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Abstract— We present a novel Hough voting-based method
to improve the efficiency and accuracy of fiducial points
localization, which can be conveniently integrated with any
global prior model for final face alignment. Specifically, two
or more stable facial components (e.g., eyes) are first localized
and fixed as anchor points, based on which a separate local
voting map is constructed for each fiducial point using kernel
density estimation. The voting map allows us to effectively
constrain the search region of fiducial points by exploiting the
local spatial constraints imposed by it. In addition, a multi-
output ridge regression method is adopted to align the voting
map and the response map of local detectors to the ground truth
map, and the learned transformations are then exploited to
further increases the robustness of the algorithm against various
appearance variations. Encouraging experimental results are
given on several publicly available face databases.

I. INTRODUCTION
In many face-related applications, such as face recognition,

gaze detection and facial expression analysis, it is crucial to
find out the semantic correspondence between facial features.
This task, usually called face alignment, is popularly tackled
by fitting a deformable template model with the given face
image and then use the predefined arrangements of feature
points in the model to obtain the needed correspondence in
the image space. In this procedure, how to accurately and
efficiently extract the shape representation, which is usually
formed by arranging the coordinates of fiducial facial points
as a vector, is the key challenge and has significant influence
on the overall performance of the algorithm.

This challenge of localizing fiducial facial points mainly
comes from the complexity of appearance variations possibly
exhibited in the patch centered at each facial point, caused
by the change of lighting, pose, occlusion, expression and
so on. The combination of these factors may lead to a very
complicated nonlinear manifold of appearance which is hard
to model. Actually, only a few salient facial components
(e.g., eyes and nose) in our face can be stably localized due to
their unique patterns, while others like feature points along
one’s face contour are difficult to locate using traditional
image analysis methods simply because of too many degrees
of freedom at these locations. To deal with these problems,
numerous approaches have been proposed in recent decades.
Some of them will be discussed in the next section.

In this paper we present a novel local hough voting
method to improve the efficiency and accuracy of fiducial
points localization, which can then be conveniently integrated
with the standard global prior model under the Bayesian
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framework for final face alignment. The main idea of our
method is to first localize very few stable facial components
(e.g., eyes or nose) from the given face image, then use the
locations of these to help reduce the ambiguity encountered
when locating other less stable facial feature points. Improv-
ing accuracy of fiducial points localization progressively by
incorporating the information of neighboring anchor points is
shown to be effective in face alignment [3], [15], [24], [26].
For example, Valstar et al [24] build a hierarchical MRF
using the locations of stable facial components to constrain
the search space by exploiting the constellations that facial
points can form. Liang et al [15] propose to adjust global
shape based on facial components only. Cao et al [3] give
a two-level cascaded regression for face alignment in which
the location of stable facial components are used to guide
the shape regression.

However, most of the above models are either complex in
inference or needing many anchor points so as to provide
reliable constraints. There exists the need to develop novel
and more efficient way to incorporate the prior knowledge
into the task of face alignment, and this is exactly the focus
of this paper. In particular, our method is based on the Con-
strained Local Models (CLM, [6]) but are augmented with
local Hough voting-based method to improve the results.
Compared to others, our method is both simple and easy to
implement. For example, only two stable facial components
(e.g., the left and right eyes) are needed as anchor points in
our method, compared to 7 in [24] and 11 in [15], which
effectively helps to reduce the risk of possible mislocations
when locating too many facial components and save the
computational costs. In addition, this method is general and
can be conveniently integrated in any CLM framework. Last
but not least, we use the local spatial constraints imposed
by the anchor facial components as prior knowledge to cast
votes on the search space of each facial points instead of
searching them aimlessly. Actually, in a deformable model
method depending on an iterative optimizing procedure like
Active Shape Model (ASM,[4]), properly initializing each lo-
cal searching region is a very importance issue and inaccurate
initialization could lead to a possibly very bad solution.

