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Shao-Yuan Li, Yuan Jiang, Nitesh V. Chawla, and Zhi-Hua Zhou, Fellow, IEEE,

Abstract—We consider multi-label crowdsourcing learning in two scenarios. In the first scenario, we aim at inferring instances’
groundtruth given the crowds’ annotations. We propose two approaches NAM/RAM (Neighborhood/Relevance Aware Multi-label
crowdsourcing) modeling the crowds’ expertise and label correlations from different perspectives. Extended from single-label
crowdsourcing methods, NAM models the crowds’ expertise on individual labels, but based on the idea that for rational workers, their
annotations for instances similar in the feature space should also be similar, NAM utilizes information from the feature space and
incorporates the local influence of neighborhoods’ annotations. Noting that the crowds tend to act in an effort-saving manner while
labeling multiple labels, i.e., rather than carefully annotating every proper label, they would prefer scanning and tagging a few most
relevant labels, RAM models the crowds’ expertise as their ability to distinguish the relevance between label pairs. In the second
scenario, we care about cost-efficient crowdsourcing where the labeling and learning process are conducted in tandem. We extend
NAM/RAM to the active paradigm and propose instance, label and worker selection criteria such that the labeling cost is significantly
saved compared to passive learning without labeling control. The proposals’ effectiveness are validated on both simulated and real
datasets.

Index Terms—multi-label, crowdsourcing, label correlation, labeling cost, active selection
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1 INTRODUCTION

IN many real world tasks, one example can be associated
with multiple concepts, e.g., in image annotation, one

image may be tagged with terms such as urban and road
[1]; in bioinformatics, the gene sequence may have multiple
functions such as metabolism, transcription and protein syn-
thesis [2]. To deal with such tasks, multi-label learning has
received significant attention [3], [4].

Conventional multi-label learning assumes that the
groundtruth labels are given for the training data, which
are expensive and limited resources. On the one hand,
labeling groundtruth requires experts’ careful examination
over all candidate labels, which is expensive; on the other
hand, the availability of experts and labeling budgets can be
limited. Rather than resorting to experts for groundtruth,
crowdsourcing [5], [6] provides an alternative to collect
labels from easy to access and low cost crowds. To alleviate
the labeling errors made by crowds, the common wisdom
is to distribute the task to multiple workers and estimate
higher quality labels using aggregation.

Previous crowdsourcing learning are mostly on single-
label tasks in fields such as sentiment classification, medical
diagnosis and image tagging [7], [8], [9], whereas using
crowds for multi-label tasks is in the primary stage. [10],
[11], [12], [13] considered inferring the taxonomy structure
of multiple labels, and [11], [14], [15] considered estimating
groundtruth labels from crowds’ annotations.

In this paper, we consider multi-label crowdsourcing
learning in two scenarios. In the first scenario, we concern
the annotation collection mode adopted from [11], [14], [15]
where given a set of instances, a group of the workers are
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employed to tag the proper labels from a set of candidate
labels for the instances they see. After the labeling, the
learning is conducted and we wish to obtain an effective
classifier and estimate the instances’ groundtruth labels. In
the second scenario, we also care about labeling cost. We
conduct the labeling process and learning in tandem, and
wish to learn the classifier with least annotations through
active annotation collection.

Treating the tagged and untagged labels respectively as
positive and negative label annotations, [11], [15] and [14] con-
cerned themselves on extending single-label crowdsourcing
methods by considering the label co-occurrence and con-
ditional probabilistic label relationships. The issue is that
their label correlations are solicited solely from the noisy
annotations, whose qualities are thus affected sensitively by
the annotations’ quantity and quality, which would even
be harmful in case of misleading annotations. More impor-
tantly, none of them have noticed the different characteristic
of crowds’ labeling on multi-label tasks.

For better understanding of the crowds’ labeling behav-
ior, we make a comparison between labeling from crowds
for multi-label tasks, single-label tasks, and groundtruth
labeling. Either for single-label or multi-label tasks, in
groundtruth labeling from perfect experts, the untagged
labels definitely mean negative labels. For crowds’ label-
ing on single-label tasks, since one proper label tagging is
sufficient, thus the untagged labels definitely mean negative
annotations. But for multi-label labeling where each instance
can be associated with multiple proper labels, this clear
distinction is not necessarily true. We observe that while
annotating multiple labels, rather than carefully annotating
every proper label, the crowds would prefer scanning and
tagging a few most relevant labels from their point of view
and leave the rest untouched. This may be due to the heavy
workload of examining every label, or they just annotate
labels they are confident about. We name this as effort-saving
annotating behavior. In such case, the untagged labels may
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mean uncertain labels or just be untouched. Simply treating
them as negative like would be misleading.

Here we give an example. While collecting our experi-
mental data dataset1 and dataset2, we note that the workers
rarely annotate more than 3 labels for the images they see,
which is surely insufficient for images with a rather larger
number of labels. As a validation, we calculate the average
number of tagged labels for the images with no less than 3
labels (comprising about 10%, 19% of the data), and obtain
2.1 and 2.5 for dataset1 and dataset2. Such characteristic was
not noticed by previous crowdsourcing works.

In this paper, we propose two different approaches
NAM (Neighborhood Aware Multi-label crowdsourcing)
and RAM (Relevance Aware Multi-label crowdsourcing) for
multi-label crowdsourcing learning. Similar as [11], [14],
[15], NAM treats the tagged and untagged labels respectively
as positive and negative annotations, and extends single-label
methods considering label correlation exploration. But to
alleviate the high sensitivity of label correlations to an-
notations’ noise, based on the idea that instances similar
in the feature space should also get similar annotations,
NAM incorporates the local influence of neighborhoods’
annotations.

Differently, emphasizing on modeling the crowds’ effort-
saving annotating behavior, RAM treats the tagged labels as
more relevant than the untagged labels, and models each
worker’s expertise as its ability to distinguish the correct
relevance between label pairs, which also naturally captures
the relevance comparison relationship between labels.

Our experiments show that both methods perform
good. Ignoring the crowds’ effort-saving annotating behavior,
NAM’s none degenerated performance should be due to
the label sparsity of the experimental data, i.e., the frac-
tion of examples associated with rather large number of
labels is rather small. But for applications with large label
density, the effort-saving manner should not be ignored.
For performance improvement, we can even combine the
strongness of NAM’s label correlations and RAM’s effort-
saving behavior modeling.

We also extend NAM and RAM to the active paradigm
and conduct adaptive selection over instances, labels and
workers during the labeling process, such that the most
reliable workers are queried for the most valuable instances
and labels. Based on the prediction of NAM and RAM, we
design criteria to evaluate and select instances considering
the prediction uncertainty/query diversity, labels consider-
ing the prediction uncertainty/probability of being positive,
and workers with high expertise.

Note that in this paper, we assume that most workers are
acting with good will, i.e., they are willing to provide good
annotations, and we do not pay special attention to adver-
sarial crowds. This is the base assumption in crowdsourcing
such that the problems are learnable. In the following we
start with a brief review of some related work in Section 2,
then propose our approaches in Section 3, and report the
experiments in Section 4. Finally, we conclude the paper.

2 RELATED WORK

In this section, we briefly review some related work in
multi-label learning and crowdsourcing learning.

Multi-label Learning During the past decade, various ap-
proaches have been proposed to deal with multi-label learn-
ing tasks [3], [4]. The most straightforward strategy is to
decompose the multi-label task into a series of binary clas-
sification problems, one for each label and thus single-label
learning methods can be applied [16]. This strategy neglects
considering the explicit or implicit label relationship, which
is widely believed to contain important information to help
learning. The observation in text categorization that the la-
bels are organized in a hierarchical structure has motivated
approaches to exploit external label structures. For example,
[17] considered the tree structure of labels; [18] considered
the tree and dag-structure of labels. Besides using explicit
label structure information, implicit label relationship were
also explored, such as the label ranking idea which trans-
forms the multi-label classification problem into a label
ranking problem, and predicts the positive labels in front of
the negative labels [2], [19]; and the feature space enhance-
ment idea which constructs meta-level features using label
information [20], [21]. Typical multi-label learning requires
the groundtruth labels to be given for the training examples,
which are expensive resources in real applications.

