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Abstract. In this paper we consider multi-label crowdsourcing (MLC)
learning with labeling information from non-expert crowds. Previous
crowdsourcing works typically care about single-label tasks, which ignore
the label correlations. While the preliminary MLC studies concern them-
selves with the label correlations, they focus on local correlations whose
estimation relies heavily on the annotations’ quality and requires com-
plete annotations for the labeled instances. However, annotations’ qual-
ity in MLC is often various and incomplete annotations are common.
For example, the crowds may just tag a few labels and leave the other
labels untouched due to the heavy workload or labeling uncertainty. In
this paper, we deal with the incomplete annotation issue. We propose
a two stage approach considering the global low-rank structure correla-
tion between the labels and crowds. Being able to learn with incomplete
annotations, we also extend the proposed model to active annotation
collection which significantly reduces the labeling cost. Experiments val-
idate the effectiveness of our proposals.

Keywords: Multi-label · Crowdsourcing · Incomplete annotation
Low-rank structure · Tensor completion · Active query

1 Introduction

A rising challenge faced by machine learning algorithms is the scenario of mul-
tiple labels associated with data, e.g., one image may be tagged with labels
‘urban’ and ‘road’, and one document may involve topics like ‘economics’ and
‘politics’. To handle such tasks, multi-label learning (MLL) has received signif-
icant attention [30]. Typical MLL requires the groundtruth labels, which are
rather expensive resources. Through distributing the task to multiple workers
and estimating the true labels via some aggregation schemes, crowdsourcing [9]
provides an economic alternative to collect labels.

Previous crowdsourcing works mainly care about single-label tasks [6,11,
17,20,26,27,31], whereas using crowdsourcing for MLL is still in the prelimi-
nary stage. [1,7,22] extended the single-label methods by considering the local
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label correlations estimated from the crowds’ annotations, which rely heavily
on the annotations’ quality. Furthermore, they require complete annotations for
the labeled instances, i.e., they assume the positive labels are tagged and the
untagged labels are negative. In practice, the crowds may just tag a few labels
and leave the others untouched due to the heavy workload of examining the
whole label set or labeling uncertainty. Simply regarding the untagged labels
as negative would deteriorate the label correlation estimation and subsequent
learning.

In this paper, we consider the incomplete annotation issue. We propose a
two-stage approach CRIA (CRowdsourcing with Incomplete Annotations) to
first estimate the incomplete annotations and then estimate the groundtruth.
Considering that the labels are correlated and determined by a few factors, we
assume a low-rank structure between labels; besides, with the basic crowdsourc-
ing assumption that most workers are willing to provide good annotations, the
tagged labels are very likely to be correct. As the workers are labeling the same
task, their annotations should be closely related. Regarding the annotations as a
three-mode (instance, label, worker) tensor, we assume a global low-rank struc-
ture of the tensor and propose an optimization objective to estimate the missing
annotations, and then infer the groundtruth labels using ensemble over crowds.

Besides, motivated by the low-rank structure which means the full annota-
tions can be approximated by only a subset of them, we also propose strategies
to actively select the few most helpful annotations to reduce the labeling burden
and cost. Based on the groundtruth prediction of the proposed CRIA model,
we define criteria to measure the uncertainty, informativeness and reliability of
instances, labels and workers, and select the most informative labels of the most
uncertain instances to collect annotations from the most reliable workers.

2 Related Work

Dealing with examples associated with multiple labels, multi-label learning has
received significant attention. The simplest way is to deal with each label inde-
pendently. To exploit the label correlations, various advanced approaches were
proposed, see [30] and references therein. Typical multi-label algorithms require
the groundtruth labels for learning, which are expensive.

