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Abstract

The age sequence of human beings exhibits two striking characteristics: ordinal
in age values and similar in facial appearance of neighboring ages. Although
it has been demonstrated that such ordinality especially the neighboring sim-
ilarity has positive influence on age estimation, existing approaches have yet
not simultaneously taken the two types of information into the estimation. In
this paper to conduct age estimation with considering both the ordinality and
the neighbor similarity which we call soft-age-contribution (SAC), we take the
widely used discriminant method LDA and the least squares regression (LS) as
the research baseline, respectively. Firstly, we construct inequality-based large
margin ordinal constraints and equality-based ordinal regression constraints and,
respectively, incorporate them into LDA and LS to develop their respective or-
dinal counterpart, coined as OrLDA and OrLS. Next, in order to utilize the
SAC information, we formulate two types of membership function to depict
such neighboring similarity and embed them into OrLDA and OrLS, yielding
soft and ordinal variants of LDA and LS, called SAC-OrLDA and SAC-OrLS in
which both the ordinality and the neighboring similarity of ages are considered.
Finally, through experiments on benchmark aging datasets, we demonstrate the
effectiveness of our strategies in utilizing the two types of information to improv-
ing age estimation. In addition, we also quantitatively explore the similarity of
neighboring ages, finding that generally about neighboring four years are similar
in facial appearance to each other.

Keywords: age estimation; neighboring similarity; ordinal relationship;
discriminant analysis; least squares regression

1. Introduction

Human face carries a large amount of biological information, such as age,
gender, race, facial expression, and the condition of physical health, etc. As an
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important facial trait, the age information has been used in a wide range of real
world applications, such as web security control (Guo et al., 2008; Lanitis et al.,
2004), ancillary identity authentication (Jain et al., 2004), and advertisement
recommendation (ROMANO JR and FJERMESTAD, 2006), etc.

In order to conduct age estimation based on human face, a variety of ap-
proaches have been proposed to date. When we consider each age as a separate
class, the age estimation can be performed under ordinary classification frame-
work. For example, Lanitis et al. (Lanitis et al., 2004) extracted AAM features
from facial images and respectively applied the nearest neighbor classifier and
artificial neural networks for age estimation and achieved success to some extent.
Moreover, Ueki et al. (Ueki et al., 2006) conducted age group classification by
building Gaussian mixture models after discriminative dimensionality-reduction
and received promising results respectively for male and female on several fa-
mous aging datasets. More recently, Alnajar et al. (Alnajar et al., 2012) em-
ployed the soft coding to extract codebooks for age group classification and
received better estimation on an unconstrained real-life dataset than the hard
coding approaches. And Sai et al. (Sai et al., 2015) even used the extreme
learning machines to perform age group estimation and obtained competitive
results. Actually, the age estimation is more of a regression problem than a
generic multi-class classification due to the continuity of aging. According to
this characteristic, Lanitis et al. (Lanitis et al., 2002) established a quadratic
function to fit the ages with facial images represented by AAM features. Fu et
al. (Fu et al., 2007) borrowed the multiple linear regression to learn an aging
prediction function in the manifold space. And Luu et al.(Luu et al., 2009)
employed the off-the-shelf ξ-SVR (Vapnik, 1998) for aging function learning.

Although the methods afore-mentioned can yield age estimation with accu-
racy to different extents, they ignore the fact that there exists natural ordinality
among the ages. As illustrated in Figure 1, the facial appearance of 12 years old
is older than that of 7, but younger than that of 16. To capture such a char-

Figure 1: Facial age range of one instance from FG-NET dataset, where the
label below every image represents its facial age.

acteristic into estimation, Li et al. (Li et al., 2012a) proposed a ordinal metric
learning method for age estimation, in which the ordinal relationships of ages
are incorporated into the metric process and on FG-NET they obtained compet-
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itive accuracy. Moreover, they (Li et al., 2012b) took the ordinality-preserving
capability of the features as a criterion to reduce dimensionality and conducted
age regression with much better results. More recently, to represent the ordinal
characteristic of an aging range, Chen et al. (Chen et al., 2013) proposed the
strategy of “cumulative attribute” coding to depict the ordinal characteristic
of ages, and by this way on the benchmark aging datasets they obtained more
competitive age estimation results.