When the crowds are acting in the effort-saving manner,
the annotations from crowds can be kind of incomplete.
Another possible related field is partial label learning,
where a partial set of groundtruth labels are given for the
training examples. The target is to recover the complete
groundtruth exploiting the benefits of instance-label correla-
tion and label relationship, such as label propagation based
on manifold assumption [22], [23], label ranking based
on group lasso [24] and label completion based on low
rank structure [25], [26]. Regarding the annotations from
all crowds form a low rank matrix, partial label learning
can be first applied to recover the unknown annotations of
crowds, and then majority voting can be applied to predict
the groundtruth. Though partial label learning successfully
accounts in the instance-label correlation and label relation-
ship, they treat the annotations equally without considering
the crowds’ expertise variance.
Crowdsourcing Learning With the advent of crowdsourcing
platforms such as Amazon Mechanical Turk (AMT), crowd-
sourcing has been an economic way to collect supervised
information. One main focus is to aggregate the imperfect
annotations from the crowds to infer groundtruth labels.
Previous works mostly focus on single-label tasks, model-
ing the crowds’ expertise from different perspectives using
measures with explicit explanations such as classification
accuracy [27], [28], confusion matrix [8], [29], [30], [31], and
more complex multidimensional vectors [9].

Recently, building hierarchies of labels [10], [11], [12],
[13] and inferring groundtruth label from crowds [11], [14],
[15] for multi-label tasks were also explored. [10], [11]
collected annotations for items and deployed the anno-
tation co-occurrence to infer the hierarchy structure; [12],
[13] queried crowds the ’ascendant-descendant’ relationship
between two labels to reconstruct the label hierarchy. To
infer the groundtruth labels, works extending the single-
label crowdsourcing methods by taking into label corre-
lations were also studied. [11], [15] incorporated the label
co-occurrence dependencies between labels; [14] considered
three dependency relationships among all label power set,
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label set of two labels, and label dependency considering
conditional independence. Computed solely from the an-
notations, the quality of the label correlation relies heavily
on the availability and reliability of the crowds. Besides,
they also ignore that the crowds’ annotating behavior on
multi-label tasks can be different from that on single-label
tasks. To alleviate this, our approach exploit the rich feature
information for label correlations calculating, and consider
the crowds’ specific annotating behavior.

Considering that the labeling budget is often limited
in real applications, to reduce the crowdsourcing labeling
cost, works on selectively query and learn from the most
valuable annotations were also explored, either for single-
label tasks [32], [33], [34] or multi-label tasks [11], [35]. [32]
exploited the active learning paradigm by actively querying
annotations from the most reliable workers for the most
uncertain items, where the crowds’ reliability is defined as
their labeling accuracy and the tasks’ uncertainty is defined
as their label prediction entropy. [33] extended [32] to the
worker scarcity case through transferring knowledge from
auxiliary domains. [34] dynamically sampled subsets of the
crowds based on an exploration/exploitation criterion to
approximate the majority opinion of all crowds. Designed
for single-label tasks, the above works ignore the label
correlations and crowds’ specific annotating behavior. While
learning the hierarchy structure for large numbers of labels,
to reduce the labeling cost, [11] also explored the assignment
of labels to data items using the label prediction entropy
measures, but did not pay attention to instance and worker
selection. Our previous work [35] extended the idea of [32]
to multi-label tasks by incorporating the local neighbor-
hoods’ label correlation for classifier learning and improved
the instance selection strategy. In this paper, we extend
[35] by 1) improving the crowdsourcing learning method
by also considering label correlations for crowds modeling;
2) proposing another crowdsourcing learning model RAM
considering the crowds’ specific annotating behavior; and 3)
designing respective active selection strategies for the two
methods considering the characteristics of the two methods
and the special property of multi-label tasks.

3 SCENARIO 1: CROWDS AGGREGATION

3.1 Problem Formulation
We use D = {(x1, {y1j}), . . . , (xN , {yNj})} to denote the
set of N instances annotated by M annotators, where xi is
the d-dimensional feature vector representation for instance
i, yij is the annotation results of instance i given by worker
j. M i, M l

i are used to denote the annotator set labeling
instance i and annotating label l for instance i, N j to denote
the instance set annotated by annotator j. Our target is
to estimate the groundtruth labels Z = (z1, z2, . . . , zN ) ∈
{+1,−1}L×N for X given D.

To use one unified general representation for the an-
notations such that the same notation can be used for the
first scenario and active crowdsourcing, we define yij ∈
{+1,−1, 0}L×1. In the active crowdsourcing scenario where
labels are selected to query annotation, yl

ij = 1(−1) means
label l is tagged as positive (negative) by worker j for xi,
and yl

ij = 0 means label l is not queried for xi from worker
j . For the first learning scenario where the annotations are

pre-collected through querying the proper labels for each
instance, the annotations reduce to yij ∈ {+1, 0}L×1 or
yij = {0}L×1, with yl

ij = 1(0) denoting worker j tags
(doesn’t tag) label l as proper for xi, and yij = {0}L×1

denoting worker j doesn’t annotate instance i.
Compared with traditional multi-label learning, we can

see that the key challenges lie in that the labels provided by
each annotator can be noisy and the annotators’ expertise
can be various. Treating the untagged labels as negative
label annotations, i.e., reformulating yl

ij = 0 as yl
ij = −1

for the tagged instances with yij ̸= {0}L×1, previous
multi-label crowdsourcing methods extends the single-label
crowdsourcing methods by considering the label correla-
tion, whose qualities however are affected sensitively by
the quality of annotations. Besides, they also ignore the
workers’ specific annotating behavior on multi-label tasks.

Considering the above, we propose two probabilistic
approaches NAM/RAM(Neighborhood/Relevance Aware
Multi-label crowdsourcing) modeling the crowds’ expertise
and utilizing the label correlations from two different per-
spectives. Specifically, like previous works, by reformulating
yl

ij = 0 as yl
ij = −1 for instances with yij ̸= {0}L×1,

NAM extends the single-label crowdsourcing methods and
models the crowds’ expertise on each individual label, but
incorporates the rich information in the feature space to
consider the local influence of neighborhoods’ label corre-
lations. For RAM, it defines the crowds’ expertise as their
ability to distinguish the relevance between the tagged and
untagged labels, which simultaneously captures the crowds’
effort-saving annotating manner and the relevance ranking
relationship between pairs of labels.

3.2 Method 1:NAM
We first describe one classic single label crowdsourcing
model, then extend it by encoding the local influence of
neighborhoods’ label correlations to multi-label problem.

(a) Single Label Model

(b) Our Multi-Label Model

Fig. 1. (a) The single label probabilistic model for instances {xi},
annotations {yl

ij} and unknown groundruth {zl
i}; (b) Our multi-label

probabilistic model for instances {xi}, {x̂ij}, annotations {yl
ij} and

unknown groundruth {zl
i} on label l. Here x̂ij denotes the enhanced

representation of xi for worker j, which will be explained in Eq. 2.

Figure1(a) illustrates the classic probabilistic graphical
model on some label l over the instances {xi}, the anno-
tations {yl

ij}, and the unknown groundruth labels {zl
i}.
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Assuming that each annotation yl
ij depends both on the

instance xi and its groundtruth zl
i, using θ to denote the

involved parameters and pr(θ) its prior probability, the joint
distribution of {yl

ij , z
l
i} can be represented as:

P ({yl
ij}ij , {zl

i}i|{xi}i, θ)

=
∏

i

p(zl
i|xi, θ)

∏
j∈M l

i

p(yl
ij |zl

i,xi, θ)pr(θ). (1)

Here p(zl
i|xi, θ) can be regarded as the classifier of label

zl. The second term p(yl
ij |zl

i,xi, θ) models worker j’s la-
beling process of annotating yl

ij to xi with groundtruth
zl

i. The unknown groundtruth {zl
i} are used in this model

as latent variables, whose probability distribution and the
parameters θ will be iteratively estimated during learn-
ing. Defining one or more variables modeling the crowds’
labeling expertise in the second term, this probabilistic
model is widely adopted in crowdsourcing learning, e.g.,
crowds’ expertise defined as labeling accuracy [27], [28],
precision/recall/confusion matrix [8], [29], [30], [31], and
complex multidimensional vectors [9].

Treating the multi-label task as multiple independent
binary tasks, the above model and single-label methods
can be directly applied. The problem is that the correlation
between labels are ignored by such methods. We exploit
the local influence of neighborhoods’ annotations in our
model in Figure1(b). Different from Figure1(a), enhanced
representation of each instance x̂ij for each worker j is used,

x̂ij = [xi, cij ], cij =
1
k

∑
xi′∈knnj(xi)

yi′j , (2)

i.e., x̂ij is the concatenation of xi and the local code cij of
instance i for worker j. Here knnj(xi) denotes the k near-
est neighbors of xi among the Nj instances annotated by
worker j, cij is computed as the average mean annotations
of its k nearest neighbors given by worker j.