With the advent of crowdsourcing platforms such as Amazon Mechanical
Turk (AMT), crowdsourcing [9] provides an alternative to collect supervised
information by distributing the task to multiple easy to access workers. As work-
ers may make mistakes, the common wisdom is to estimate the higher quality
labels via some aggregation schemes. Numbers of studies for single-label tasks
have been proposed, mainly by using probabilistic models and estimating the
workers’ expertise from different perspectives, such as measures with explicit
explanation like accuracy [11,27], confusion matrix [16,17,31], and more com-
plex multidimensional vectors [26]. In the multi-label learning field, using crowd-
sourcing is in the preliminary stage. To estimate the groundtruth labels, methods
extending the single-label methods by exploiting label correlations were explored.
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[7] proposed three implementations P-DS, D-DS, ND-DS respectively extending
DS [6] by incorporating dependency relationships among all label power set,
label set of two labels, and conditional label dependency. [22] captured the co-
occurrence dependencies between labels exploiting the notion of latent label
clusters. But they assume that the workers annotate the positive labels and the
rest are negative, i.e., the annotations are complete, which may not be true in
practice.

We also note works constructing the taxonomy of labels using crowdsourcing
[1,5,21]. Among them, [1,5] collected annotations for items, the similar setting
as ours. [1] also implemented an approach considering the label co-occurrence to
estimate the ‘true’ labels of items. Whereas the methodology assumes that all
annotations are equally reliable, thus the same parameter value for all workers
are used, whose inferiority is demonstrated in our experiments.

Our technique of low-rank tensor completion is related to the field of matrix,
tensor completion [3,4,8,15,18,25]. The trace norm has been shown to be the
tightest convex approximation for the rank of matrices, and efficient algorithms
for matrix completion using trace norm were proposed [3,4,18]. As there is no
direct way to determine the rank for tensors, heuristic models such as Tucker
model based tensor factorization [25], parallel factor analysis model [8], and
tensor trace norm definition using matrix trace norm [15] were proposed. Similar
to [32] which exploited tensor for multi-class problem, considering that the well
developed tools of matrix completion can be exploited, we build our approach
based on the model of [15]. Different from [32] which inserted a groundtruth layer
into the tensor, and relied on prior information of results of other crowdsourcing
methods, we estimate the groundtruth through ensemble over the completed
annotations, which is more efficient, robust and stable.

Other related work may contain partial label learning (PLL) and multi-label
active learning (MLA). Our awareness that workers may not tag all labels shares
the similar concern with PLL, which learns from a partial set of groundtruth
labels [2,28]. Our active annotation collection idea is inspired by MLA, which
reduces the labeling cost by collecting the most valuable labels, using measures
like uncertainty and informativeness [10,14,19]. Our previous work [13] consid-
ered active multi-label crowdsourcing by incorporating the local neighborhoods’
label correlations, which are solicited from the initial set of groundtruth labels.

3 Crowdsourcing with Incomplete Annotations

We use bold capital letters such as X to denote matrix, ‖·‖∗, ‖·‖F the trace and
Frobenious norm of one matrix. Calligraphic letters, such as X denote tensors.
For a 3-mode tensor X , its (i, j, t)-th element is represented as Xijt. X(k) denotes
the output matrix of the unfold operation along the k-th dimension on X . The
opposite operation fold is the inverse of unfold and returns the tensor. The
Frobenius norm of a 3-mode tensor is defined as ‖X‖F = (

∑
i,j,t |Xijt|2)1/2.

We represent the annotations for a set of multi-label instances X ∈ R
N×d

as a 3-mode tensor T ∈ {+1,−1, 0}N×L×M , where N , L, M , d respectively



Multi-label Crowdsourcing Learning with Incomplete Annotations 235

denotes the number of instances, labels, workers and feature dimension. Tijt

denotes worker t’s annotation result on label j for instance i. Tijt = 1(−1)
denotes worker t tags label j as positive (negative) for instance i, and Tijt = 0
denotes worker t doesn’t tag label j. Note that the column Ti:t = 0L×1 means
that worker t doesn’t tag instance i. Our target is to estimate groundtruth labels
from T .

Previous MLC assumes that positive labels are tagged and the remaining are
negative, i.e., each column Ti:t is either {+1,−1}L×1 or 0L×1. This is not true
in practice. To deal with this issue, we propose to first estimate the untagged
annotations by exploiting the low rank structure between labels and annotations,
and then estimate the groundtruth using ensemble.