Actually, by comparing the facial appearance of facial images at close ages
in Figure 1, we can find that the closer the ages, the more similar the facial
appearance is. For example, the facial appearances of 5 and 12 years old both
are quite similar to that of 7 years, compared with the similarity between 16
years and 7 years. In other words, neighboring ages have high similarity in fa-
cial appearance, which we call soft-age-contribution (SAC). According to such
a characteristic, Liu et al. (Liu et al., 2014) collected large quantities of web
human face images, and manually labeled them with age ranges rather than
exact ages to expand the aging dataset they had, and based on the expanded
aging dataset they obtained improved estimation results using the ε-SVR. To
take the similarity information of neighboring ages into the learning, Geng et al.
(Geng et al., 2013) presented the label distribution concept, which essentially is
similar to the SAC in concept. Using the theorem of Bayesian probability and
the maximum entropy, they transformed the problem of automatic age predict-
ing into age label distribution learning, named IIS-LLD. However, their model
holds under the assumption that the aging distribution is consistent with the
assumed entropy condition, which may not hold in reality. To get free from such
an assumption, they (Geng et al., 2013) further employed a three-layered neural
network (NN) to generate an optimization objective similar to that in IIS-LLD,
called conditional probability neural network (CPNN). Although the conditional
aging contribution assumption in IIS-LLD is no longer required for CPNN, the
solution trained by NN is usually just locally optimal and the learning process
of NN to converge is seriously time-consuming. What is worse is that their way
of using the label distribution information (or say the SAC) is not flexible to
be extended in other models outside of their framework. Practically speaking,
it will be preferable if the SAC information could be depicted by an analytical
formulation. Along this line, Gao et al. (Gao and Ai, 2009) manually designed
three kinds of age-group membership functions (as shown in Figure 2) to take
the SAC information into the discriminant analysis (i.e., LDA) for age-group
estimation. Although on some datasets such as the FG-NET, they obtained
competitive results than the traditional LDA, several concerns are posed: On
the one hand, the age-group membership functions manually designed may be
not consistent with biological distributions of the ages, thus misleading the es-
timation; On the other hand, besides the SAC characteristic afore-mentioned,
there also exist ordinal relationships among the ages.

To take both the ordinality and the SAC information into age estimation,
in this work without loss of generality we adopt the classical LDA (Li et al.,
2006) and the least squares regression (LS) (Geladi and Kowalski, 1986) as the
base method, respectively. Firstly we model their specific ordinal constraints to
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Figure 2: Three kinds of age-group membership functions originally shown in
(Gao and Ai, 2009).

capture the ordinality of the ages to develop their respective ordinal variants,
called OrLDA and OrLS, and then formulate two kinds of membership functions
to depict the SAC relationships and thus develop the final models, SAC-OrLDA
and SAC-OrLS, by embedding both the ordinal constraints and the SAC terms
into the base. Finally, through experiments we demonstrate the effectiveness of
the proposed strategies.

The main contributions of the work are as follows:

• According to the model structure of LDA and LS, construct inequality-
based large margin ordinal constraints and equality-based ordinal regres-
sion constraints and, respectively incorporate them into the methods to
develop their ordinal counterparts, coined as OrLDA and OrLS.

• Formulate two kinds of membership function to depict the similarity of
neighboring ages (or say SAC), and embed them into the OrLDA and OrL-
S, yielding the models considering both the ordinality and the similarity
of ages, called SAC-OrLDA and SAC-OrLS.

• Conduct experiments to validate the effectiveness of the proposed strate-
gies in improving age estimation, and more importantly, quantitatively
explore the similarity degree of neighboring ages.

The rest of the paper is organized as follows. In Section 2, we briefly review
the ordinary LDA and LS, respectively. Then, according to the structure of the
model, we design specific ordinal constraints and thus propose ordinal variants
of the LDA and LS, i.e., OrLDA and OrLS, by imposing the ordinal constraints
in Section 3. In Section 4, we further incorporate the SAC information to
OrLDA and OrLS to develop their soft counterparts SAC-OrLDA and SAC-
OrLS. Experimental results and analyses are reported in Section 5. Finally, we
conclude the paper in Section 6.
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2. Review of ordinary LDA and LS

Before introducing our research, let us briefly review the ordinary linear
discriminant analysis (LDA) and the least squares regression (LS), respectively.