Based on the idea that, from each worker j’s perspective,
its annotations to instances similar in the feature space
are supposed to be similar, we add the neighborhoods’
annotation information as extra features which may imply
important information for the crowds labeling prediction.
For implementation simplicity, we exploit the average mean
statistic of neighbors’ annotations in this paper. Other statis-
tical values reflecting the annotation information of neigh-
bors also worthy study, e.g., the median values.

Using the enhanced representation of instances for each
worker, we then conduct the crowdsourcing learning on
each label separately. NAM can be roughly regarded as
a two step approach, in the first step, we preprocess the
instance taking into account label correlations and construct
enhanced instance representations, in the second step, the
learning is conducted on each label separately using the new
instance representations. On each label l, the probabilistic
graphical model in Figure1(b) can be represented as:

P ({yl
ij}ij , {zl

i}i|{xi}i, x̂ij , θ)

=
∏

i

p(zl
i|xi, θ)

∏
j∈M l

i

p(yl
ij |zl

i, x̂ij , θ)pr(θ). (3)

For implementation simplicity, we utilize labeling accuracy
as [27], [28] to model the crowds’ expertise. For each anno-

tator j, we define an expertise variable el
ij as the probability

that annotator j provides the correct label for instance i, i.e.,

el
ij := p(yl

ij = zl
i|x̂ij , θ), (4)

Here the groundtruth zl
i are unknown latent variables and

will be inferred in the learning. Using I(·) to denote the
indicator function, then the distribution p(yl

ij |zl
i, x̂ij , θ) can

be formulated as the following Bernoulli distribution,

p(yl
ij |zl

i, x̂ij , θ) = (1 − el
ij)

[1−I(yl
ij=zl

i)](el
ij)

[I(yl
ij=zl

i)]. (5)

Exploiting the logistic sigmoid σ(z) = 1/(1+exp(−z)) acting
on some function f l

j,θ and f l
0,θ over instances to model el

ij

and p(zl
i|xi, θ), we get

el
ij := p(yl

ij = zl
i|x̂ij , θ) = σ(f l

j,θ(x̂ij)), (6)

p(zl
i = 1|xi, θ) = σ(f l

0,θ(xi)),

p(zl
i = −1|xi, θ) = σ(−f l

0,θ(xi)). (7)

While any function can be used to implement f l
0,θ and f l

j,θ ,
for ease of exposition, we consider the linear discriminating
functions f l

0,θ(xi) = (wl
0)

′
xi, f l

j,θ(x̂ij) = (wl
j)

′
x̂ij . Given

the above specifications, the parameters become the classi-
fier/annotator parameters θ = {wl

0, {wl
j}}. To overcome

overfitting, we further introduce a zero-mean λ-variance
Gaussian prior for {wl

0} and {wl
j}, i.e.,

pr(θ) = p(wl
0|λ)

∏
j∈M l

i

p(wl
j |λ)

p(wl
0|λ), p(wl

j |λ) ∝ N (0, λ−1I) (8)

To estimate the parameters {wl
0, {wl

j}}, we exploit
the maximum likelihood criterion and use Expectation-
Maximization (EM) [36] with missing variables {zl

i} and
observed variables {yl

ij}ij .
E-step: Given current estimation of the parameters θ =
{wl

0, {wl
j}} from last M step, the posterior probability of

ground truth label {zl
i} is computed:

p(zl
i) = p(zl

i|xi, x̂ij , {yl
ij}ij ,wl

0, {wl
j})

∝ p(zl
i|xi,wl

0)
∏

j∈M l
i

p(yl
ij |zl

i, x̂ij ,wl
j). (9)

Substituting Eq.5 and Eq.7 into Eq.9, E-step reduces to:

p(zl
i = 1) ∝ σ(wl

0

′

xi)
∏

yl
ij ̸=0

σ(yl
ijw

l
j

′

x̂ij) (10)

p(zl
i = −1) ∝ σ(−wl

0

′

xi)
∏

yl
ij ̸=0

σ(−yl
ijw

l
j

′

x̂ij) (11)

M-step: To estimate the parameters θ = {wl
0, {wl

j}}, we
maximize the expectation of the joint log-likelihood Q(θ)
of ({yl

ij}ij , {zl
i}i) over θ, with respect to the posterior

probabilities of {zl
i} computed by last E step:

Q(θ) = Ez[ln P ({yl
ij}ij , {zl

i}i|{xi}i, {x̂ij}ij ,w
l
0, {wl

j})pr(θ)]

=
∑

i

Ez[ln p(zl
i|xi,w

l
0)p(w0)] +∑

ij

Ez[ln p(yl
ij |zl

i, x̂ij ,w
l
j)p(wl

j)]

= Q(wl
0) +

λ

2
∥wl

0∥2 +
∑

j

[Q(wl
j) +

λ

2
∥wl

j∥2]. (12)
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Algorithm 1 The NAM Approach

Input: data D; parameter neighbor size k = 5, λ = 1e−3

Output: multi-label classifier {wl
0}, workers’ parameters

{wl
j}

Algorithm:
1: For each worker j, get the respective enhanced repre-

sentation x̂ij = [xi, cij ] of each instance xi by Eq. 2
2: Repeat
3: E-step: For each label l, given wl

0, {wl
j} computed from

last M-step, estimate the posterior probability p(zl
i) by

Eq. 10.
4: M-step: For each label l, given p(zl

i) computed from last
E-step, estimate wl

0, {wl
j} by maximizing Eq. 13 and 14

using GA
5: until the maximum number of iterations is reached

Substituting Eq.5,7 into Eq.12, Q(wl
0), Q(wl

j) reduces to:

Q(wl
0) =

∑
i

[wl
0

′
xip(zl

i = 1) − ln(1 + exp(wl
0

′
xi))] (13)

Q(wl
j) =

∑
i

[yl
ijw

l
j

′
x̂ijp(zl

i = 1) − ln(1 + exp(yl
ijw

l
j

′
x̂ij))] (14)

Therefore wl
0,w

l
j can be independently optimized by max-

imizing Q(wl
0), Q(wl

j), for which we use gradient ascent.
Algorithm 1 summarizes the overall process of NAM.

3.3 Method 2:RAM

Rather than treating the crowds’ annotations in the same
way as single-label tasks, i.e., taking the tagged/untagged
labels as positive/negative annotations and modeling the
crowds’ behavior over each individual label, RAM em-
phasizes on modeling the crowds’ effort-saving annotating
behavior. From the point of label relevance view, RAM treats
annotator j tagging label s but not tagging t to instance x as
that, j thinks label s is more relevant than label t to x. From
this, each annotator’s expertise is defined as its ability to
differentiate the correct relevance between label pair (s, t).

Formally, for easiness of understanding, given annotator
j and its annotations yij ∈ {+1,−1, 0}L×1 on instance xi,
we construct the label relevance aware examples for it as:

xrij = {xrst
ij} = {(xi, s, t)|ys

ij = 1,yt
ij = −1/0}. (15)

Here xrst
ij denotes the relevance aware example over label s

and t that, annotator j believes on example xi the positively
tagged label s is more relevant than the negatively or
untagged label t; and xrij denotes the set of relevance aware
examples over the whole label set on example xi in annota-
tor j’s opinion. The induced relevance aware examples for
each annotator j and the whole data are:

Xrj = {xrij |i ∈ N j}, XR = {Xrj}. (16)

Accordingly, using the unknown groundtruth labels z as
latent variables, which will be inferred in the learning pro-
cess, we define the groundtruth relevance aware positive
and negative examples for each xi as following:

xgpi = {xgpst
i } = {(xi, s, t)|zs

i = 1, zt
i = −1}, (17)

xgni = {xgnst
i } = {(xi, s, t)|zs

i = −1, zt
i = 1}. (18)

xgpst
i (xgnst

i ) denotes that on example xi, in groundtruth,
the positive (negative) label s is more (less) relevant than
the negative (positive) label t; and xgpi(xgni) denotes
the set of groundtruth relevance aware positive (negative)
examples over the whole label set on example xi. The whole
groundtruth relevance aware examples are:

XGP = {xgpi}, XGN = {xgni}. (19)

We can see the above examples actually represent the rele-
vance comparison between one pair of labels on particular
examples. Based on the above definition, each annotator j’s
expertise qst

ij on example xi over label s and t is defined
as how annotator j’s relevance comparison between label s
and t agrees with the groundtruth:

qst
ij := P ((xi, s, t) ∈ xrij |(xi, s, t) ∈ xgpi) (20)

:= 1 − P ((xi, s, t) ∈ xrij |(xi, s, t) ∈ xgni).

