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ABSTRACT
 
One challenge in identification of Alzheimer’s disease (AD) 
is that the number of AD patients and healthy controls 
(HCs) is generally very small, thus difficult to train a 
powerful AD classifier. On the other hand, besides AD and 
HC subjects, we often have MR brain images available from 
other related subjects such as those with mild cognitive 
impairment (MCI), a prodromal stage of AD, or possibly the 
unrelated subjects whose cognitive statuses may be not 
known. These images may be helpful for building a 
powerful AD classifier, although their cognitive status may 
not belong to AD or HC. Accordingly, in this paper, we 
investigate the potential of using MCI subjects to aid 
classification of AD from HC subjects via multimodal 
imaging data and CSF biomarkers. In particular, a 
multimodal Laplacian Regularized Least Squares 
(mLapRLS) method, based on semi-supervised learning, is 
proposed for achieving this purpose. In the objective 
function of mLapRLS, there are two terms: a term involving 
only AD and HC subjects for supervised learning, and 
another term involving all AD, HC, and MCI subjects for 
unsupervised estimation of intrinsic geometric structure of 
the data. Experimental results show that our proposed 
method can significantly improve AD classification, with 
aid from MCI subjects. 
 

Index Terms— Semi-supervised, Alzheimer’s disease, 
MCI, disease classification, multimodal imaging
 

1. INTRODUCTION 
 
Alzheimer’s disease (AD) is the most common form of 
dementia in elderly people worldwide. Early diagnosis of 
AD is very important for possible delay of the disease. At 
present, several biomarkers have been proved to be sensitive 
to AD, including brain atrophy measured by magnetic 
resonance imaging (MRI), hypometabolism measured by 
functional imaging (e.g., positron emission tomography 
(PET)), and quantification of specific proteins measured 
through cerebrospinal fluid (CSF) [1-2]. Many AD 
classification methods have been developed based on one or 
two imaging modalities [3-7]. Recently, some methods have 
also been proposed for combining multimodal biomarkers to 
improve classification performance, which can generally do 
better than using only a single type of biomarkers [6-7]. 
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Fig. 1. Distributions of AD, HC and MCI subjects with CSF 
features. 

   
One challenge in AD classification is that the number 

of AD patients and healthy controls (HCs) available for 
training is generally very small, while the dimensionality of 
data is often very high. For instance, structural MRI or 
functional PET images may contain hundreds of thousands 
of voxels in each image. To reduce the dimensionality of 
imaging data, the dimensionality reduction techniques are 
always used, which can be categorized into (1) feature 
extraction and (2) feature selection methods. The former is 
used to extract some features from original imaging data. 
For example, we can extract various features from structural 
MRI image, i.e., local structural volumes (from the region 
of interests (ROIs)), cortical thickness, and hippocampal 
volumes [3, 5]. The latter is used to select the most 
discriminative features from those extracted features, 
according to some criteria. In the literature, many feature 
extraction and selection methods have been used for AD 
classification [3, 5-6]. 

Besides AD and HC subjects, in many cases we often 
have MR brain images available from other related subjects 
such as those with mild cognitive impairment (MCI), a 
prodromal stage of AD, or possibly the unrelated subjects 
whose cognitive statuses may be not known. For MCI 
subjects, although they are currently not belonging to the 
classes of AD and HC subjects, they may eventually convert 
to AD within some years, or never convert to AD. Figure 1 
plots the distributions of AD, HC, and MCI subjects with 
CSF features. As we can see from this figure, there exists a 
large overlap between MCI subjects and AD/HC subjects. It 
implies that MCI subjects are similar to some extent as AD 
or HC subjects, and may contain helpful information for 
guiding the classification between AD and HC. To the best 
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of our knowledge, this type of study was not done 
previously.  

In this paper, we exploit the potential of using MCI 
subjects to aid the classification of AD from HC subjects 
with multimodal imaging and CSF biomarkers. To this end, 
semi-supervised learning techniques that have been 
successfully applied to protein classification, aggressive 
prostate cancer identification, and skull stripping [8-10] will 
be employed. Specifically, we propose a multimodal 
Laplacian Regularized Least Squares (mLapRLS) algorithm, 
based on the recent LapRLS method [11], for better 
integration of knowledge from different types of training 
samples. In the objective function of mLapRLS, only AD 
and HC subjects will be used for supervised learning, while 
all AD, HC, and MCI subjects are used for unsupervised 
estimation on intrinsic geometric structure of the whole data. 

The rest of this paper is organized as follows. Section 2 
briefly reviews LapRLS and then introduces our proposed 
mLapRLS method. Section 3 presents experimental results 
on comparison of different classification methods using the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. 
This paper is concluded in Section 4. 
 

2. METHODS 
 
To exploit the potential of using MCI subjects to aid 
classification between AD and HC subjects, we treat MCI 
subjects as unlabeled data (i.e., having no class labels either 
as AD or HC), and then use a semi-supervised learning 
technique to solve the classification problem. In the 
following, we will first introduce the Laplacian Regularized 
Least Squares (LapRLS) method [11], and then derive our 
multimodal extension (mLapRLS). 
 