2.1. LDA

Given a set of N samples {(xi, yi)}Ni=1 with xi ∈ <d being the instance
belonging to K classes and yi ∈ < the label, then the mean vector mk of the
k-th class can be obtained by mk = 1

Nk

∑
xik, where Nk is the number of

samples in the k-th class, and the total mean of samples can be calculated by
m = 1

N

∑
xi. The LDA aims to find a projection direction along which the total

intra-class scatters are compressed while the inter-class scatters are as separated
as possible, i.e., the LDA is to find a projection direction w ∈ <d×1 along which
the following objective can be minimized (Li et al., 2006)

minimize J(w) =
wTSww

wTSbw
. (1)

where Sw =
∑K
k=1

∑
x∈Xk

(x−mk)(x−mk)T stands for the intra-class scatter

matrix, and Sb =
∑K
k=1Nk · (mk − m)(mk − m)T the inter-class scatter ma-

trix. By solving objective (1) through generalized Rayleigh Quotient (Bathe and
Wilson, 1976), we can obtain the optimal projection direction w.

2.2. LS

The least squares regression (LS) (Geladi and Kowalski, 1986) aims to seek
for a projection vector w ∈ <d by minimizing the following mean-squared errors

minimize J(w) =

N∑
i=1

‖ wTxi − yi ‖2, (2)

or an equivalent form

minimize J(w) = wTXXTw − 2wTXY T + Y Y T , (3)

where X ∈ <d×N and Y ∈ <1×N denote the instances and the ground-truth
regression values, respectively. Actually, the last term in (3) could be omitted
due to its irrelevance to the w.

3. Ordinal variants of LDA and LS: OrLDA and OrLS

From equations (1) and (2), we can find that neither the LDA nor the LS
can well suit for such ordinal estimation problems as human age estimation,
because of their ignorance of the ordinal characteristic of the problems. To this
end, according to their model structure, in this section we first design their
specific ordinal constraints and then incorporate them into the original LDA
and LS to develop their ordinal counterparts, coined as OrLDA and OrLS, to
cater for ordinal estimations.
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3.1. Ordinal LDA: OrLDA

From (1), it can be found that for a multi-class discriminant projection,
LDA just concerns to find a projection direction along which the ratio of the
projected total intra-class scatters over the inter-class scatters is minimized,
but has not considered the ordinal relationships between such data as human
ages when applied in such ordinal problems. As a result, it may finally meet a
projection direction satisfying the maximal discriminant principle but violating
the ordinal relationships of the data, as illustrated in Figure 3.

Figure 3: An illustration of two projection directions for ordinal classes. w1 is
the direction obtained by LDA, along which the ordinal relationships among the
classes are disordered, while along w2 they can be preserved well.

According to the analyses above, we propose to impose ordinal constraints
on the class-mean of the data to guide for seeking a projection direction along
which to preserve the ordinal orders of the classes while as much abiding the
discriminant principle as possible, and the developed ordinal variant of LDA,
coined as OrLDA, can be formulated as

minimize J(w, ξ) =
1

2
wT (Sw −

λ1
2
Sb)w + λ2

K−1∑
k=1

ξk

s.t. wT (mk+1 −mk) ≥ 1− ξk, k = 1, 2, ...,K − 1,

ξk ≥ 0, k = 1, 2, ...,K − 1,

(4)

where Sw and Sb are the intra-class and the inter-class scatter matrices, re-
spectively as defined in (1), mk, k = 1, 2, ...,K, denotes the mean vector of the
k-th class, and λ1 and λ2 are two nonnegative trade-off parameters controlling
the balance between the structure risk and the empirical risk. In consideration
of the degree of margin between two neighboring classes might be unequal, we
introduce slack variables to regularize the solutions.1

1It is worthwhile to note that the proposed OrLDA in (4) is essentially different from the
KDLOR (Sun et al., 2010), in both the objective and the form of constraints. In KDLOR, it
is assumed that the degree of margins between two neighboring classes is equal, which may
be inconsistent with actual classes distributions.
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The objective of OrLDA in (4) is a convex quadratic programming (QP)
problem, provided that the sub-term of Sw− λ1

2 Sb is positive semi-definite (PS-
D). Actually, both the Sw and Sb are PSD by definition, thus by tuning the
trade-off parameter λ1, this assumption could hold. So, it could be optimized
using off-the-shelf QP algorithms such as SMO (Boser et al., 1992). Definite-
ly, we can also solve it efficiently through deriving its dual problem via the
Lagrangian theorem as

minimize J(α) =
1

2
αTMT (Sw − λ1Sb)−1Mα−

K−1∑
k=1

αk

s.t. 0 ≤ αk ≤ λ2, k = 1, 2, ...,K − 1,

(5)

where M = [m2 −m1, ...,mK −mK−1]. Obviously, the problem (5) with dual
variable vector α of length K − 1 is relatively easier to optimize with less com-
putational complexity than the primal problem (4) with variables (w, ξ). After
obtaining the α by solving (5), we can obtain the primal variable w in (4) by

w = (Sw −
λ1
2
Sb)
−1Mα.