We also define the probability of the groundtruth relevance
comparison between labels as:

pst
i := P ((xi, s, t) ∈ xgpi) (21)

:= 1 − P ((xi, s, t) ∈ xgni).

Here pst
i denotes the probability that in groundtruth, label s

is more relevant than label t on example xi. Given Eq.20, 21,
the likelihood of each example in Eq.15 can be calculated as:

P ((xi, s, t) ∈ xrij) = qst
ij pst

i + (1 − qst
ij )(1 − pst

i ). (22)

We note that while our Eq. 22 shares the similar ranking
idea as that in [37], our problem is quite different, and the
induction procedure stemming from the crowds’ annotating
behavior is unique. Treating each {xrst

ij} independently, the
likelihood of all examples XR can be formulated as:

P (XR|θ) =

M∏
j=1

∏
i∈Nj

∏
s,t

P ((xi, s, t) ∈ xrij) (23)

=

M∏
j=1

∏
i∈Nj

∏
s,t

qst
ij pst

i + (1 − qst
ij )(1 − pst

i ).

Here θ denotes the parameters involved in the equation.
Defining the annotators’ expertise as in Eq.20, we

achieve several advantages: first, we avoid the complexity
of modeling annotators’ expertise variances on individual
labels; meanwhile, the annotators’ effort-saving behavior and
the label pair relevance relationship is naturally captured.

Assuming each annotator’s expertise over the label rele-
vance depends both on the instance they observe and the
class labels, here we exploit a logistic sigmoid function
acting on two linear discriminating functions to model qst

ij :

qst
ij = f(xi, α

s
j , α

t
j) =

exp(αs
j
′xi)

exp(αs
j
′xi) + exp(αt

j
′xi)

= σ[(αs
j − αt

j)
′xi]. (24)

Here αs
j , αt

j are d-dimensional coefficient vectors modeling
annotator j’s understanding over label s and t. The prob-
ability is reflected through the sigmoid function σ(x) =
1/(1 + exp(−x)).
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Similarly, the groundtruth relevance comparison proba-
bility between labels pst

i is defined as:

pst
i = f(xi,ws,wt) =

exp(ws′xi)
exp(ws′xi) + exp(wt′xi)

= σ[(ws − wt)′xi]. (25)

Here wl is the d-dimensional coefficient vector for label
l. fl(xi) = wl′xi can be regarded as the classifier model
defined on label l and predict the groundtruth for xi.
Learning Objective Function To learn the annotators’ and
classifiers’ parameters θ = {w, {αj}}, we maximize the log-
likelihood of Eq. 23:

θ̂ = {ŵ, {α̂j}} = arg max
θ

{ lnP (XR|θ) }. (26)

Regarding the underlying groundtruth relevance in
Eq. 17, 18 as latent variables, we use Expectation-
Maximization (EM) [36] to iteratively estimate P{(xi, s, t) ∈
xgpi} given θ in the E-step, and estimate θ given
P{(xi, s, t) ∈ xgpi} in the M-step.
E-step: Given the estimation of θ = {w, {αj}} from last
M step, the posteriors probability of P{(xi, s, t) ∈ xgpi},
P{(xi, s, t) ∈ xgni} are:

P{(xi, s, t) ∈ xgpi} (27)

{∝
∏

j∈Mi

∏
s,t

P (xrst
ij ∈ xrij |(xi, s, t) ∈ xgpi, θ) ·

P ((xi, s, t) ∈ xgpi|θ)} ∝
∏

j∈Mi

∏
s,t

qst
ij pst

i ,

P{(xi, s, t) ∈ xgni} (28)

{∝
∏

j∈Mi

∏
s,t

P (xrst
ij ∈ xrij |(xi, s, t) ∈ xgni, θ) ·

P ((xi, s, t) ∈ xgni|θ)} ∝
∏

j∈Mi

∏
s,t

(1 − qst
ij )(1 − pst

i ).

Substituting Eq.24, 25 into Eq.27, 28, E-step reduces to:

P{(xi, s, t) ∈ xgpi}
∝

∏
j∈Mi

∏
s,t

σ[(αs
j − αt

j)
′xi]σ[(ws − wt)′xi], (29)

P{(xi, s, t) ∈ xgni}
∝

∏
j∈Mi

∏
s,t

σ[−(αs
j − αt

j)
′xi]σ[−(ws − wt)′xi]. (30)

M-step: To estimate θ, we maximize the expectation of the
joint log-likelihood of (xrst

ij , (xi, s, t)) over θ = {w, {αj}},
with respect to the posterior probability of (xi, s, t) ∈ xgpi

computed by last E step:

θ = arg max
θ

QE(θ),

QE(θ) = E(xi,s,t)∈xgpi
[lnP (XR, {(xi, s, t)}st

i )|θ)]

= QE({w}) +
M∑

j=1

QE(αj), (31)

Algorithm 2 The RAM Approach

Input: data D; parameter C = 100, γo = 5 ∗ 1e−4

Output: multi-label classifier w, workers’ parameters {αj}
Algorithm:

1: Repeat
2: E-step: Given w, {αj} computed from last M-step, esti-

mate the posterior probability P{(xi, s, t) ∈ xgpi} by
Eq. 29, 30 .

3: M-step: Given P{(xi, s, t) ∈ xgpi} computed from last
E-step, estimate w, {αj} by maximizing Eq. 32 and 33
using SGD stated in Eq. 34- 37

4: until the value Eq. 23 converges or maximum number
of iterations is reached

where QE(w), QE(αj) are induced as,

QE(w) =

N∑
i=1

∑
s,t

{ln σ[(ws − wt)
′
xi]PoldE

+ ln σ[−(ws − wt)
′
xi](1 − PoldE)}, (32)

QE(αj) =
∑

i∈Nj

∑
s,t

{ln σ[(αs
j − αt

j)
′
xi]PoldE

+ ln σ[−(αs
j − αt

j)
′
xi](1 − PoldE)}. (33)

We introduce PoldE to denote P{(xi, s, t) ∈ xgpi} com-
puted by the last E step for the convenience of presentation.

Based on Eq. 32 and 33, the multi-label classifier w
and worker parameter αj can be independently inferred by
maximizing QE(w), QE(αj) with respect to w, αj . One
solution is alternatively maximizing QE(w), QE(αj) with
respect to one class associated parameters, e.g., wl, αl

j , with
the others fixed. In the multi-label crowdsourcing tasks, this
strategy would be very slow when the number of labels
and workers are large. In this paper, we employ the more
efficient stochastic gradient descent(SGD) [38] approach to
minimize −QE(w), −QE(αj) as following:
To minimize −QE(w), at each iteration of SGD, we ran-
domly sample an instance x, two labels s, t to form a triplet
(x, ls, lt) and perform gradient descent on ws, wt:

ws(T+1) = ws(T ) − γ(T+1)x(PoldE − Poldw) (34)

wt(T+1) = wt(T ) − γ(T+1)x(Poldw − PoldE) (35)

To minimize −QE(αj), at each iteration of SGD, we ran-
domly sample an instance x, one positive tagged label s
and one negative or untagged label t such that ys

ij = 1 and
yt

ij = −1/0 to form a triplet (xi, s, t) and perform gradient
descent on αs

j , αt
j :

αs
j
(T+1) = αs

j
(T+1) − γ(T+1)x(PoldE − Poldal) (36)

αt
j
(T+1) = αt

j
(T+1) − γ(T+1)x(Poldal − PoldE) (37)

Here γ(T+1)=γo/(T + 1) is the step size updated in each
iteration of SGD, γo is the initialized step size value.
Poldw = σ[(ws(T )−wt(T ))′x], Poldal = σ[(αs

j
(T )−αt

j
(T ))′x]

are introduced for the convenience of presentation. After
the SGD update, to overcome overfitting, ws,wt, αs

j , α
t
j are

normalized to have a L2 norm smaller than a constant C.
Algorithm 2 summarizes the overall process of RAM.
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4 SCENARIO 2: ACTIVE CROWDSOURCING

Considering that the labeling budget is often limited,
whereas annotating the whole dataset may lead to unnec-
essary information redundancy, we extend NAM and RAM
to the active crowdsourcing learning scenario to query and
learn from the most valuable annotations. We consider the
pool-based active learning case and first give the formal
description of the learning setting and process.