3.1 Missing Annotation Estimation

Following typical crowdsourcing learning, we assume that most workers are act-
ing with good will, i.e., they are willing to provide good annotations. Considering
that the labels are correlated and determined by a few factors, and the anno-
tation results of different workers should be closely related, the full annotation
tensor is expected to be low rank. We adopt the tensor completion model in [15]
to recover the untagged annotations. Formally, we wish to estimate an anno-
tation tensor X ∈ R

N×L×M whose entries in the observed positions should be
close to the observed annotations, and at the same time, it should be low rank:

min
X

∑3
k=1 αk‖X(k)‖∗ s.t. XΩ = TΩ (1)

Here Ω = {(i, j, t)|Tijt �= 0} denotes the index set of observed annota-
tions. X(1),X(2),X(3) are respectively the unfolded annotation matrix along the
instance, label and worker dimension. αk are predefined scalars with

∑3
k=1 αk =

1, αk ≥ 0. From Eq. 1, we can see that the tensor completion is essentially fulfilled
by conducting low rank matrix completion on each of the unfolded annotation
matrix along the instance, label and worker dimension. By using this model, we
can easily exploit well developed techniques such as side information utilization
and efficient optimization methods for low rank matrix completion.

Since the trace norms in Eq. 1 are not independent, to conduct optimization,
matrices M1,M2,M3 are introduced and the optimization is converted as:

min
X ,Mk

∑3
k=1 αk‖Mk‖∗ + βk

2 ‖X(k) − Mk‖2F s.t. XΩ = TΩ (2)

To exploit the instance features as side information to augment the learning, we
assume a linear relationship between the crowds’ annotations and the instances’
features, and the unfolded matrix X(1) can be represented by X(1) = XW, where
W is the coefficients. Thus our learning objective becomes:

min
X ,W,M2,M3

α1‖XW‖∗ + β1
2

‖X(1) − XW‖2
F +

∑3
k=2 αk‖Mk‖∗ + βk

2
‖X(k) − Mk‖2

F

s.t. XΩ = TΩ (3)
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Algorithm 1. X Estimation
1: Initialization: X = T ,Ω = {(i, j, k)|Tijk �= 0}, βk, stopping criterion ε
2: while stopping criterion is not satisfied do
3: Calculate X by Eq. 5
4: Calculate M2,M3 by Eq. 6
5: Calculate W by Eq. 7 using APGD
6: end while

Incorporating the features into learning, we achieve two advantages: (1) it allows
us to predict labels for novel unseen examples; (2) in cases where the feature
dimension d is much smaller than the number of instances N , the matrix W ∈
R

d×LM mode would be much smaller than the matrix M1 ∈ R
N×LM , we reduce

the number of parameters to learn and speed up the computation.
To estimate X ,W,M2,M3, we employ block coordinate descent (BCD) [23]

to estimate them iteratively which converges at rate O(1/T ).
Computing X : With the other variables fixed, the optimization with respect
to X is given by the following subproblem:

min
X

β1
2 ‖X(1) − XW‖2F +

∑3
k=2

βk

2 ‖X(k) − Mk‖2F s.t. XΩ = TΩ (4)

The closed form solution is induced:

Xijt =

{
Tijt (i, j, t) ∈ Ω

(β1fold1(XW)+
∑3

k=2 βkfoldk(Mk)∑3
k=1 βk

)ijt (i, j, t) /∈ Ω
(5)

Computing Mk: With the other variables fixed, the optimization with respect
to Mk is given by:

min
Mk

1
2
‖X(k) − Mk‖2F +

αk

βk
‖Mk‖∗ (6)

which has closed form solution by SVT [3].
Computing W: With the other variables fixed, the optimization with respect
to W is given by:

min
W

α1

β1
‖XW‖∗ +

1
2
‖X(1) − XW‖2F (7)

Following [28], we exploit Accelerated Proximal Gradient Descend (APGD) [24]
to optimize Eq. 7 iteratively, which converges at rate O(1/T 2).

3.2 Groundtruth Inference

After the tensor completion, we get one full annotation estimation tensor
X ∈ R

N×L×M . To infer the groundtruth {ẑij}, we conduct ensemble over
the recovered annotations. Compared to the observed discrete {1,−1} label-
ing results, the recovered annotations are signed real valued. We test two voting
strategies:
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(1) Signed Voting: we use the sign {1,−1} of the estimated annotations as the
hard label annotation, and conduct voting over the workers:

ẑij =
∑

t sign(Xijt)/M (8)

This scheme is named as CRIAS (CRowdsourcing with Incomplete Anno-
tations).