3.2. Ordinal LS: OrLS

Analyzing the ordinary LS formulated in (2), it can be found that the LS
aims to seek a projection direction along which the squared absolute residual
between the regressed and the ground-truth values is minimized. In this sense,
when LS is employed to perform ordinal estimation, the ordinal relationships
among the ordinal data can not be preserved, due to that we can make regression
to approach the true values along two directions, i.e., along the ordinal direction
or the reverse direction, as illustrated in Figure 4. In Figure 4, the actual order

ki =y

directionorder 

i∆ i∆

ii ky ∆−=−
ii ky ∆+=+

1y += kj

j∆ j∆
jj ky ∆−+=− 1

jj ky ∆++=+ 1

|| i
±−=∆ ii yy 

|| j
±−=∆ jj yy 

Figure 4: An illustration of LS for ordinal data regression, where “Mi” (“Mj”)
denotes the regression residual between the ground-truth yi (yj) and the re-
gressed value ŷ+i (ŷ+j ) along the order direction or ŷ−i (ŷ−j ) along the reverse
order direction.

relationship is yi = k smaller than yj = k + 1 by 1. However, the regressed
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order by LS might be ŷ−j smaller than ŷ+i . Consequently, the original order
relationships of the data are disordered. To handle this problem, according to
the structure of LS we introduce the equality ordinal constraints into (3) (it
is equivalent to (2)) and thus develop its ordinal counterpart, coined as OrLS,
written as

minimize J(w, ξ) = wTXXTw − 2wTXY T + Y Y T + λ

K∑
k=2

Nk∑
i=1

(ξik)2

s.t. wT (xik+1 −mk) = 1− ξik+1, k = 1, 2, ...,K − 1; i = 1, 2, ..., Nk+1,

(6)

where xik+1 denotes the i-th training sample from class k+1, mk the mean vector
of the k-th class, and the meanings of X, Y and M are the same as that in (3)
or (5). Note that slack variables ξ here are not required to be nonnegative
and they are squared minimized in the objective function. Fortunately, the
regression projection vector w of (6) can be obtained analytically as

w =
(
XXT + λ

K−1∑
k=1

Nk∑
i=1

(xik+1 −mk)(xik+1 −mk)T
)−1

·
(
XY T + λ

K−1∑
k=1

Nk∑
i=1

(xik+1 −mk)
) (7)

It is worthwhile to point out that although ordinal constraints are incorpo-
rated into the ordinary LS to develop its ordinal counterpart, a mathematically
analytical solution still can be obtained. This attractive property is crucial in
practical applications, especially those sensitive to computational complexity.

Remarks
Comparing the ordinal constraints of OrLDA in (4) and OrLS in (6), we

can find that the main difference lies in the form of constraints: inequality con-
straints for the OrLDA and equality constraints for the OrLS. Taking inequality
ordinal constraints into LDA and equality ordinal constraints into LS for OrL-
DA and OrLS is due to the following considerations, respectively. As for LDA,
according to the claim that large between-class margins can boost the general-
ization ability of classifiers (Agresti, 2010; Zhang and Zhou, 2013), so to make
the compressed sets of data of different classes to be separated apart as far as
possible while arranged in an ordinal order, it is desirable to impose ordinal
inequality constraints on the classes to perform ordinal discriminant learning.
As for LS, it is a regression approach and aims to make the regression residual
minimal between the ground truth and regressed values. So the large margin
ordinal constraints for LDA are no longer suitable for LS, instead, we are expect-
ed to impose ordinal constraints on the regression values without increasing the
regression residuals, as illustrated in Figure 4. In consideration of the analyses
above, we propose to impose equality ordinal constraints between data points
of one class and their neighboring class center (or say class mean) with fixed
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margin 1, and in order to regularize the solution space, we also introduce slack
variables in the constraints and consequently obtain the OrLS formulated in (6).

4. Soft variants of OrLDA and OrLS: SAC-OrLDA and SAC-OrLS

Besides the ordinal relationships among the ages, next we are in position to
introduce the SAC information into age estimation by incorporating the simi-
larity of neighboring ages (i.e., the SAC information) into OrLDA and OrLS,
respectively. Before that, let us firstly define two types of SAC membership
function that will be embedded into our ordinal LDA/LS to achieve the goal of
performing age estimation with further considering the similarity of the ages,
besides the ordinal relationships.