Different from the previous scenario with pre-collected
annotations, we are given a small number of Nl ini-
tially labeled examples with groundtruth available Dl =
{(x1, z1, {y1j}),. . . ,(xNl

, zNl
, {yNlj})}, with zi denoting

the groundtruth of xi, yij denoting worker j’s annota-
tion for xi. Besides, a pool of Nu unlabeled examples
Du = {xNl+1, . . . ,xNl+Nu} are available. During the learn-
ing process with M workers available for annotating, we
iteratively alternate between the two steps: we select the
most valuable annotation to query from the workers, and
update the crowdsourcing classifier given the annotations.

Based on the previous learning process, NAM and RAM
can respectively get an estimation of each worker’s expertise
el

ij , qst
ij over individual label and label pairs, as imple-

mented in Eq.6, Eq.24, and the classifier f l
0,θ(xi) = (wl

0)
′
xi,

fl(xi) = wl′xi on each label. In the following, we introduce
the instance, label, and worker selection criteria computed
based on the prediction results of NAM and RAM.
Instance Selection To select the most informative instance
for the current multi-label classifier, typical methods defined
some uncertainty measure for the instances considering the
prediction uncertainty over labels, such as the average or
minimal margin of all labels to their respective svm classifier
[39], [40]. In this work, driven by our crowdsourcing query
setting, we adopt the query diversity regularized uncer-
tainty measure QCI defined in [41], which was extended
from the LCI (Label Cardinality Inconsistency) measure
proposed in [42], for our instance selection.

LCI was motivated by the label cardinality observation
that the multi-label instances usually have similar number
of positive labels. Defined as the inconsistency between the
number of predicted positive labels of instances and the
average number of positive labels of the initial labeled data,
LCI was formulated as:

max
xi

LCI(xi) = |
L∑

l=1

I(ẑl
i = 1) − 1

Nl

Nl∑
j=1

L∑
l=1

I(zl
j = 1)|. (38)

Here ẑl
i is the label estimation of instance xi on l. To avoid

always querying the most uncertain instances, Huang et
al. [41] extended LCI to QCI as:

max
xi

QCI(xi) =

|
L∑

l=1

I(ẑl
i = 1) − 1

Nl

Nl∑
j=1

L∑
l=1

I(zl
j = 1)|

max{0.5, anno(xi)}
. (39)

Here anno(xi) denotes the queried times of instance xi and
0.5 is used avoid zero divisor.

Different from conventional active learning where each
label is queried at most one time, in crowdsourcing, each la-
bel can be queried for multiple times from several workers.
Thus the query regularization is meaningful to give more
chance to the less queried instances which could contain
more unknown information. In the experiment, we give
some analysis over the instance selection criteria.

Algorithm 3 The Active Crowdsourcing Procedure
Input: data D = {Dl, Du}
Train:

1: Initialize the crowdsourcing data Dc as Dl, learn the
crowdsourcing model on Dc using NAM/RAM

2: Repeat:
3: Get label predictions for each x ∈ Du

4: Select instance xi∗ by Eq. 39
5: Select the labels L∗

l for xi∗ by Eq. 40
6: Select worker j∗ for xi∗ by Eq. 41/ Eq. 42 for

NAM/RAM
7: Query {yl∗

i∗j∗} for xi∗ on l∗ ∈ L∗
l from workers j∗

8: Add {yl∗

i∗j∗} to the crowdsourcing data Dc

9: Update crowdsourcing model on Dc by NAM/RAM
10: Until The maximum number of queries is reached
Test:

1: For instance xt, get the label predictions using the
multi-label classifier

Label Selection Previous multi-label active learning mainly
select labels which are most uncertain such as labels clos-
est to the decision boundary [41], or which improve the
classifier best like minimizing the generalization error [43].
Different from them, we consider the label sparsity property
of multi-label tasks, i.e., the number of positive labels for
each example is far less than the number of the negative
counterparts, and their information is critical for learning.
Given the selected instance x∗ by Eq.39, we propose to
query its l most possibly positive labels, i.e., the top-l ranked
labels predicted by the classifier:

L∗
l = { l∗ | wl∗ ′xi∗ ranks top l among label predictions }. (40)

We test l with varying values in the experiments.
Annotator Selection Given the selected instance and label
(xi∗ , l

∗) by Eq. 39 and Eq. 40, we need to select the most
reliable annotator to collect high quality annotations. For
NAM, Eq. 6 provides each worker’s expertise el

ij over each
label l, thus we select the most reliable worker by

NAM : j∗ = arg max
j

el∗

i∗j = σ((wl∗

j )
′
xi∗). (41)

For RAM, Eq.24 provides each worker’s expertise qst
ij over

each label pair. To select the most reliable worker for the
most possibly positive label l∗, we select the worker that
gives the most possibly positive annotation:

RAM : j∗ = arg max
j

exp(αl∗

j

′
xi∗). (42)

After the instances, labels and annotators are selected, the
annotations are queried and added to the training data
to update the crowdsourcing model. The overall process
of the active crowdsourcing framework is summarized in
Algorithm 3.

5 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we give the computational complexity
of the proposed methods. For NAM and RAM, in each
EM iteration, their computation complexity in the E-step
and M-step are respectively O(LNMd), O(tLNMd) and
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O(NL2Md), O(tMd), here t is used to denote the maximum
iteration number of GD/SGD for NAM/RAM in the M-
step. Besides, the enhanced representation computation for
NAM is O(N2(d + Mk))(computing the distance between
all instances costs N2d, finding the k nearest neighbors
for each instance among N instances costs kN ). Thus the
computation complexity of NAM and RAM are respectively
O(N2(d + Mk) + TtLNMd) and O(T (NL2 + t)Md), here
T denotes the maximum EM iteration number. In the experi-
ment, we use LIBLINEAR [44] to initialize the classifier and
workers’ parameters and set T = 100, which show good
performance. For the active crowdsourcing, the computa-
tion composes of the update of the model, and the active
selection by Eq. 39- 42, which is O(Nu + M)Ld.

6 EXPERIMENT 1: GROUNDTRUTH ESTIMATION

In this section, we conduct experiments estimating the
groundtruth labels from the given crowdsourcing annota-
tions. We experiment on several simulated and real world
datasets with a few baselines.
Baselines We compare with four multi-label crowdsourcing
methods D-DS, P-DS, ND-DS [14] and MLNB [11]. We
also adopt four state of the art single-label crowdsourcing
methods MV, DS [29], MaxEn [31] Yutc [8] as baselines by
applying them on each individual label.

Besides, from the partial label view, the unknown an-
notations of each worker on its untagged images can be
seen as missing entries of the annotation matrix Y ∈
{1,−1, 0}N×(L×M), where Y (i, (j − 1) × L + l) = (−1)1
denotes worker j annotated image i and (did not)tag(ged)
label l as positive, Y (i, (j − 1) × L + l) = 0 denotes
worker j did not annotate image i. Considering entries in
Y are repetition annotations over the same label set, thus a
low rank structure assumption of Y is reasonable and we
adopt the low rank assumption based partial label recovery
method Maxide [26] to recover the missing annotations.
Then majority voting is used to get the groundtruth estima-
tion. Maxide exploited instance features as side information
and was theoretically and experimentally validated to be
superior than alternatives [25].

The parameters for the proposed methods are tuned on
a small subset of instances with their groundtruth labels
available on our real data dataset1 and fixed during the
experiments. For NAM, the neighbor size k is tuned in
[1, 2, ..., 10] and set as 5, the prior distribution parameter λ is
tuned in {10−5, 10−4, ..., 102} and set as 10−3. For RAM, the
initial step size of SGD is set as 5×10−4, and the norm upper
bound C is tuned in {0.1, 1, ..., 105} and set as 100. For
practical usage, if the groundtruth labels are not available,
their estimations by state of the art methods such as MV
and MaxEn[31] can be used as substitution. For baselines,
implementation code are provided by their authors and the
recommended parameters values are used. Note that in the
above baselines, except for Yutc and Maxide utilizing the
instance features during learning, other baselines infer the
groundtruth labels only from the annotations.