2.1. Laplacian Regularized Least Squares (LapRLS) 
 
Assume we have l labeled data (from AD and HC samples), 
(xi, yi), i=1,…,l, and u unlabeled data (from MCI samples), 
(xj, yj), j=l+1,…,l+u. Suppose k(., .) is a Mercer kernel 
function, and let H be the associated Reproducing Kernel 
Hilbert Space (RKHS) and ||.|| be the corresponding norm. 
The LapRLS algorithm solves the following least-squared 
loss function [11]: 
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Where f = [f(x1), …, f(xl+u)]T. L is the graph Laplacian given 
as L=D-W, where Wijs are the edge weights in the adjacency 
graph defined on both labeled and unlabeled data and the 
diagonal matrix D is given by Dii jWij. Symbols A and B 
are the two regularization parameters. Intuitively, the first 
two terms in Eq. 1 are for the supervised learning on only 
the labeled data (AD and HC samples), while the last term 
in Eq. 1 involves both labeled and unlabeled data (AD, HC 

and MCI samples) for unsupervised estimation on intrinsic 
geometric structure of the whole data. 

According to the Representer Theorem [11], the 
solution of Eq. 1 is an expansion of kernel functions over 
both labeled and unlabeled data: 
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Substituting Eq. 2 into Eq. 1, we arrive at the dual form 
of Eq. 1 with respect to the (l+u)-dimensional variable 
vector  = [ 1, …, l+u]T: 
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Where K={k(xi, xj)} is an (l+u)×(l+u) kernel matrix over all 
labeled and unlabeled data; Y=[y1, …, yl, 0, … 0] is an 
(l+u)-dimensional label vector, and J=diag (1, …, 1, 0, …, 0) 
is an (l+u)×(l+u) diagonal matrix with the first l diagonal 
entries as 1 and the rest as 0. 

By computing the derivative of Eq. 3 with respect to , 
and let it be zero, we obtain the following solution: 
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Where I is the identity matrix. 
It is worth noting that, when B=0, Eq. 4 gives zero 

coefficients over the unlabeled data, and the coefficients 
over the labeled data are exactly those in the standard 
Regularized Least Squares (RLS) method. In that case, 
LapRLS degenerates to RLS. 

 
2.2. Multimodal LapRLS (mLapRLS) 
 
Now, we extend LapRLS to the multimodal case (mLapRLS) 
for multimodal classification between AD and HC. Given l 
labeled data (from AD and HC samples), (xi, yi), i=1,…,l, 
and u unlabeled data (from MCI samples), (xj, yj), 
j=l+1,…,l+u, we assume each data xi is now composed of M 
modalities of data, i.e., xj={xi

(1),…, xi
(M)}, i=1,…,l+u. 

Define the distance function between two multimodal 
data xi and xj as  

( ) ( ) ( )
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Where d(m)(., .) denotes the distance function on the m-th 
modality, and ms are the nonnegative weighting parameters 
used to balance the contributions of different modalities. All 

ms are constrained by m m=1. 
According to Eq. 5, we can compute the adjacency 

graph for the multimodal data, and then obtain the 
corresponding edge weights matrix W and graph Laplacian 
L on the multimodal data. 

Next, we can define the kernel function on two 
multimodal data x and xi as 
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Where k(m) denotes the kernel matrix over the m-th modality, 
similar to the definition given above for the single modality 
case. With the definition of k(x, xi), the (l+u)×(l+u) kernel 
matrix K on the multimodal data can be straightforwardly 
obtained as K={k(xi, xj)}.  

Once we have gotten the graph Laplacian L, the 
definition of the kernel function k(x, xi) on the multimodal 
data, and the kernel matrix K, the mLapRLS solution to the 
multimodal data can be obtained exactly the same as 
LapRLS in Eq. 4. 

Similar to LapRLS, mLapRLS will degenerate to the 
corresponding multimodal RLS (mRLS) when B=0. In this 
case, mRLS uses only AD and HC samples for training its 
model on the multimodal data. 

 
3. RESULTS 

 
To evaluate the effectiveness of our proposed mLapRLS 
method, we perform various experiments on the multimodal 
data from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (www.loni.ucla.edu/ADNI). We focus on 
multimodal classification in this paper, because it usually 
achieves better results than single-modal classification. 
 
3.1. Subjects 

The ADNI database contains approximately 200 cognitively 
normal elderly subjects to be followed for 3 years, 400 
subjects with MCI to be followed for 3 years, and 200 
subjects with early AD to be followed for 2 years. In this 
paper, only ADNI subjects with all corresponding MRI, 
PET, and CSF data at baseline are included. This yields a 
total of 202 subjects, including 51 AD patients, 99 MCI 
patients, and 52 healthy controls (HCs). Table 1 lists the 
subject characteristics, where MMSE and CDR are 
acronyms of Mini-Mental State Examination and Clinical 
Dementia Rating, respectively. 