(2) Valued Voting: we believe that the estimation values can represent some
confidence level for the workers, for example, given the annotation estimation
of two workers t, t′ on label j of instance i Xijt = 0.9, Xijt′ = −0.1, label j
is more likely to be positive on instance i.

ẑij =
∑

t(Xijt)/M (9)

This scheme is named as CRIAV .

For a set of novel instances Xs, to predict their groundtruth, we first estimate
the crowds’ annotations Xs = fold1(XsW), and then conduct the above voting.

4 Active Annotation Collection

Considering that the labeling budget is often limited, whereas collecting annota-
tions without control may lead to not only unnecessary information redundancy,
but also possible out of control labeling errors (e.g., incomplete annotation in
this paper), we propose to actively collect the most valuable annotations.

Instance Selection. To select the most informative instance, typical active
methods defined some uncertainty measure for the instances considering the
prediction uncertainty over labels. As the proposed CRIA model gives real
valued prediction without hard label prediction, we define an uncertain measure
for the instance, computed as the gap between its largest and smallest prediction
of labels. The smaller the gap, it means the more difficult to split the positive and
negative labels for the instance. The instance with the smallest gap is selected:

i∗ = arg mini U(xi) := maxj ẑij − minj ẑij (10)

Label Selection. Different from traditional active methods querying the most
uncertain labels, we consider the label sparsity property of multi-label tasks,
i.e., while the label size can be large, the number of positive labels is usually
very small, whose information however is critical to learning. E.g., for the two
image tasks concerning 6 and 16 labels in our experiment, the average number
of positive labels are respectively 1.24 ± 0.45 and 1.80 ± 0.90. This label sparsity
phenomenon is also observed on numerous multi-label benchmark data.1 Driven
by this, we propose to query the most possibly positive labels for annotation:

L∗
j = {j∗ | ẑi∗j ranks top l among label predictions} (11)

1 http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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Algorithm 2. Active Crowdsourcing Procedure
Input: instances X, initial annotations T
1: Repeat:
2: Estimate the full annotations X and groundtruth for X respectively by Alg. 1

and Eq. 9
3: Select instance, labels, worker (xi∗ , L∗

j , t∗) respectively by Eq. 10, 11, 12
4: Query annotations for (xi∗ , L∗

j , t∗) and add into T
5: Until The maximum number of queries is reached

The number l can be determined based on reality, e.g., if the cardinality of
positive labels is large (small), we can set l large (small). We test l with varying
values in the experiments.

Worker Selection. Given the selected instance and label (i∗, L∗
j ) by Eqs. 10 and

11, we select the worker which most possibly gives the positive annotations:

t∗ = arg maxt

∑
j∗∈L∗

j
Xi∗j∗t (12)

After the instance, label, worker indices (i∗, L∗
j , t

∗) are selected, the correspond-
ing annotations are collected and added into Ti∗j∗t∗ to update the full annota-
tion tensor and groundtruth label estimation using the CRIA model. The overall
process is summarized in Algorithm 2. We compare with a few baselines in the
experiment, which shows significant annotation savings.

5 Running Time Analysis

For CRIAS (CRIAV ), the computation mainly comes from the SVT while com-
puting Mk for Eq. 6 and W for Eq. 7, which can be implemented very efficiently
using readily available high-quality packages, see [3] for details. As approximate
solution is good enough, early stop can be employed for the iterative BCD and
APGD, e.g., their maximum iteration number are set as 200, 100 in our experi-
ment. Thus compared to the probabilistic crowdsourcing learning methods which
rely on the EM procedure over all labels and workers, CRIAS (CRIAV ) is very
efficient, especially in the case of not small number of workers and labels.

6 Experiment

6.1 Data Sets

We distributed two multi-label image annotation tasks with different instance
and label size on AMT, and ask the workers to tag the positive label for the
image they see, the same way as existing multi-label crowdsourcing works do.
Thus the annotations are expected to be a fair comparison benchmark.