This local Hough voting strategy has close connection with
the Implicit Shape Model (ISM,[13]) method, where each
detected local part casts vote on the location of the object
of interest. The ISM method has gained great success in
the field of object detection. However, to our knowledge, it
has not been used in face alignment. Furthermore, instead of
directly searching the location most voted in the voting space,
we combine the local voting map and the response map of
local detectors using a multi-output ridge regression method,



which effectively increases the robustness of the algorithm
against various appearance variations. The non-parametric
way to construct voting map in our method is also related
to [1], where a large collection of diverse, labeled exemplars
are used to provide the ”votes” and exemplars for best part
localization in a holistic way. Finally, we also systematically
investigate the impact of anchor points location accuracy,
which is largely ignored in previous works. The above
contributions of this paper are described in more detail in
Section III and their effectiveness is verified in Section IV.
Section V concludes our work.

II. BACKGROUND

In this section we briefly introduce the basic face align-
ment framework within which some related work is dis-
cussed. A typical face alignment model involves three key
components [4], [17], i.e., shape model, transformation
model and image model. The shape model represents the
geometric shape of the object of interest, the image model
gives the physical constraints imposed on how the shape
may vary over space, while the transform model bridges
the ideal shape vector to the actual shape observed from
the given image with a mathematical function. The fitting
process are usually divided into two iterative stages [2], [4],
[7]. In the first bottom up stage, a shape vector L is first
extracted from the given face image I by detecting facial
features using the image model, which are then undergone
some geometric normalization with the transform model.
The calibrated shape vector S is finally checked by the
shape model. Besides evaluating the goodness of deformation
for an input shape S, the shape model may recommend a
new shape u, which is more consistent with the allowable
deformation, to the system. The new shape u is eventually
mapped to the image space along the same path but in reverse
direction, and this process repeated until some converging
condition is met. The main advantage of this methodology is
that the ambiguity involved in localizing each facial features
are largely reduced by the overall shape constraints imposed
by the shape model.

According to this, existing face alignment methods are
mainly different in their underlying assumptions involved in
the construction of image model and shape model, while the
transform model is usually taken to be linear for simplicity.
Among them, the shape model plays the role of integrating
prior shape constraints into the system. One of the most
popular assumption about the shape model is the single
mode Guassian distribution [4], which is only a very rough
linear approximation to the global shape variations in faces.
More realistic shape model is possible and adopted by the
researchers, e.g., Mixture of Gaussian (GMM) [5], [15],
Kernel principal component analysis (KPCA) [19]), Guassian
Process Latent Variable Model (GPLVM) [11]), Markov
Random Field (MRF) [9], [24]. In general, more complicated
models are more closed to the real world but are usually
coupled with higher cost for optimization at the same time.
In addition, it becomes harder to ensure the goodness of
generated shapes over a complex manifold. To overcome this,

recently some authors advocate the use of non-parametric
model [1], [3], [13] but a large number of diverse and labeled
training samples are needed.

The image model is another key component of the face
alignment system, which extracts geometric description of
the shape from the given image. However, as mentioned
in the previous section, this task is extremely challenging.
To make things easier, instead of using a global likelihood
model, many works in literatures adopt the strategy of divide
and conquer, that is, constructing a local model for each
fiducial point. One typical one is the Constrained local
model (CLM) firstly proposed by D. Cristinacce and T.
Cootes [6], in which the location of each fiducial point
is searched using a sliding window method. Many pattern
recognition techniques, either generative or discriminative,
have been adopted to learn the local classifier by researchers:
Adaboost [16], SVM [8], Mixture of linear SVMs [20],
Convex quadratic fitting [25], Mixture of Gaussian [10],
Mean-shift model [21], just to name a few.

It is worth mentioning that most of the previous CLM
models assume that the local models are conditional indepen-
dent given the face image. This improves the computational
trackability but at the same time pushes too much burden
of consistency checking for shape vector L extracted from
the image to the back end shape model. However, one may
conjecture that the stableness of the algorithm could be
significantly improved if more reliable shape vector L could
be obtained directly from the image instead of relying on the
recommendation of the prior model. Following this, some
researchers relax the independence assumption in CLM and
introduce the local spatial constraints into the local model
[14], [23], [24]. Our work in this paper belongs to this
category of methods as well.

III. LOCAL HOUGH VOTING FOR FACE ALIGNMENT

In this section, we describe how build our local voting
space using a training image set and use it for the task of
face alignment.

