
Integrating the Improved CBP Model with Kernel SOM
Qun Dai Songcan Chen*

Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics,

Nanjing 210016, China

Abstract. In this paper, we first design a more generalized network model, Improved CBP, based on

the same structure as Circular BackPropagation (CBP) proposed by Ridella et al. The novelty of ICBP

lies in: 1) it substitutes the original extra added node with the isotropic quadratic form input in CBP

with the one with an anisotropic quadratic form input; 2) particularly, the weights between the extra

node and all the hidden nodes are endowed fixed values instead of the original changeable values. As

a result, ICBP possesses better generalization and adaptability although it has less adjustable weights

compared to CBP. Secondly, we propose a new kernel-based SOM algorithm using the kernel method.

Our main motives of using the kernel method are 1) to induce a class of robust non-Euclidean distance

measures for the original input space and establish a new objective functions for SOM, and thus make

the newly-established SOM able to cluster the non-Euclidean structures in data; 2) to enhance

robustness of the SOM algorithms to noise and outliers and at the same time still retain computational

simplicity. And then, with the combined BP-SOM idea of Weijters, we construct a new integrated

network ICBP-KSOM. Our motivation of presenting the integration is to construct a high

performance classifier by utilizing both ICBP’s good generalization and adaptability and KSOM’s

higher classification performance and robustness comparing to SOM. Finally, the experimental results

on three benchmark data sets show the superiority and effectiveness of our new integration in terms of

the t-test.

Keywords: Neural networks; Circular back-propagation neural network (CBP); Improved circular

back-propagation neural network (ICBP); Self-organizing feature maps (SOM); Kernel-based

self-organizing maps (KSOM); BP-SOM; Classification; t-test.

1 Introduction

EBP (Error Back-propagation) [11] is probably the most popular learning algorithm in the study of

artificial neural networks, while multiple-layer perceptron (MLP)[1] has widely received attention in

both theory and applications due to its excellent properties like universal approximating ability to

arbitrary continuous functions. However, BP has its serious limitations in generalizing knowledge

from certain types of learning material [12, 30]. As a case in point, Weijters et al recorded that BP

* Corresponding author: Tel: +86-25-84892452; Fax: +86-25-84498069; email: s.chen@nuaa.edu.cn (S.C. Chen);
daiqun@nuaa.edu.cn (Q. Dai).

often suffers from overfitting, i.e., it specializes on the input-output mappings of the training instances

with a reduced ability to generalize to new instances. The sparseness and high-degree non-linearity of

training material are two main causes for overfitting. Although BP networks are basically able to

represent any non-linear mapping [1], they are not guaranteed to learn such mappings.

Date-calculation task is such an example, i.e., to calculate the day of the week associated with a given

date. Norris [12] claims that BP algorithm can only be successful on the date-calculation task when it

is decomposed into three subtasks by a human expert. Without human assistance, “the net was able to

associate training dates with the days they fell on, but was unable to generalize to new dates”[12]. To

overcome some of BP limitations, Weijters et al described a new combination of an artificial neural

network architecture and a learning algorithm, called BP-SOM [7,8]. “The aim of the BP-SOM

learning algorithm is to guide learning in multi-layered feedforward network (MFN) in such a way

that the hidden-unit activation patterns produced by the same class become more similar to each

other.” [7] To achieve this aim, Weijters et al combined the BP learning scheme used to train a MFN,

with Self-Organizing Maps (SOMs) [4,23]. Each hidden layer of the MFN is associated with one

SOM. During training of the MFN, the corresponding SOMs are respectively trained on the

hidden-unit activation patterns. In addition to BP, information from these SOMs is also used to update

the connection weights of the MFN. Weijters verified through experiments that the BP-SOM network

and learning algorithm had a better generalization performance under the same training condition as

the BP network. The effect of including SOM information in the error signals is that the hidden-unit

activation patterns of instances associated with the same class tend to become increasingly similar to

each other [7,8].