Scene. Scene contains 700 images concerning 6 labels. On average each image
has 1.24±0.45 labels. 18 workers annotating the most images (each no less than
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70) are kept for experiment. On average each worker annotated 267±201 images,
each image was annotated by 6.9 ± 2.3 workers.

Image. Image contains 1495 images concerning 16 labels. On average each image
has 1.80±0.90 labels. 15 workers annotating the most images (each no less than
100) are kept. On average each worker annotated 397 ± 453 images, each image
was annotated by 10.1 ± 1.41 workers.

The groundtruth labels are annotated by human volunteers, and a 1248
dimension fisher vector is extracted as the feature. We conduct some rough
analysis to get some idea about the data quality. For each worker, we compute
its MacroF1 score on its annotated instances. MacroF1 [30] is the macro average
of the F1 score over all labels, with value in [0, 1], the larger, the better. Respec-
tively 15 and 14 workers’ macroF1 range in [0.70, 0.85] for Scene and Image,
indicating that annotations from most workers are reliable. In the following, we
first conduct experiments concerning the incomplete annotation issue, then test
the effect of active annotation collection strategies.

6.2 Crowdsourcing Learning

We test two settings for the incomplete annotation learning. In the transductive
setting, we make annotations of the whole data uniformly random missing, and
our target is to estimate the groundtruth labels for the data set. We vary the
observed fraction of annotations p from 100% to 10%. In the inductive setting,
we randomly split the data into 10% test data with no annotations and 90%
training data with annotations, with the observation varies also from 100% to
10%. Results on the test data are reported. Each experiment is repeated for 10
times and the average and standard deviation results are recorded.

We compare with four multi-label baselines D-DS, P-DS, ND-DS [7],
MLNB [1], and four state of the art single-label baselines MV, DS [6], Yutc
[17], MaxEn [31]. The single-label baselines can deal with the incomplete anno-
tation issue by learning on each label separately, but they ignore the label corre-
lations thus are expected to work worse than ours. The multi-label baselines treat
the untagged labels for the annotated instances as negative. For the proposed
method, parameters are set as αk = 1/3, βk = 0.1, ε = 10−2. The maximum
iteration for BCD, APGD are set as 200, 100. The codes of the baselines are
provided by their authors and the default parameter suggested there are used.
Except for DS, the two coin model implemented by [16] is used. Besides, we also
incorporate another baselines LinEn, which builds a linear classifier for each
label on each worker using its corresponding instances, and the prediction is
the ensembles of workers. To prevent overfitting, l2 regularization with trade-off
parameter 1 is used. As our method uses linear classifier, and also considers the
missing annotation issue and the label/worker correlations, we choose LinEn as
a fair baseline to demonstrate the importance of the above two factors.

As our method currently learns no threshold to separate the positive and
negative predictions, to evaluated the classification performance, we treat the
top k ranked labels as positive and rest as negative. Here k is the number of true



240 S.-Y. Li and Y. Jiang

positive labels of each example. For comparison fairness, the best result among
this strategy and the heuristic thresholding strategy (0.5 for crowdsourcing base-
lines and 0 for LinEns) for baselines are used. We report the macroF1 (macF.)
results, performance on other measures such as hamming loss, microF1, average
arecision and ranking loss are similar and we omit them due to space limitation.

Transductive Results. The results for the transductive setting are shown in
Table 1. We can see that CRIAV outperforms other methods significantly in
most time, whereas the signed voting scheme CRIAS is inferior. When p = 100%
which is the same scenario of previous multi-label baselines, our approach also
achieves significantly better performance. It’s notable that when the annotations
are small, e.g., 10% for Scene and 20% for Image, LinEn performs the best. This
may be due to the information insufficiency for the crowdsourcing methods to
learn reliable parameters. When the annotations increase, LinEn is not able to
gain as much benefit as the crowdsourcing baselines. Among the multi-label
baselines, MLNB ranks the worst. Two reasons may explain this, first, MLNB
considering label co-occurrence is designed for learning the label hierarchy, but
for problems lacking such hierarchies, label co-occurrence is not as common; more
importantly, MLNB uses the same parameter for all workers, which ignores their
expertise variance. Comparing D-DS, P-DS, and ND-DS which extend DS [6] by
considering label relationship among all label powersets, label set of two labels,
ND-DS performs most effectively by learning the conditional label dependency.