A. Overview
Given an image I , the task of face alignment is to locate M

facial feature points L = {li = (xi, yi)}Mi=1 on the 2D image,
which are organized in a fixed order to a shape vector L.
Denote the likelihood of generating this image by the facial
parts at some locations p(I|L, θ), where θ = {θl, θt, θs} is
the parameters for the image model, transform model and
shape model respectively. Assume that we are working on
the region output by a face detector, and therefore we need
not model the background. To infer the locations of the facial
parts from this model, we look for the maximum a posterior
p(L|I, θ), i.e., the probability that a face configuration is L
given the model θ and an image I . According to Bayes rule,
the posterior can be written as

p(L|I, θ) ∝ p(I|L, θl)p(L|θt, θs), (1)

where p(I|L, θl) is the generative image model of appearance
while p(L|θt, θs) is the shape model expresses the spatial
constraints.



In this paper, we use the standard ASM formulation for
shape prior p(L|θt, θs), in which the shape vector L is
assumed to be linearly transformed to a canonical position
S = {si}Mi=1. Denote θt = {s,R, uxy}, each fiducial point
is then described by the following transform model,

li = sRsi + uxy (2)

where s is the scale parameter, R is the rotation matrix,
and uxy is the centroid of the fiducial points. After this,
S is the centralized and scale normalized fiducial points.
Further assuming that the parameters of transform model is
statistically independent with those of shape model, the final
shape prior is given by,

p(L) = p(S|θs)P (θt) (3)

As in ASM and many other points distribution models,
the prior for canonical shape vector S is simply modeled as
Gaussian and approximated using PCA in this paper, while
the transformation model is separately learnt under the least
square framework. We will describe our image model below.

B. Local Hough Voting

Let the image patch centered at each fiducial point be
T (li) and assume that the parts are statistically independent,
the image model can be written to be,

p(I|L, θl) =

M∏
i=1

p(T (li)|li, θli), (4)

By introducing an indicator variable yi, the likelihood
p(T (li)|li, θli) of each part at location li can be evaluated
using a discriminative model p(yi = 1|T (li), θli , li), i.e., the
probability that the appearance of patch T (li) extracted at
location li is just right, in other words, it is correctly aligned
(yi = 1). A popular method to learn this model is the logistic
regression,

p(yi = 1|T (li), θli , li) =
1

1 + eaf̂(T (li))+b
, (5)

where a, b is two parameters whose values can be ob-
tained by cross validation, while the response of f̂(T (li))
is from a pre-trained SVM classifier, i.e., f̂(T (li)) =∑

k αkykTk(i)′T (li) = T (li)
′∑

k αkykTk(i), where Tk(i)
is the k-th support vector of the i-th fiducial point.

We note that although this method works well in some
situations, the local patch representation restricts its gener-
alization capability. A small patch brings about too much
ambiguity while a larger one may suffer from too much

appearance variations and can not capture the inherent char-
acteristics of that fiducial point. Multi-scale descriptors help
to alleviate this, while in this paper we choose to use local
spatial constraints to reduce such ambiguity.

Specifically, given a test face image, we first localize K
stable facial components (also called anchor points in this
paper, e.g., the left and right eyes). Denote their locations
as {pj ∈ Ωj}Kj=1, where Ωj is spatial range each facial
component may lie in, then the contribution of each anchor
point j to the likelihood is,

p(yi = 1|T (li), θli , li) =
∑

pj∈Ωj

p(yi = 1, pj |T (li), θli , li) (6)

=
∑

pj∈Ωj

p(yi = 1|T (li), θli , li, pj)p(pj |T (li), li) (7)