We report the macroF1 (MacF1) classification results,
which evaluates the macro average results of the F1 classifi-
cation score on each class label, with larger value indicating
better performance. As RAM currently learns no threshold

TABLE 1
The MacF1 scores of generated workers in Setting I

w1 w2 w3 w4 w5 w6 w7
p = 90% .501 .519 .521 .519 .520 .516 .499

Em. p = 30% .431 .387 .421 .441 .425 .413 .386
p = 90% .590 .590 .595 .586 .587 .592 .592

Sc. p = 30% .530 .487 .531 .541 .512 .533 .518
p = 90% .603 .603 .609 .604 .603 .605 .607

Ye. p = 30% .602 .596 .585 .587 .592 .590 .595

value to separate the positive and negative predictions, to
evaluate the classification performance, we treat the top
l ranked labels as positive and other labels as negative.
Here l is the number of groundtruth positive labels of each
example. For fair of comparison, the best result among this
strategy and the heuristic real value threshold strategy (0.5
for crowdsourcing baselines’ probabilistic output and 0 for
Maxide’s signed real valued output) for baselines are used.
Similar results on other measures such as microF1, average
precision and ranking loss are also obtained and omitted here.

6.1 Simulation Data

In this subsection, we conduct experiments on three multi-
label benchmarks from text, image and biology fields.
Text Categorization The Emotions (Em.) [45] dataset is a
collection of 593 songs that are classified into 6 classes of
emotions. Each song has on average 1.9 ± 0.7 labels.
Image Annotation The Scene (Sc.) [46] dataset contains 2407
natural scene images and 6 possible labels. Each image has
on average 1.1 ± 0.2 labels.
Gene Functional Classification The Yeast (Ye.) [2] dataset
contains 2417 genes and 14 possible class labels. Each gene
has on average 4.2 ± 1.6 labels.

We study two types of annotation generating process. In
Setting I, as binary crowdsourcing tasks, the annotations
are generated for each label separately. To simulate workers
presenting similar annotations for instances with similar
features, we randomly hold out 50% instances of the whole
dataset for crowdsourcing learning, whose annotations of
each worker are given by the LIBLINEAR [44] classifier
trained on each label using random p fraction data of the
other half instances. Multiple annotators are simulated by
repeating this process for several times. We generate a
moderate number of 7 workers for each dataset, and test
p = 90%, 30% to simulate different worker expertise levels.

In Setting II, treating the multi-label tasks different from
multiple binary tasks, we simulate the crowds’ effort-saving
behavior of just annotating the few most relevant labels. We
use the classic RankSVM [47] multi-label classifier which
predicts the relevance ranking of labels. Similar as Setting
I, we generate a moderate number of 7 workers for each
dataset with two p values.

For both settings, the average and standard deviation
performances over 10 times data generation are recorded
respectively in Table 3, 4. We also give the average rank of
methods on each dataset over different p settings.

Before diving into the massive result details, we first take
an overall look at the annotations’ quality generated by the
above process. For the three datasets and the two annotation
generating setting, the MacF1 scores of the workers are
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TABLE 3
MacF1 results ( the larger, the better) (mean ± std.) for Setting I on the simulated datasets. • (◦) /H (▽) indicates that NAM/ RAM is significantly

better(worse) than the compared method (paired t-tests at 95% significance level).

p = 90% p = 30% avk. p = 90% p = 30% avk. p = 90% p = 30% avk.
NAM .620±.016 .628±.005 1.6 .737±.008 .750±.004 1.0 .607±.003 .617±.003 2.6
RAM .617±.003 .631±.003 2.0 .724±.008 .742±.004 2.0 .610±.018 .616±.000 2.3
D-DS .520±.011•H .551±.007•H 8.6 .675±.009•H .636±.001•H 8.3 .597±.004•H .605±.001•H 5.3
P-DS .259±.014•H .300±.006•H 11.0 .474±.008•H .432±.001•H 10.0 .469±.003•H .471±.001•H 10.0
ND-DS .514±.007•H .552±.004•H 8.3 .674±.005•H .637±.000•H 8.6 .595±.003•H .607±.001•H 5.0
MLNB Em. .334±.025•H .344±.005•H 10.0 Sc. .168±.002•H .174±.005•H 11.0 Ye. .306±.002•H .311±.002•H 11.0
MV .606±.014•H .610±.005•H 7.0 .685±.007•H .657±.001•H 7.0 .628±.007◦▽ .636±.002◦▽ 1.0
DS .608±.009•H .618±.013•H 4.3 .705±.009•H .672±.008•H 5.3 .576±.007•H .595±.004•H 7.0
MaxEn .614±.007•H .623±.007•H 4.6 .704±.005•H .678±.006•H 5.6 .560±.005•H .575±.003•H 8.3
Yutc .611±.012•H .624±.003•H 4.6 .718±.006•H .715±.001•H 3.0 .514±.001•H .583±.003•H 8.6
Maxide .611±.004•H .624±.002•H 3.6 .708±.005•H .713±.002•H 4.0 .603±.001•H .608±.001•H 4.6

TABLE 4
MacF1 results ( the larger, the better) (mean ± std.) for Setting II on the simulated datasets. • (◦) /H (▽) indicates that NAM/ RAM is significantly

better(worse) than the compared method (paired t-tests at 95% significance level).

p = 90% p = 30% avk. p = 90% p = 30% avk. p = 90% p = 30% avk.
NAM .615±.009 .634±.015 1.6 .734±.006 .737±.004 1.0 .632±.007 .618±.002 1.6
RAM .624±.005 .628±.006 2.0 .727±.008 .731±.007 2.0 .630±.002 .608±.003 2.6
D-DS .520±.012•H .553±.006•H 9.0 .594±.007•H .653±.003•H 9.0 .587±.005•H .592±.002•H 5.6
P-DS .289±.005•H .327±.031•H 11.0 .391±.006•H .448±.008•H 10.0 .442±.011•H .467±.005•H 10.0
ND-DS .529±.008•H .560±.012•H 8.0 .599±.008•H .659±.009•H 8.0 .600±.002•H .582±.003•H 5.0
MLNB Em. .344±.016•H .333±.017•H 10.0 Sc. .168±.011•H .181±.014•H 11.0 Ye. .306±.003•H .305±.001•H 11.0
MV .612±.006•H .628±.006• 4.0 .632±.012•H .674±.010•H 7.0 .638±.002◦▽ .615±.004▽ 1.6
DS .596±.012•H .616±.010•H 7.0 .645±.009•H .691±.011•H 5.6 .568±.019•H .609±.016•H 6.0
MaxEn .615±.013H .620±.007•H 3.0 .652±.009•H .693±.007•H 5.3 .544±.006•H .569±.015•H 8.3
Yutc .613±.009H .619±.013•H 5.3 .714±.007•H .732±.005• 3.0 .554±.014•H .526±.036•H 8.6
Maxide .603±.006•H .622±.005•H 5.0 .705±.005•H .710±.008•H 4.0 .604±.003•H .584±.002•H 5.3

TABLE 2
The MacF1 scores of generated workers in Setting II

w1 w2 w3 w4 w5 w6 w7
p = 90% .498 .478 .437 .442 .492 .449 .450

Em. p = 30% .481 .392 .472 .447 .473 .434 .513
p = 90% .533 .449 .520 .535 .460 .466 .435

Sc. p = 30% .530 .500 .529 .498 .510 .524 .493
p = 90% .598 .569 .599 .595 .574 .597 .601

Ye. p = 30% .565 .575 .582 .578 .597 .574 .587

shown in Table 1 and Table 2. Comparing Table 1 and Table
2, we can see that the annotations generated by the two
processes are quite different. When p = 90%, the MacF1
scores of the workers in Setting II are universally lower than
that in the Setting I on all datasets, whereas with p = 30%,
there is no such monotone phenomenon. Besides, scores
of the workers generated by Setting II are more diverse
compared to that in Setting I.

Now look at the aggregation results in Table 3 and
4, the proposed NAM and RAM always rank the top
two, followed by Maxide and the single-label baselines.
Assuming a low rank structure among the annotations,
Maxide achieves not bad performance here, which should
be explained by that the training data used to generate the
workers are largely overlapped thus making the crowds’
annotations differ not too much. Among the multi-label
baselines, MLNB ranks the worst. There are possibly two
reasons for this phenomenon, first, MLNB considers the
label co-occurrence correlation to learn the multi-label tax-
onomies, for which the label co-occurrence is specially perti-
nent, but for problems lacking label hierarchies, the label co-

occurrence is not as common; second, MLNB uses the same
sensitivity and specificity parameter for all workers without
modeling crowds’ expertise variance. Comparing D-DS, P-
DS extending DS [29] to consider label relationship among
all label powersets, label set of two labels, ND-DS performs
the most effective by using conditional independent label
dependency, which overcomes the label sparsity.