Almost in parallel with Weijters BP-SOM, Sandro Ridella et al proposed a circular BP neural

network (CBP) [15-17] through adding an extra node to the original BP input layer and taking the sum

of all squared components of an input vector presented to the network as a incoming signal of the

added node. The authors proven that CBP possesses favorable capabilities in generalization and

adaptability compared to the MLP model [15-17]. Under the CBP framework, both the vector

quantization (VQ) [10,16] and the radial basis function (RBF) networks [17] can respectively be

constructed, and hence CBP shows great flexibility. However, there also exist several deficiencies in it:

1) The incoming signal of the extra added node only is an isotropic, i.e., an equally-weighted sum of

all squared component values, thus it lacks anisotropy among different components for an input vector;

2) Due to such an isotropy, it cannot simulate the famous Bayesian classifier in a more direct way; 3)

It requires probably more hidden nodes to approximate any continuous function to arbitrary precision.

As a result, redundant parameters may lead to over-fitting, which will lower the generalization

capability [15].

To ameliorate CBP defects, we proposed a general improved network model for CBP, for short,

ICBP. Actually, ICBP is similar in structure to CBP, but there are two major changes made: a) the

incoming signal of the extra node is not an isotropic sum of all squared input components as in CBP

instead of their anisotropic sum; b) more importantly, the weight values between the extra node and

all hidden nodes are set to a special common value (in our case, all 1 or all -1) [14,20] rather than

usually adjustable parameters as in CBP so that the total number of the adjustable weights in ICBP is

probably reduced. So, the newly-constructed model has following characteristics: Firstly, besides

inheriting those CBP characteristic of constructive equivalence to VQ and RBF [10,20], ICBP can

also model the famous Bayesian classifier in a direct constructive way [21]. Secondly, although

having less adaptable weights than CBP, ICBP has better generalization and adaptation [14,20].

Thirdly, it can still adopt the BP learning algorithm to perform training with the learning complexity

equal to that of CBP. Naturally, various existing improved algorithms to BP can also be applied to

upgrade performances of CBP and ICBP. In addition, due to assigning special constant values either

+1s or –1s to all the weights connecting the added node and all the hidden nodes to respectively form

ICBP+1 or ICBP-1 networks, consequently ICBPs have less adjustable weights but better

generalization and adaptability than CBP [14,20]. This indeed demonstrates rationality of the famous

Occam’s razor principle, i.e., network with simple structure but just good training performance is

generally better generalization than the one with slightly better training performance but more

complex structure [1].

Despite all the meliorations of CBP and ICBP to BP, we find through experiments that neither of

them solve highly non-linear classification problem such as Date-Calculation task to a satisfactory

degree, although their performances are obviously better than BP. And we also observe by

experiments that even BP-SOM still cannot deal with the task satisfactorily, which inspires an idea to

further improve BP-SOM architecture and our ICBP network model. As stated above, the effect of

combining SOM with BP is that the hidden-unit activation patterns of instances associated with the

same class tend to become increasingly similar to each other [7,8]. Therefore, we deduce intuitively

that if SOM is combined with ICBP, then ICBP hidden-unit activation output of the same class will

tend to become similar. Desirably, ICBP-SOM will also inherit ICBP good performance in

generalization and adaptability, which results in a further improvement to BP-SOM classification

capability. This is our first alteration to BP-SOM, we substitute the MFN block in BP-SOM with our

ICBP.

Next, we introduce kernel method to the integrated architecture. Classical SOMs clustering and

classification algorithm developed by Kohonen is performed in the input space based on the

Euclidean norm. It fails when input patterns distribution or their inherent structure is highly nonlinear.

The kernel methods [3,5,6,9] are one of the most researched subjects within machine-learning

community in recent years and have been widely applied to pattern recognition and function

approximation. Typical examples are support vector machines [3,5,6,18], kernel Fisher linear

discriminant analysis (KFLDA) [26], kernel principal component analysis (KPCA) [9], kernel

perceptron algorithm [27], just name a few. The fundamental idea of the kernel method is to transform

the original low-dimension inner product input space into a higher-dimension (possibly infinite)

feature space through some nonlinear mapping. In the higher-dimension feature space, complex

nonlinear problems in the original low-dimension space can more likely be linearly treated and solved

according to the well-known Cover’s theorem [28]. However, such a mapping will undoubtedly lead

to an exponential increase of computational time, i.e., so-called curse of dimensionality. It is very

fortunate that adopting kernel functions to substitute an inner product in the original space is a

favorable option, which corresponds to mapping the space into higher-dimension feature space

exactly. Therefore, the inner product form leads us to applying the kernel methods to classical SOMs.