The first term is the probabilistic Hough vote by the j-th
stable facial component at location pj for the goodness of
the i-th fiducial point given its patch representation. The
second term specifies the spatial relationship between this
facial component with the current fiducial point i. Note
that this second term actually make it possible for us to
improve the degree of tolerance of mislocations of anchor
facial components, although we didn’t do it in our current
implementation. Instead, assuming that pj is statistically
independent with the appearance of patch T (li), we have,

p(pj |T (li), li) = p(pj |li) ∝ p(li|pj)p(pj) (8)

where p(pj) gives the confidence of the j-th anchor point
positioned at pj . Assuming a very sharp distribution of p(pj)
(i.e., unconfident locations of anchor points would not make
much help in locating fiducial point i), and from E.q.(6),(8),
we evaluate the score of the i-th fiducial point given the K
pre-specified anchor points {p∗j}Ki=1 as follows,

score(li|p∗1, p∗2, ..., p∗K) ∝
K∑
j=1

p(yi = 1|T (li), θli , li)p(li|p∗j )

(9)
As described later, the first term produces the response map
of local detectors, while the second term gives the voting
map from each facial component (e.g., the left eye) to a
candidate location of li, see Fig.1.

Fig. 1. The geometric constraints between three points (Pi and Pj are the
anchor points).



C. Non-parametric Smoothing for the Voting Map

To cast the vote for the position li from the anchor facial
component j, we need to model the distribution of p(li|p∗j ).
The vote can be understood as a prediction to the position
of fiducial i after observing the position of anchor point j.
However, since each face image is different to each other
in different ways in scale, pose and lighting and so on, it
will be difficult to directly model the position of each facial
point with respect to the position of another point. Instead,
we seek a more stable spatial constraints consisting of three
points,i.e., p(li|p∗j ) ≈ p(li|p∗j , p∗k), where p∗j and p∗k are two
pre-located anchor points (the left eye and the right eye here).
This will greatly improve the robustness of the prediction
against scale and in-plane rotation changes. Similar method
is adopted in [22] and [24].

Specifically, for a triangle formed by the positions of two
eyes and another point i, we model (see Fig.1): 1) the relative
length dij between the interested facial point i and one of the
anchor points j, and 2) the inner angle αijk between the edge
ei,j and ej,k. The relative length will be scaled by a factor
of mean distance between two eyes over the training set.
Note that these two quantities will keep invariant although
the positions of each points could change with respect to
various scales and in-plane rotation.

Given a test face image, we first locate the two eyes 1.
The next question is how to predict the location of another
fiducial point i using this information. One apparent answer
would be to find it directly from the training set. However,
unless the exemplars are rich enough, we can seldom find a
exact match of the positions of two eyes in the training set.
One way to address this is to use a non-parametric density
method to smooth the voting map. Denote vi = (di,j , αijk),
we use a Gaussian kernel for this purpose,

p(li|p∗j , p∗k) = p(vi) =
1

N

N∑
n=1

1

(2πh2)1/2
exp{−‖vi − vn‖

2

2h2
}

(10)
where h is standard deviation of the Gaussian components
(set to be 4 pixels in our experiments by cross validation)
and vn is the ground truth obtained from the training set.

D. Fusing the Response and Voting Maps

One problem remained is that even we search the location
of fiducial point i at the most voted position in the voting
map, we may still face the danger of missing the truth due
to the complexity of appearance. To improve the robustness,

1We locate the positions of eyes using the method introduced in [22],
and the sensitivity of our algorithm to the accuracy of eye localization is
investigated in Section IV-B.2.

it is useful to fuse the information from both the local
spatial relationship and the response from local detector. As
illustrated in Fig.2, fusing these helps to reduce the ambiguity
in searching for the best response. For example, as shown
in the second response map in the last row, a facial point
located at the face contour has a wide range of response,
but such kind of ambiguity is dealt well with the method
by combining the information from the voting map and the
response map (see the last map in the third row).

Fig. 2. Illustration of the voting map, response map and fused response
map, where the red cross is the ground truth and the green circle is the
position with maximum response of each map. This figure is best viewed
in the electric form.