Results on Yeast is a bit different, showing that except
for the proposed methods, Maxide, MV and D-DS, ND-
DS, the rest methods perform even worse than the original
annotations. This may be explained by the relative high
difficulty of the Yeast dataset, for which each instance is
associated with 4 to 5 positive labels thus correctly tagging
all proper labels is more difficult.

Another notable thing is that although in Table 1 and
2, each of the workers generated using p = 30% training
data is less reliable than those generated using 90%, there
is no such consequential results in Table 3 and 4, i.e., the
aggregation performance for p = 30% are not necessarily
worse than p = 90%. This should be explained by the
larger diversity among workers generated in the p = 30%
setting. This may suggest that similar as ensemble learning,
the diversity among workers also plays a role.

6.2 Real Data
To get real data, we distributed two image annotation tasks
on the AMT platform, and ask the workers to annotate the
proper labels for the image they see.
dataset1 The dataset1 contains 700 images with 6 candidate
labels {desert, beach, sea, mountain, tree, sunriseset}. On aver-
age each image has 1.2 ± 0.4 labels. The images with more
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TABLE 5
MacF1 results ( the larger, the better) (mean ± std.) on dataset1. nw denotes the number of workers.• (◦) /H (▽) indicates that NAM/ RAM is

significantly better(worse) than the compared method (paired t-tests at 95% significance level).

Alg. nw = 1 nw = 3 nw = 5 nw = 7 nw = 9 nw = 11 nw = 13 nw = 15 avg.rk.

NAM .745±.131 .823±.027 .862±.018 .878±.016 .890±.013 .895±.005 .897±.004 .900±.003 1.2
RAM .726±.148 .836±.020 .858±.018 .869±.011 .883±.012 .892±.008 .894±.008 .900±.004 1.8
D-DS .466±.341•H .723±.065•H .768±.053•H .797±.050•H .826±.037•H .846±.016•H .855±.003•H .860±.004•H 6.0
P-DS .243±.183•H .350±.064•H .365±.045•H .381±.040•H .397±.028•H .408±.013•H .414±.004•H .417±.003•H 10.0
ND-DS .467±.341•H .734±.070•H .780±.053•H .812±.049•H .836±.037•H .857±.017•H .868±.008•H .875±.004•H 4.8
MLNB .141±.041•H .192±.014•H .189±.011•H .186±.006•H .207±.016•H .204±.017•H .204±.011•H .206±.008•H 11.0
MV .465±.280•H .703±.062•H .766±.057•H .798±.047•H .829±.035•H .859±.014•H .870±.008•H .881±.006•H 5.6

dataset1 DS .496±.259•H .718±.064•H .737±.036•H .748±.044•H .777±.031•H .801±.027•H .815±.008•H .844±.016•H 7.5
MaxEn .505±.259•H .709±.048•H .778±.050•H .820±.049•H .846±.038•H .865±.017•H .876±.010•H .880±.008•H 4.1
Yutc .631±.185•H .729±.021•H .758±.014•H .768±.024•H .779±.018•H .799±.012•H .801±.010•H .809±.008•H 6.9
Maxide .729±.093H .757±.027•H .764±.020•H .767±.012•H .771±.002•H .767±.010•H .766±.006•H .765±.006•H 7.0

TABLE 6
MacF1 results ( the larger, the better) (mean ± std.) on dataset2. nw denotes the number of workers.• (◦)/H (▽) indicates that NAM/ RAM is

significantly better(worse) than the compared method (paired t-tests at 95% significance level).

Alg. nw = 1 nw = 3 nw = 5 nw = 7 nw = 9 nw = 11 nw = 13 nw = 15 avg.rk.

NAM .406±.143 .750±.055 .775±.044 .799±.042 .839±.012 .857±.005 .859±.004 .865±.000 1.1
RAM .389±.145 .745±.073 .759±.049 .788±.028 .817±.006 .831±.049 .828±.006 .836±.002 2.6
D-DS .076±.016•H .569±.220•H .621±.161•H .670±.100•H .752±.028•H .777±.008•H .784±.006•H .793±.000•H 6.7
P-DS .014±.015•H .131±.210•H .142±.152•H .148±.110•H .157±.030•H .157±.009•H .162±.007•H .161±.000•H 10.1
ND-DS .021±.013•H .657±.190•H .678±.147•H .705±.107•H .767±.028•H .779±.008•H .786±.008•H .601±.000•H 5.3
MLNB .077±.003•H .104±.011•H .106±.012•H .108±.009•H .109±.008•H .115±.004•H .114±.009•H .113±.009•H 10.6
MV .134±.014•H .555±.188•H .612±.153•H .674±.114•H .773±.039•H .815±.011•H .835±.007• .850±.000•▽ 5.3
DS .141±.015•H .578±.184•H .629±.143•H .686±.101•H .759±.032•H .765±.005•H .760±.005•H .770±.003•H 5.9

dataset2 MaxEn .141±.013•H .575±.195•H .631±.161•H .690±.119•H .786±.038•H .826±.007•H .836±.004•▽ .844±.000•▽ 3.8
Yutc .302±.073•H .564±.074•H .601±.033•H .604±.032•H .634±.020•H .635±.028•H .640±.022•H .655±.023•H 7.4
Maxide .530±.041◦▽ .613±.040•H .583±.050•H .567±.024•H .560±.030•H .541±.010•H .574±.031•H .544±.000•H 7.4

than one label comprise about 23%. Annotations from 18
workers each annotating no less than 70 images are kept for
experiment. On average each worker annotated 267 ± 201
images, each image was annotated by 6.9 ± 2.3 workers.
dataset2 The dataset2 contains 1495 images with 16 can-
didate labels {desert, beach, sea, boat, mountain, flower, tree,
garden, waterfall, building, city, car, person, indoor, sunriseset,
sky}. On average each image has 1.8±0.9 labels. The images
with more than one label comprise about 61%. Annotations
from 15 workers each annotating no less than 100 images are
kept. On average each worker annotated 397 ± 453 images,
each image was annotated by 10.1 ± 1.4 workers.

We use the two tasks with different instance and label
sizes to test the algorithms. The groundtruth labels are
annotated by human volunteers, and a 1248-dim fisher
vector is extracted as feature representation for each image.

To get some rough idea about the crowds’ annotation
quality, we conduct some initial analysis. For each worker,
we calculate its macroF1 classification result on its corre-
sponding annotated example set: on dataset1 and dataset2,
the macroF1 scores for their 18 and 15 workers are respec-
tively {0.62, 0.69,0.76,0.77,0.78, 0.79, 0.80, 0.80, 0.80, 0.82,
0.83, 0.83, 0.83, 0.83, 0.84, 0.85, 0.85, 0.91 }, {0.60, 0.71, 0.75,
0.76, 0.76, 0.76, 0.76, 0.77, 0.77, 0.78, 0.78, 0.80, 0.80, 0.83,
0.85 }. We can see that the crowds’ macroF1 scores are
mainly around [0.70,0.80], indicating that most workers are
intending to provide good annotations.

Following [9], [28], we show the approaches’ varying
performance affected by the numbers of annotations each
example receives. Workers are added one by one randomly.
To alleviate the effects of worker order randomness, the

process is repeated for 10 times. The average and standard
deviation results as the number of workers varies from 1 to
15 for the two datasets are shown in Table 5, 6 .

It can be seen that in most cases, NAM and RAM achieve
significant better performance than baselines. Though the
partial label learning approach Maxide performs nice when
the number of workers is small (less than 5), it fails to gain
more benefits when the number of annotations increases,
which should be due to its ignorance of modeling the
crowds’ expertise. This indicates that crowdsourcing learn-
ing itself is different from other problems, for which careful
attention to crowds’ labeling expertise should be paid.

For the crowdsourcing baselines, we can see an overall
monotone performance increasing trend as the number of
workers grows from small, and tend to reach a flat level
as the number of workers become large. Similar as results
on the simulation data, MLNB ranks the worst. Comparing
D-DS, P-DS and ND-DS, ND-DS achieves the best perfor-
mance by using conditional independent label dependency
properties to overcome the data sparsity problem.