4.1. SAC membership function

),( ikSd

ik − ik +

dk − dk +k
age

ik − ik +

k

),( ikSσ

age

function Triangle (a) functionGaussian  (b)

Figure 5: Two types of SAC membership function.

As illustrated in Figure 1, neighboring ages exhibit similarity in facial ap-
pearance, and the closer the ages, the more similar the facial appearance is. Ac-
cording to such an observation (i.e., the SAC characteristic of ages), we design
two types of membership function to depict the SAC and call them Triangle
membership function (TF, Sd(k, i)) and Gaussian membership function (GF,
Sσ(k, i)), shown in Figure 5 (a) and (b), respectively, and formulate them as

Sd(k, i) =
max{(d− |i− k|)/d, 0}∑K
i=1max{(d− |i− k|)/d, 0}

(8)

and

Sσ(k, i) =
e− (k−i)2

σ∑K
i=1 e

− (k−i)2
σ

, (9)

where parameters d and σ play a role in controlling the age span of SAC, in TF
and GF, respectively. The Sd(k, i) or Sσ(k, i) depicts the normalized similarity
between age k and i.

It is worth pointing out that although so-called label distributions introduced
in (Geng et al., 2013) are in concept similar to our TF and GF, their formulations
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are not presented at all and are learned by assumption-based entropy learning or
highly time-consuming neural networks training, more importantly, their way of
considering the label distributions might not be flexible to be extended in other
methods outside their framework. As a contrast, the membership functions
explicitly formulated in (8) and (9) can be easily embedded into existing methods
including the OrLDA and OrLS.

4.2. Soft OrLDA: SAC-OrLDA

To take the SAC information into discriminant age estimation besides the or-
dinal constraints, we come to achieve this goal by embedding the SAC member-
ship function, either TF or GF, into (4) and thus generate its soft counterpart,
coined as SAC-OrLDA, as

minimize J(w, ξ) =
1

2
wT (SSACw − λ1

2
SSACb )w + λ2

K−1∑
k=1

ξk

s.t. wT (mSAC
k+1 −mSAC

k ) ≥ 1− ξk, k = 1, 2, ...,K − 1,

ξk, k = 1, 2, ...,K − 1,

(10)

where

SSACw =

K∑
k=1

K∑
j=1

∑
x∈Xj

S(k, j) · (x−mj)(x−mj)
T ,

SSACb =

K∑
k=1

K∑
j=1

S(k, j) ·Nj · (mj −m)(mj −m)T ,

and

mSAC
k =

K∑
j=1

S(k, j) ·mj .

The SAC membership function S(k, j) in (10) can be either the TF or GF,
or even other valid membership functions. The problem of (10) in form is the
same as (4), thus we can directly borrow the implementation for OrLDA to solve
it.

4.3. Soft OrLS: SAC-OrLS

Similarly, we also introduce the SAC information into OrLS by embedding
the membership function into (6) and consequently obtain the remodeled soft
counterpart, coined as SAC-OrLS, formulated as

minimize J(w, ξ) = wTXSSAC1 XTw − 2Y SSAC2 XTw + Y SSAC3 Y T + λ

K∑
k=2

Nk∑
i=1

(ξik)2

s.t. wT (xik+1 −mSAC
k ) = 1− ξik, k = 1, 2, ...,K − 1, i = 1, 2, ..., Nk+1,

(11)
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where

SSAC1 =


S1
11

S1
22

. . .

S1
KK


N×N

,

S1
ii =


∑K
k=1 S(i, k)

. . . ∑K
k=1 S(i, k)


Ni×Ni

;

SSAC2 =


S2
11 S2

12 · · · S2
1K

S2
21 S2

22 · · · S2
2K

...
...

. . .
...

S2
K1 S2

K2 · · · S2
KK


N×N

,

S2
ij =


S(i,j)
Ni

· · · S(i,j)
Ni

...
. . .

...
S(i,j)
Ni

. . . S(i,j)
Ni


Ni×Ni

;

SSAC3 =


S3
11

S3
22

. . .

S3
KK


N×N

,

S3
ii =


∑K
k=1 S(k, i)

. . . ∑K
k=1 S(k, i)


Ni×Ni

.

Note that the third term Y SSAC3 Y T in the objective of (11) actually can be
omitted, due to that it does not affect the objective optimization. Similar to
the OrLS, there also exists analytical solution for the w in (11) as

w =
(
XSSAC1 XT + λ

K−1∑
k=1

Nk∑
i=1

(xik+1 −mSAC
k )(xik+1 −mSAC

k )T
)−1

·
(
X(SSAC2 )TY T + λ

K−1∑
k=1

Nk∑
i=1

(xik+1 −mSAC
k )

)
.