The central idea for this is to learn two linear transforms
(rotations) for the voting map and response map respectively,
such that after rotation both maps align well with the ground
truth map available from the training set. Mathematically,
denote the three maps of sample n as corresponding matrices
Vn, En, and Gn, respectively. Note that they are normalized
to the same size before performing the following steps. Then
what we want to do is to learn two ”rotation” matrices
W1 and W2 for the voting map Vn and response map En

respectively, such that the following criterion is satisfied,

min
W1,W2

N∑
n=1

‖Gn−(W1Vn+W2En)‖2F +λ1‖W1‖2F +λ2‖W2‖2F
(11)

where ‖‖F is the Frobenius norm. In our implementation, we
used a vector representation and concatenated the two maps
into a single combined vector un = [vec(Vn)T , vec(En)T ].
Further denote W = [W1,W2] and gn = vec(Gn), then the
above equation could be simplified as a standard multi-output
ridge regression objective function,

min
W

N∑
n=1

‖gn −Wun‖2l2 + λ‖W‖2F (12)



with the closed form solution,

W ∗ = (

N∑
n=1

gnu
T
n )(

N∑
n=1

unu
T
n + λI)−1 (13)

The regularization parameter λ is set to be a very small
number (10−4 in our implementation).

IV. EXPERIMENTS

To validate the effectiveness of the proposed method, we
conducted a series of experiments on three publicly available
databases with manually annotated landmarks, i.e., the PUT
face database [12], the XM2VTS face database [18] and
the BioID face database. The PUT database contains 9971
images from 100 subjects, and each image is annotated with a
194-point markup as ground truth landmarks. We used 1850
near-front faces of 100 subjects in our experiments, among
which 1400 images from 70 subjects were used for model
training while 450 images from the remaining 30 subjects for
testing. For each image we choose 61 landmarks and add two
landmarks of centers of eyes. Therefore, we have 63 points in
all on each image ( see Fig.3 (left)). The XM2VTS database
consists of 2360 frontal face images of 295 subjects, with 68
ground truth annotations (but are different from the 63-point
markup for PUT), see Fig.3 (middle). For this, 1760 images
from 220 subjects were used for training and 600 images of
the remaining 75 subjects for testing. The same settings are
used for the ASM and CLM methods. On the other hand,
in order to compare with some more advanced methods, we
use the BioID database for experiment. The BioID database
consists of 1521 gray level images with a resolution of
384x286 pixel. Each one annotated with 20 points shows
the frontal view of a face of one out of 23 different test
persons, see Fig.3 (right). For the BioID database, we use
1000 images of 18 different test persons for model training
while 300 images from the remaining for testing.

Fig. 3. Numbered landmarks for sample images from PUT (left), XM2VTS
(middle) and BioID (right) .

A. Experiments on PUT and XM2VTS

Over these two databases we compared our method with
ASM [4] and CLM [6]. In particular, we implemented a

coarse to fine multi-scale matching strategy for ASM, in
which at each lower fine level we refines the searching results
from the higher coarse level (5 scales in all). For CLM,
we extracted a patch of 11 × 11 centered at each landmark
as positive sample while randomly sampling a few patches
with the same size but located at least 8 pixels away from
the center as negative samples. We simply used gray values
as our feature descriptors and trained the detector using
the SVM method with RBF kernel. In testing, the size of
searching window for each facial point is 13× 13 in pixels
for both ASM and CLM, while for our method it is no need
to set this since it is automatically defined by the voting map.

Fig.4 gives the fitting curves of our method compared
with ASM and CLM on the PUT and XM2VTS databases,
where the fitting curves show the proportion of images
at various levels of overall localization errors, measured
as the root-mean-squared (RMS) error between the ground
truth landmarks and the resulting fit. The results show that
our method consistently performs better than the compared
methods on both databases, although the improvement on
the XM2VTS database is marginal. In particular, on the PUT
database, 94.5% of images have an RMS less than 5 pixels
using our method, compared to 55.2% with CLM and 71.0%
with ASM, while on the more realistic XM2VTS database,
our method yields 87.9% of images at the same level of error,
compared to 84.0% for CLM and 60.8% for ASM. Fig.6
shows some example alignment results using our method on
the two databases. Note that none of these subjects appears
in the training set.