Image pre-processing is performed for all MRI and PET 
images. Specifically, we do anterior commissure (AC) -
posterior commissure (PC) correction, skull-stripping, 
removal of cerebellum, and segmentation of structural MR 
images into three different tissues: grey matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF). With atlas 
warping, we can partition each subject image into 93 ROIs. 
For each of the 93 ROIs, we compute the GM tissue volume 
from the subject’s MRI image. For PET image, we first 
rigidly align it with its respective MRI image of the same 
subject, and then compute the average value of PET signals 
in each ROI. Therefore, for each subject, we can totally 
obtain 93 features from MRI image, other 93 features from 
PET image, and 3 features (A 42, t-tau, and p-tau) from CSF 
biomarkers. Paired t-test is applied on both MRI and PET 
data for feature selection according to the p-values 
(p<0.002). 
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Fig. 2. Classification results on multimodal data. 

Table 1. Subject characteristics (mean standard deviation) 
 AD (n=51) MCI (n=99) HC (n=52) 

Age 75.2 7.4 75.3 7.0 75.3 5.2 
Education 14.7 3.6 15.9 2.9 15.8 3.2 
MMSE 23.8 2.0 27.1 1.7 29 1.2 
CDR 0.7 0.3 0.5 0.0 0 0.0 

3.2. Experimental Setup 
 

To evaluate the performances of different classification 
methods, we use 10-fold cross-validation strategy to 
compute the classification accuracy (for measuring the 
proportion of subjects correctly classified among the whole 
population), as well as the sensitivity (i.e., the proportion of 
AD patients correctly classified) and the specificity (i.e., the 
proportion of HC subjects correctly classified).  

We compare mLapRLS with mRLS on the multimodal 
(MRI, PET, and CSF) data. Specifically, 10-fold cross-
validation is performed on 51 AD patients and 52 HC 
subjects to get the labeled training data and testing data. 
Unlabeled data are obtained from those 99 MCI subjects. A 
linear kernel is used for both algorithms. Following [11], for 
mRLS, we set the parameters as A=0.05/l and B=0; for 
mLapRLS, we set A=0.05/l and B=0.05(u+l)2/l. Here, l 
denotes the number of AD and HC subjects, and u is the 
number of MCI subjects. The Euclidean distance is used for 
each modality in Eq. 5. For both algorithms, the values of 
the weighting parameters ms are gotten through cross-
validation using grid search. 

 
3.3. Experimental Results 
 
Figure 2 shows the classification results of both algorithms 
on the multimodal data, which include classification 
accuracy, sensitivity, specificity, and Area Under the ROC 
Curve (AUC). The results in Figure 2 indicate that, by using 
the MCI subjects as additional unlabeled data, mLapRLS 
significantly improves the performances of classifying AD 
from HC subjects, compared to those by mRLS that uses 
only AD and HC subjects as samples for training classifier.  
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Fig. 3. ROC curves of different methods for AD vs. HC 
classification.  
 
Specifically, the AUC measures of mLapRLS and mRLS 
are 98.5% and 94.6%, respectively. These results validate 
the effectiveness of mLapRLS in using additional data (i.e., 
MCI subjects) to enhance the AD classification. 

Figure 3 plots the ROC curves of mLapRLS and mRLS 
for AD vs HC classification. As we can see from this figure, 
mLapRLS consistently outperforms mRLS. Figure 3 also 
shows that mLapRLS has a very steep curve, with the 
corresponding AUC measure being close to 1.0. Therefore, 
the mLapRLS algorithm achieves a very good performance 
on multimodal classification. 

Finally, in Fig. 4, we show the classification accuracy 
of the mLapRLS algorithm with respect to different number 
of MCI subjects used for helping training. As we can see 
from Fig. 4, as the number of included MCI subjects 
increases, the classification accuracy of mLapRLS also 
steadily increases, which again validates the usefulness of 
using MCI subjects for helping classification between AD 
and HC.  
 

4. CONCLUSION 
 
This paper proposes using MCI subjects as additional data 
to enhance the classification between AD and HC. 
Specifically, a multimodal Laplacian Regularized Least 
Squares (mLapRLS) method has been proposed for semi-
supervised multimodal classification, by including MCI 
subjects to aid the unsupervised estimation of intrinsic 
geometric structure of the data. The experimental results on 
ADNI data show that our proposed method can help 
significantly improve classification performance between 
AD and HC.  

In the future, we will use other semi-supervised 
learning methods such as semi-supervised support vector 
machine (SVM) [10], and investigate selecting MCI 
subjects for further improvement of classification 
performance [12]. Moreover, we will apply our semi-
supervised multimodal classification method for helping 
prediction of MCI conversion, by separating between MCI 
converters (who will convert into AD within some years) 
and MCI non-converters (who will not convert).   
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Fig. 4. Classification accuracy with respect to the different number 
of MCI subjects used to help train the multimodal classifier. 
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