instead, our

method learns different local structures on different

datasets.

3) Non-negative constraints on basis images are important

for face images. As there are negative entries in the ba-

sis vectors of MNMF, the local structures are immersed

in the images and the locality is unable to measure.

especially on the Extended YaleB database, the local

structures of face images are nearly vanished.

5 Conclusion

In this paper, a max-margin non-negativematrix factorization

method with flexible spatial constraints is proposed. One of

the major advantages of this method is that the spatial con-

straints for non-negative matrix factorization are learnt flexi-

bly from the data. The spatial relationship is derived from the

statistical relationship and spatial distance between features.

We show that the learnt spatial constraints are adaptable to

the data and could be used for some middle-level descrip-

tors, not just gray-scaled images. The second advantage of

this model is that it combines the local constraints and dis-

criminative constraints jointly. Due to the local constraints,

prior knowledge about the data could be integrated into ba-

sis vectors, yielding more interpretable representation. Mean-

while, based on the max-margin criterion, an extra basis vec-

tor is learnt to undertake the discriminative constraint, which

effectively resolves the confliction goal between low recon-

struction error and high discriminative power on coefficient

vectors, leading to better locality of basis vectors and smaller

reconstruction error. The feasibility and effectiveness of the

proposed method is verified extensively on several real world

datasets.
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