Fig.5 gives the detailed results of each local detector on the
two databases, measured by the distance from each localized
point to the ground truth (normalized with the inter-ocular
distance). Note that for the PUT images, point number 62 and
63 denote the left eye and the right eye respectively and for
XM2VTS images, the corresponding point numbers are 31
and 36 respectively (c.f., Fig.3). We can see from the figures
that on both databases most of our detectors outperform their
counterparts of CLM. In particular, 88.2% of our detectors
have higher accuracy than those of CLM on the more chal-
lenging XM2VT database, while on the PUT database, about
85.7% detectors work better. By checking the distribution of
those detectors with improved performance (c.f., Fig.3), we
see that most of them are near the eyes, nose and the outer
outline of the face. However, the improvements near mouth
are less obvious, which is consistent with previous results
[1], possibly due to the fact that the appearance of the mouth
region can be easily influenced by the expression changes.
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Fig. 4. Fitting curves for the ASM, CLM and the proposed method on the (a) PUT and (b) XM2VTS databases.
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Fig. 5. Mean error of our fiducial detector on the PUT (left) and the XM2VTS (right) databases compared to the mean variation of CLM. The fiducial
labels are shown in Fig.3. This figure is best viewed in the electric form.

B. Experiments on BioID

1) Comparison to other methods on BioID: Comparing
the performance of face alignment algorithms is difficult
in general, partly due to the lack of commonly adopted
benchmark dataset. Fortunately, recently quite a few works
have published their results on the BioID dataset, which
allows us to perform a fair comparison with these methods. In
particular, we compared our method with the results reported
by [6], [24], [27], [28], see Fig.7. The figure shows that the
overall performance using our local Hough voting method is
slightly better than the method proposed by M. Valstar et al.
[24] using hierarchical MRF model, both of which perform
much better than extended ASM [27] and CLM [6]. Note
that although Fig.7 shows that our method looks slightly

inferior to the method of [1], the major goal of our method
is to improve the accuracy of facial feature localization,
which means that our method could be used to improve the
performance of [1] in principle, as in the case of CLM.

2) The impact of anchor points accuracy: One possible
criticism of the methods like ours lies in their dependance
on the localization of anchor points, and hence investigating
the impact of eye anchor points location accuracy is of
interest. For this we disturb the ground truth locations of eyes
randomly in each images by 1, 2, or 3 pixels, respectively,
then evaluate the corresponding performance by calculating
the fraction of landmarks with offset less than 5, 7.5, 10
pixels, respectively. We compared these with the results using
the ground truth eye locations, and those using the output of
the automatic eye detector [22] adopted in this paper.



Fig. 6. Illustration of the aligned images from the PUT (top row), XM2VTS (middle two rows) and BioID (bottom row) using the proposed method.
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Fig. 7. Cumulative error distribution curves comparing our method to
several others on the BioID database. For a fair comparison with previous
results, only 17 landmarks are used.

Fig.8 gives the overall comparative results, which indicates
that the proposed face alignment algorithm is a bit sensitive
to the random noise of the locations of anchor points,
especially when the eye locations are extremely unreliable (3
pixels away from the ground truth). This is as expected, since
we actually performed a worst-case testing by disturbing
the ground truth consistently and separately on each image,
which essentially disorders the statistical regularity encoded
in the training data at least to some degree. Despite this,
the figure shows that current eye detector works fairly well
in this case. Indeed, Fig.8 reveals that the results obtained
using the output of an automatic eye detector are only slightly
worse than those using ground truth. We further examined
the localization accuracy of this eye detector and found that



in most cases it yields localization error in less than 1-2
pixels although it is difficult to precisely locate eyes in some
images (c.f., Fig.6). Even so, it still leads to better alignment
performance than randomly disturbing the ground truth eye
position with only 1 pixel (c.f., Fig.8). This clearly indicates
that the feasibility of the proposed method in practice.
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Fig. 8. Impact of eye localization accuracy on the performance.

V. CONCLUSION

In this paper we propose a novel local Hough voting based
method for face alignment. The key idea of this method is
to use the spatial constraints imposed by the stable facial
components to guide the search of other facial points. We
show in this paper that it is possible to implement this by
first constructing a voting map with non-parametric kernel
smoothing, then fusing it with the traditional response map
using the multi-output ridge regression method. Compared
to others, the proposed method is efficient, simple to im-
plement and can be conveniently integrated with any prior
shape model and more powerful individual local models. We
demonstrate its effectiveness on several publicly available
databases with promising results.
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