Among the single-label baselines, when the number of
workers is less than 11, there is an obvious gap between
them and our proposed methods, suggesting that to get the
same good performance, NAM and RAM needs much fewer
annotations. While MV and MaxEn increase faster as an-
notations grow, other baselines increase slower and achieve
relatively inferior results. Ignoring label correlations and the
crowds’ specific annotating expertise on multi-label tasks,
treating multi-label crowdsourcing tasks as repetitions of
single-label problem shows inferiority.

Taking into account the local influence of neighborhoods’
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label correlations, and crowds’ effort-saving annotating be-
havior, our NAM and RAM achieves the best performance.

6.3 Parameter Study
In the above results, parameters are fixed for NAM and
RAM. Here we explore the effects of the two parameters λ
and neighbor size k to NAM, and the norm upper bound
C to RAM. Tuning λ in {10−5, 10−4, ..., 102} and k in
{0, 5, 9, 13} for NAM, tuning C in {0.1, 1, ..., 105} for RAM,
we report the MacroF1 results on dataset1 and dataset2 with
5 and 15 workers in Figure 2 and Figure 3.
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Fig. 2. Influence of the two parameters λ and neighborsize k for NAM
with two different number of workers nw = 5 and nw = 15.
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Fig. 3. Influence of parameter C for RAM on dataset1 and dataset2 with
two different number of workers nw = 5 and nw = 15.

From Figure 2, we can see that compared to the mild
effect of k, the value of λ affects the learning more signifi-
cantly. With all four k values, the performance of NAM is
stably good (degenerates much) for λ no larger than 10−3

(no smaller than 10−2). For the neighbor size k, the perfor-
mance improves as k increases from 0 to 5, and degenerates
as k becomes large. This is reasonable as the effects of far
away neighbors become weak. Given the results in Figure 2,
we suggest λ = 10−3 and k = 5 in practical use.

From Figure 3, we can see C shows a similar effect on
RAM as λ on NAM, with stably good performance when
no smaller than 100, the value we use in the experiments.
It’s not strange that same preference for C are shared over
datasets since the performance variance due to the varying
of data size (number of instances, labels, and annotations) is
normalized out using SGD optimization.

7 EXPERIMENT 2: ACTIVE CROWDSOURCING

7.1 Setup
In this section, we study the effect of active crowdsourcing
strategies on the two real datasets. For each dataset, we

randomly partition the instances into three parts comprising
5%, 70% and 25% of the whole data to construct the initial
labeled annotated training data, the unlabeled training data
and the test data. At each query, the (instance, label, worker)
triple(s) are selected and their annotations are added into
the data to update the learning model. The average perfor-
mances over five times random data partition is reported.
Comparison I We conduct two sets of comparisons. First,
we fix the instance selection strategy as QCI [41] defined
in Eq. 39, and test the following label and worker selection
strategies for NAM and RAM: 1)LP, 2)LU, 3)LR which select
label that is most possibly to be Positive (using Eq. 40),
select label that is most Uncertain(label probability closest
to 0.5), and select label Randomly; 1)WE, 2)WR which select
worker that is most Expertised (using Eq. 41/ Eq. 42 for
NAM/RAM), and select workers Randomly. To get an intu-
ition on the relative performance of the proposed method,
we also incorporate the Single-label Active Crowdsourcing
(SAC) method [32] as baseline. SAC selects the most un-
certain instance (with one label whose probability is closest
to 0.5) to query from the most reliable worker (with highest
labeling accuracy).
Comparison II In the second comparison, we demonstrate
the effectiveness of the QCI instance selection criterion we
adopted from [41]. Fixing the label and worker selection
strategy as LP and WE, we investigate the effect of three
instance selection strategies: 1)the QCI strategy in Eq. 39,
2)the LCI in Eq. 38, and 3) Random instance selection.

We test the number of queried labels l = 1, 3. To take
advantage of the newly added annotations, the enhanced
instance representations for NAM are updated after every 50
queries. The results for the two kinds of comparisons are
shown in Figure 4-5 and Figure 6.

7.2 Results and Analysis
Results of Comparison I We first look at the results for
Comparison I with l = 1 in Figure 4(a) and 4(b). To
give a clear demonstration, we show three plots for each
data, representing the results of the three label selection
strategies while fixing the worker selection strategy as WE,
WR, and the comparison of WE and WR with the label
selection fixed as LP. Comparing the results of NAM on
dataset1 in the left three plots of Figure 4(a), we can see
that: 1) either with WE or WR, comparing LP, LU and LR,
a) in most time, LP is much better than the LR random
selection, b) LU sometimes does not performs good until
enough annotations are collected, for example, 500, 800
on dataset1 with worker selection strategy WE, WR. This
phenomenon is more obvious on dataset2 which concerns
16 labels. This could be due to the label sparsity property
where the queried annotations are mostly negative, whose
contribution to modeling the crowds maybe misleading; 2)
fixing the label selection strategy as LP, the comparison of
WE and WR in the third figure of the left (right) three
plots validates that WE always performs better than WR.
In the right three plots of Figure 4(a) for NAM on dataset2
with larger number of labels, more obvious gaps between
comparison methods are observed. With the same setting,
the comparison of RAM with different label and worker
selection strategies are similarly shown in Figure 4(b), from
which the proposed LP and WE strategies are most effective.
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(a) Results of NAM on dataset1 and dataset2 with l = 1 label queried at each iteration.
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(b) Results of RAM on dataset1 and dataset2 with l = 1 label queried at each iteration.

Fig. 4. Results for label strategies {LP, LU, LR} and worker strategies {WE, WR} with queried labels l = 1. Instances selection is fixed as QCI.
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(a) Results of NAM on dataset1 and dataset2 with l = 3 label queried at each iteration.
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(b) Results of RAM on dataset1 and dataset2 with l = 3 label queried at each iteration.

Fig. 5. Results for label strategies {LP, LU, LR} and worker strategies {WE, WR} with queried labels l = 3. Instances selection is fixed as QCI.

For the results of l = 3 in Figure 5, we get similar
comparison between the strategies, but with smoother and
faster converged results (3000 queries compared to 5000 for
l = 1), especially on dataset2 with a rather larger label set.
From this we recommend l = 3 for practical usage, which is
a moderate number of labels for the workers to tag, and at
the same time makes the learning process more efficient.

Results of Comparison II The results of Comparison II
are shown in Figure 6. We omit the similar results for
dataset2 due to space limitation. From Figure 6 we can see
that, with label and worker selection fixed as LP and WE,
QCI consistently performs better than random and LCI,
but not that significant as the effect of label and worker
selection. It’s noteworthy that random selection here is a
rather strong choice, which actually is not rare case for
multi-label active learning tasks. The reason is probably
because the informativeness of multi-label data could be
ambiguously distributed over the instance set, due to the in-
trinsic simultaneous concern of multiple label, and random
selection gives even chance to instances which may capture
more valuable information.

Comparing the effects of instance, label, and worker
strategies, from Figure 4-5, 6, we can see that the label and
worker strategies play significant roles in finding the helpful
annotations. With label and worker selection fixed as LP and
WE, the instance can be selected with more flexibility. For
example, in scenarios where efficiency is more concerned,
random instance can be used which is very fast compared

to active instance selection.
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Fig. 6. Instance selection strategy study for NAM and RAM on dataset1,
with top ranked queried label 1, 3.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we deal with multi-label crowdsourcing learn-
ing and propose two approaches NAM/RAM (Neighbor-
hood/Relevance Aware Multi-label crowdsourcing) model-
ing the crowds’ expertise and label correlations from dif-
ferent perspectives. Based on the idea that instances similar
in the feature space should share similar annotations, NAM
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models the crowds’ expertise on each individual label and
utilizing the local influence of neighborhoods’ label corre-
lations. RAM captures the workers’ effort-saving annotating
behavior and models their expertise as their ability to dis-
tinguish the label relevance. Considering that the labeling
budget is always limited, we also extend NAM and RAM to
the active learning paradigm, and propose label and worker
query strategies to select the most possibly positive labels to
query from the most reliable workers.

Currently, we do not pay special attention to spammer
workers which provide no beneficial annotations during
the labeling process, for future work, we would like to
deal with spammer worker filtering. Besides, a number
of issues should be concerned in scenarios of large label
crowdsourcing: firstly, simply presenting the whole label
set to the crowds would be too low-efficient and result in
uncontrollable labeling errors; secondly, the computational
complexity is a big problem. Thus efficient and quality guar-
anteed label collection modes and learning algorithms are
worth study directions, e.g., richer information collection
including but not limited to membership labels, strategies
on label grouping or problem reduction to transform the
problem into smaller easy to handle subproblems.
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