Comparing the single-label baselines, when the annotations are no less than
60%, MaxEn which models each worker’s confusion on each example performs the
best. Whereas when annotations are less, Yutc utilizing the instances’ feature
performs better. Besides, the multi-label baselines are not necessarily always
better than the single-label ones, which is reasonable in crowdsourcing. Since
their local label correlations are solicited solely from the collected annotations,
whose quality would rely heavily on the annotations’ quality and quantity.

Inductive Results. The results for the inductive setting are shown in Table 2.
Except for Yutc and LinEn, the other baselines didn’t consider the feature infor-
mation and learned no classifier, thus no results are reported for them. The
comparison is similar with the transductive setting, but with much lower per-
formance, indicating that inductive crowdsourcing learning is more challenging.

6.3 Active Results

In the above, we have validated the superiority of the proposed CRIA model, in
this section, we test the proposed active strategies. Using the real valued voting
scheme CRIAV as learning model, we test: (1) Rand which selects instance,
labels, worker randomly; (2) LabAct which selects instance and worker ran-
domly, selects labels using the proposed strategy; (3) InstLabAct which selects
worker randomly, selects instance and labels using the proposed strategy; (4)
CRIAa which selects instance, labels, worker using the proposed strategy. Each
time one instance is first selected, then l labels for this instance are selected, and
the worker is selected. We also compare with one totally random strategy (5)
RandT which selects l random entries of the tensor at each time.
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Table 1. The MacF1 results for the transductive setting. The randomly observed
annotations p varies from 100% to 10%. CRIAS and CRIAV are the proposed approach
with signed and real valued voting. mean ± std results over 10 times random repetitions
are recorded. The best results on each row are bolded, with the comparable ones
(pairwise single-tailed t-test at 95% confidence level) marked by •.

p 100% 80% 60% 40% 20% 10%

Scene D-DS .869± .000 .854± .006 .812± .006 .744± .012 .598± .019 .419± .019

P-DS .421± .000 .411± .003 .394± .003 .357± .008 .271± .011 .181± .011

ND-DS .883± .000 .863± .008 .813± .007 .751± .009 .607± .014 .422± .020

MLNB .186± .000 .207± .014 .207± .013 .196± .008 .176± .011 .151± .006

MV .895± .000 .871± .006 .840± .005 .780± .008 .620± .015 .441± .018

DS .853± .003 .833± .010 .799± .010 .775± .014 .692± .014 .533± .019

MaxEn .893± .001 .884± .007 .863± .006 .828± .010 .716± .013 .537± .019

YuTc .854± .004 .847± .010 .833± .013 .835± .017 .764± .039 .571± .102

LinEn .809± .000 .798± .005 .788± .006 .777± .009 .754± .009 .726 ± .009

CRIAS .907± .000 .900± .004 .882± .007 .847± .012 .743± .015 .617± .013

CRIAV .918 ± .000 .914 ± .005 .900 ± .009 .871 ± .010 .783 ± .013 .647± .012

Image D-DS .794± .000 .757± .006 .703± .007 .623± .013 .462± .012 .293± .002

P-DS .161± .000 .156± .005 .148± .007 .129± .010 .086± .009 .049± .007

ND-DS .803± .000 .752± .002 .686± .001 .607± .000 .454± .014 .294± .001

MLNB .120± .000 .115± .007 .113± .005 .114± .009 .103± .005 .093± .004

MV .850± .000 .811± .005 .760± .004 .662± .005 .476± .008 .311± .006

DS .769± .004 .753± .010 .747± .011 .699± .009 .516± .010 .339± .008

MaxEn .845± .000 .827± .006 .796± .004 .717± .008 .522± .011 .337± .004

YuTc .813± .003 .797± .012 .781± .008 .738± .022 .568± .040 .366± .057

LinEn .707± .000 .693± .003 .675± .011 .652± .012 .621 ± .020 .558 ± .040

CRIAS .877± .000• .852± .003 .805± .006 .702± .007 .508± .005 .363± .009

CRIAV .877 ± .000 .864 ± .005 .832 ± .005 .760 ± .006 .599± .007 .471± .006

Table 2. The MacF1 results for the inductive setting. The randomly observed annota-
tions p varies from 100% to 10%. CRIAS and CRIAV are the proposed approach with
signed and real valued voting. mean ± std results over 10 times random repetitions are
recorded. The best results on each row are bolded, with the comparable ones (pairwise
single-tailed t-test at 95% confidence level) marked by •.