(12)

5. Experiments

In this section we conduct experiments to make evaluations on the proposed
methods. To be specific, we first make an introduction on the human aging
datasets that will be used in the experiments and the experimental settings,
then on the datasets we perform experiments to detailedly evaluate the proposed
methods and explore the similarity relationship of the ages.
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5.1. Datasets and Settings

Datasets: In this work we conduct human age estimations on two commonly
used benchmark datasets, i.e., the FG-NET and Morph. The FG-NET consists
of 1,002 facial images from 82 individuals of the European, and the age ranges
from 0 to 69 years. As for the Morph, it contains 1,690 images of about 631
persons mainly from the Africa and Europe, with the age ranging from 15 to
68 years. Image examples from the two datasets are exhibited in Figure 6,
respectively.

( )a

( )b

Figure 6: Image examples from the FG-NET (the top row) and the Morph (the
bottom row).

Settings: Analyzing the age distributions of the two datasets, i.e., FG-NET
and Morph, it can be easily found that they are imbalanced, even some ages
are associated with no samples, as shown in Figures 7 and 8, respectively. As a
result, to make fair comparisons with such methods involved with sample class-
mean such as LDA and KDLOR (Sun et al., 2010), we take an age range of 0 to
55 years and 15 to 56 years, generating 56 and 42 age classes from the FG-NET
and Morph, respectively for experiments. Then, we adopt the AAM method
(Cootes et al., 1998) to extract 95 components from the selected aging datasets
as the feature representation. And, we also make experimental comparisons for
the proposed methods with several representative ordinal estimation approach-
es including the SVOR (Chu and Keerthi, 2005), SVR (Mu et al., 2009), and
KDLOR (Sun et al., 2010). All the hyper-parameters involved are set by per-
forming cross-validation. Finally, we report the averaged results over 20 runs
by random training data split and measure them by the mean absolute error
(MAE), MAE := 1

N

∑N
i=1 |li − l̂i| with li and l̂i denoting the ground-true and

predicted values, respectively.

5.2. Evaluation on the Effectiveness of the Proposed Strategies

We first explore the effectiveness of introducing the ordinal information of
age classes, incorporating the SAC to age estimation with increasing quantity
of training samples. Specifically, we randomly select certain number of samples
from each age class for training and take the rest for test, and report the averaged
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Figure 7: Sample distribution of different ages on FG-NET.
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Figure 8: Sample distribution of different ages on Morph.

results over 20 runs in Tables 1-4. From them, we can obtain the following
findings.
• Comparing the MAEs (corresponding to the results of OrLDA/OrLS in

Tables 1-4) of the methods imposed with ordinal constraints against those with-
out such constraints (corresponding to the results of LDA/LS in the four tables),
it can be found that the former ones are much lower than the latter ones, espe-
cially when the number of training data is relatively not large. For example, on
FG-NET, OrLDA performs age estimation with MAE reduced by about 19%
(from 10.41 to 8.46 in case of #samples = 3) from that of LDA, and similarly,
OrLS performs age estimation with MAE 7.80 reduced by about 9% from 8.57
of the LS. It indicates that to both the discriminant analysis and the regression
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Table 1: Comparison of age estimation (mean ± std, MAE in years) between
LDA, its variants and other methods on FG-NET.

#
samples

LDA OrLDA
SAC-OrLDA

(TF)
SAC-OrLDA

(GF)
SVOR SVR KDLOR

3 10.41±1.06 8.46±0.76 7.06±0.31 7.21±0.36 10.64±0.59 8.37±0.74 9.24±0.58
6 8.88±0.98 7.80±0.40 6.60±0.32 6.54±0.30 7.32±0.43 8.24±0.40 8.78±0.62
9 6.45±0.49 5.98±0.29 5.84±0.31 5.80±0.27 6.14±0.29 7.01±0.41 7.06±0.80
12 5.35±0.50 5.09±0.30 4.97±0.23 5.00±0.26 5.32±0.21 6.31±0.25 6.22±0.42
15 4.93±0.42 4.68±0.21 4.51±0.19 4.52±0.18 4.64±0.20 5.93±0.29 5.65±0.38
18 4.51±0.41 4.30±0.21 4.10±0.21 4.11±0.25 4.25±0.20 5.61±0.38 5.24±0.40
21 4.41±0.63 4.16±0.29 4.08±0.20 4.04±0.19 3.95±0.19 5.33±0.32 4.88±0.58

Table 2: Comparison of age estimation (mean ± std, MAE in years) between
LDA, its variants and other methods on Morph.