p 100% 80% 60% 40% 20% 10%

Scene YuTc .286± .018 .291± .028 .270± .020 .246± .041 .060± .022 .114± .062

LinEn .293 ± .000 .303 ± .021 .286± .018 .287± .023 .270± .025 .241± .038

CRIAS .279± .000 .286± .033 .286± .023 .283± .019 .293± .030 .286± .029

CRIAV .286± .000 .301± .033• .290 ± .029 .291 ± .031 .303 ± .012 .300 ± .044

Image YuTc .368± .000 .331± .000 .311± .000 .274± .000 .195± .000 .094± .000

LinEn .339± .000 .314± .014 .272± .022 .237± .019 .186± .022 .163± .019

CRIAS .369± .000 .337± .008 .299± .018 .264± .019 .224± .019 .199± .021

CRIAV .399 ± .000 .374 ± .015 .348 ± .021 .324 ± .020 .278 ± .017 .235 ± .015
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(a) Results on Scene, testing with three different l values l = 1, 3, 5
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(b) Results on Image, testing with three different l values l = 1, 3, 5

Fig. 1. The MacF1 results of different annotation collection strategies.

Here we don’t compare with active matrix/tensor completion method like
adaptive column subset selection [12], because with the target of recovering the
matrix, they require a whole column each time which corresponds to all the labels
of an instance, whereas our concern is just that the worker may not annotate all
labels. We do not compare with traditional multi-label active learning because
they learn with groundtruth labels. We also do not compare with related but
different work [29] for single-label crowdsourcing tasks and [13] which relies on
groundtruth for label correlation exploitation.

For each data, we randomly select 10% of the annotations as the initial data,
and iteratively select (instance, label, worker) to query annotations and update
the groundtruth estimation. The average MacF1 results over 10 times repetition
in the transductive setting are shown in Fig. 1, l = 1, 3, 5 are tested. It can be seen
that both the instance and label active query strategies (InstLabAct vs LabAct;
LabAct vs Rand) play significant role in finding the most helpful annotations.
Besides, comparing Rand and RandT, we can see some subtle advantage of
Rand at the early stage, indicating that focusing on querying labels of specific
instances is more preferred. For worker selection, no much difference between the
random and active strategy is observed. This may be explained by the overall
uniform annotation quality of the workers. On the two experiment data, l = 3
is a moderate number for CRIAa, which converges much faster than l = 1 and
no slower than l = 5. This is due to that, the average number of positive labels
for Scene and Image are respectively 1.24 and 1.80, for which 3 is large enough.

6.4 Parameter Study

In the experiment, parameters αk and βk are fixed. αk is conventionally set as 1/3
(3 is the mode number). βk trade-off between the approximation to the observed
annotations and the low-rank property of annotations. We study the effect of
βk to our multi-label learning. Let γ = αk/βk, we vary γ in [10−3, . . . , 103], and
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plot in Fig. 2 the results with observed annotation rate 10%, 40%, 70% in the
transductive setting. From Fig. 2 we can see that when γ is no less than 10, the
learning performance is fairly stable, which is consistent with [15].
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Fig. 2. The influence of β with three different observation rate

7 Conclusion

In this paper, we deal with multi-label crowdsourcing learning where annota-
tions for the tagged instances are incomplete. We exploit the low-rank structure
between labels and crowds to estimate the unobserved annotations and infer the
groundtruth. Experiments show the superiority of the proposed approach, even
in the complete annotation case. We also propose active annotation collection
strategies to effectively reduce the labeling workload and cost. Currently, we do
not pay special attention to spammer workers which would provide no beneficial
annotations, for future work, we would like to deal with such problem.
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