#
samples

LDA OrLDA
SAC-OrLDA

(TF)
SAC-OrLDA

(GF)
SVOR SVR KDLOR

3 14.43±0.85 9.15±0.52 8.65±0.55 8.67±0.51 8.97±0.40 9.22±0.52 9.28±0.64
6 13.94±0.71 8.65±0.38 8.38±0.29 8.39±0.28 8.51±0.30 8.99±0.61 8.48±0.19
9 12.44±0.71 8.36±0.28 8.30±0.26 8.28±0.26 7.80±0.26 8.38±0.28 7.48±0.00
12 9.82±0.65 7.62±0.23 7.42±0.27 7.46±0.39 6.98±0.20 7.62±0.23 6.46±0.00
15 8.52±0.62 7.22±0.22 7.09±0.26 7.12±0.19 6.49±0.13 7.22±0.24 6.42±0.00
18 7.74±0.56 7.03±0.18 6.85±0.18 6.87±0.18 6.16±0.14 7.03±0.18 6.40±0.00
21 7.20±0.48 6.83±0.18 6.63±0.19 6.65±0.18 5.84±0.14 6.83±0.18 5.90±0.00

Table 3: Comparison of age estimation (mean ± std, MAE in years) between
LS, its variants and other methods on FG-NET.

#
samples

LS OrLS
SAC-OrLS

(TF)
SAC-OrLS

(GF)
SVOR SVR KDLOR

3 8.57±0.36 7.80±0.40 7.56±0.37 7.58±0.31 10.64±0.59 8.37±0.74 9.24±0.58
6 7.33±0.45 6.70±0.40 6.45±0.28 6.43±0.28 7.32±0.43 8.24±0.40 8.78±0.62
9 6.64±0.31 6.18±0.38 5.83±0.23 5.83±0.19 6.14±0.29 7.01±0.41 7.06±0.80
12 6.22±0.31 5.89±0.28 5.20±0.21 5.21±0.23 5.32±0.21 6.31±0.25 6.22±0.42
15 5.99±0.29 5.60±0.21 5.14±0.22 5.18±0.23 4.64±0.20 5.93±0.29 5.65±0.38
18 5.58±0.36 5.29±0.27 4.80±0.25 4.91±0.27 4.25±0.20 5.61±0.38 5.24±0.40
21 5.39±0.26 5.03±0.31 4.67±0.30 4.70±0.30 3.95±0.19 5.33±0.32 4.88±0.58

Table 4: Comparison of age estimation (mean ± std, MAE in years) between
LS, its variants and other methods on Morph.

#
samples

LS OrLS
SAC-OrLS

(TF)
SAC-OrLS

(GF)
SVOR SVR KDLOR

3 8.91±0.52 8.80±0.50 8.72±0.40 8.75±0.39 8.97±0.40 9.22±0.52 9.28±0.64
6 7.86±0.28 7.69±0.26 7.58±0.32 7.59±0.26 8.51±0.30 8.99±0.61 8.48±0.19
9 7.48±0.25 7.23±0.24 7.10±0.21 7.08±0.25 7.80±0.26 8.38±0.28 7.48±0.00
12 7.38±0.31 7.19±0.23 6.91±0.28 6.90±0.23 6.98±0.20 7.62±0.23 6.46±0.00
15 7.34±0.28 7.17±0.20 6.76±0.31 6.80±0.21 6.49±0.13 7.22±0.24 6.42±0.00
18 7.08±0.20 6.87±0.19 6.56±0.14 6.57±0.14 6.16±0.14 7.03±0.18 6.40±0.00
21 6.94±0.19 6.80±0.18 6.42±0.11 6.46±0.16 5.84±0.14 6.83±0.18 5.90±0.00

learning, introducing proper ordinal constraints can significantly improve their
ordinal estimation performance.
• The MAEs of SAC-OrLDA (with either TF or GF) are correspondingly
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lower than those of OrLDA, as shown in Tables 1 and 2), and it is similar to
that SAC-OrLS over OrLS (as shown in Tables 3 and 4). For example, on the
FG-NET, SAC-OrLDA and SAC-OrLS improve the age estimation by reducing
MAE by about 16% from 8.46 (in the case of #samples = 3), by about 11%
from 5.89 (in the case of #samples = 12), respectively. And on the Morph
dataset, incorporating the SAC information into OrLDA/OrLS also significant-
ly improves their ability in age estimation. As shown in Tables 2 and 4, both the
SAC-OrLDA and SAC-OrLS reduce the MAEs of age estimation by up to about
6% from those of OrLDA or OrLS. More importantly, when the number of train-
ing data is relatively insufficient (for example, not larger than 15 on FG-NET
dataset, or not larger than 12 on Morph), both the SAC-OrLDA and the SAC-
OrLS yield the best age estimation accuracy, among all the compared methods.
It shows that in human age estimation, especially in case of sparse samples, tak-
ing the SAC relationships (i.e., the similarity of neighboring ages) into account
for learning can effectively improve the estimation since that the characteristic
of neighbor-similarity of ages allows to represent an age with samples from its
neighboring ages in addition to its own limited samples and consequently alle-
viates the performance limit caused by inadequate samples. This characteristic
is practically useful in real human age estimation, since collecting samples is
usually costly or even unpractical, especially for some age-specific people.

5.3. Similarity Relationship of Neighboring Ages

From the experimental results in Section 5.2, we have learnt that incorpo-
rating the SAC information, i.e., the similarity of neighboring ages, into age
estimation can significantly improve the its accuracy. Next, we come to quan-
titatively explore the similarity relationship of neighboring ages, as well as its
influence on age estimation. To this end, we conduct experiments and show the
results obtained in Figure 9. From the four sub-figures (A)-(D) in Figure 9, the
following interesting common rule can be found.

In the beginning, the accuracy of age estimation is getting better and better
with increasing age span of the SAC membership function, up to the span of 4
years. Then with the age span of the SAC membership function set at 4, the best
estimation accuracies are obtained (with the lowest MAEs), and the MAEs have
been reduced from about 5.35 to 4.95 years, 7.50 to 7.40 years, 5.75 to 5.20 years,
and 7.25 to 6.90 years by about 7%, 2%, 10%, and 5% in Figure 9 (A) to (D),
respectively. When the age span of the SAC membership function is larger than
4 years, the MAEs of age estimation are turning to become larger seriously, even
worse than those without incorporating the SAC information (i.e., equivalent
to such a case where the age span of the SAC membership function is set 1). It
might suggest that the facial age appearances of about neighboring 4 years are
biologically similar to each other, and in turn such an aging characteristic can
be used to help estimate human ages. To our knowledge, this may be the first
quantitative exploration on the issue of similarity of neighboring ages.
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Figure 9: The similarity of neighboring ages and its influence on age estimation.
The x-axis indicates the age span of SAC membership function, and the y-axis
denotes the age estimation accuracy in MAE. Without loss of generality, here
we demonstrate the results of the case #samples = 12 for SAC-OrLDA(TF)
on FG-NET (corresponding to (A)) and on Morph (corresponding to (B)), and
SAC-OrLS on FG-NET (corresponding to (C)) and on Morph (corresponding
to (D)). The rule of other cases is quite similar to this.

6. Conclusion

In this work, in order to take both the ordinal information and the neighbor-
ing similarity of the ages into human age estimation, without loss of generality
we took the discriminant learning (LDA) and the least squares regression (LS) as
research baseline, respectively. Firstly, according to the model structure of LDA
and LS we constructed their specific ordinal constraints (i.e., inequality-based
large margin ordinal constraints for LDA and equality-based ordinal regression
constraints for LS), incorporated them into the LDA and LS to achieve the goal
of taking the ordinality of the ages into estimation, and thus developed their
ordinal counterpart, OrLDA and OrLS with solutions, respectively. Then, to
put the neighboring similarity (we call soft-age-contribution, or SAC for short)
of ages into the estimation as well, we formulated two types of membership
function to quantitatively depict the SAC information and embedded them into
the OrLDA and OrLS to develop their respective soft and ordinal counterpart,
coined as SAC-OrLDA and SAC-OrLS, in which both the ordinality and the
neighbor similarity of ages is incorporated. Finally, through experiments on
two benchmark aging datasets, we demonstrated the effectiveness of the pro-
posed strategies in improving age estimation, especially quantitatively explored
the similarity of neighboring ages with the finding that generally about four
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neighboring ages are in appearance similar to each other.
In order to eliminate the influence of pose variations to age estimation, we

will consider to conduct pose-invariant age estimations by taking the pose vari-
ations into account for learning as in (Ding et al., 2015), (Ding et al., 2014),
and (Ding and Tao, 2015).
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