However, compared to the approaches presented in [29], a major difference of proposed KSOMs in

[19, 32] in this paper is: we do not adopt so-called dual representation for each centroid, i.e., a linear

combination of all training data. Instead, we directly transform all the centroids in the original space,

together with all training data, into high-dimension feature space with an (implicitly) mapping. Such a

direct transformation results in two benefits:

1) inducing a class of robust non-Euclidean distance measures for the original input space and

establish a new objective function for SOM, and thus make the newly-established SOM able to

cluster the non-Euclidean structures in data;

2) enhancing robustness of the SOM algorithms to noise and outliers and at the same time still

retain computational simplicity;

Provided with the above two benefits of our KSOM, an idea of combining ICBP with KSOM

becomes very clear. The non-Euclidean distance measures of KSOM will be favorable for

ICBP-KSOM to deal with the data with non-Euclidean structures, while the high robustness of KSOM

will upgrade the whole ICBP-KSOM robustness to outliers and noise. In short, such an integration

renders them more useful than either.

In addition, our integration of ICBP with KSOM differs greatly from the general neural network

ensemble [33,34], which is an active research area in recent years. Such two types of integrations aim

both to improve generalization ability but use different means in achieving this goal. The method of

neural network ensemble is training a finite number of neural networks and then combining their

results, whereas our manner of integration is completely different with aiming at just assisting to train

single ICBP and BP rather than a set of ICBPs or BPs. Specifically, we integrate ICBP with KSOM

through adding the information from KSOMs to ICBP connection weights adjustments, by which the

hidden-unit activation patterns of the same class samples in ICBP hidden layers tend to become

“increasingly similar” to each other [7,8,23]. After training, the KSOMs associated to each ICBP

hidden layer are abandoned and do not participate in the final classification procedure, in other words,

a final classification decision is made just by so-trained single ICBP. Thus, ICBP-KSOM belongs to a

novel type of integration methodology of BP-SOM [7,8] proposed by Weijters et al.

 The remaining of this paper is organized as follows: In section 2, we introduce our ICBP network

model. KSOM is discussed in section 3. We demonstrate the combination of ICBP and KSOM in

section 4. Finally, Section 5 presents our experimental comparisons of BP-SOM and our integrated

network ICBP-KSOM on three benchmark classification tasks, viz. the date-calculation task, the

parity-12 task, the task of detecting splices in DNA sequences. In these experiments, our

ICBP-KSOM model is shown to greatly improve classification and generalization performance over

that of BP-SOM in a sense of the t-test. From these experiments, we draw a conclusion as a whole in

section 6 that the new integrated architecture ICBP-KSOM successfully combines advantages of our

ICBP and KSOM learning algorithms.

2 ICBP network

Fig. 1 ICBP three-layer network model

ICBP network has entirely the same structure of CBP as shown in Fig.1. It has ON output nodes,

hN hidden nodes, d input nodes corresponding to d dimensional input pattern. The difference is it

has an extra input node: ∑
=

+ =
d

i
iid xax

1

22
1 , while in CBP ∑

=
+ =

d

i
id xx

1

2
1 instead. Obviously, if all ia

are assigned equal values, ICBP degrades to CBP. And furthermore, ICBP weights connecting the

extra node to all the hidden nodes are taken differently from CBP ones:),,1(1
)1(hdj Njw =+ for

ICBP are assigned a common constant directly while the counterparts are adaptable parameters.

Consequently, there exists a discrepancy of dN h − for the number of adaptable parameters of

these two models. Generally speaking, the number of hidden nodes is more than input nodes

according to the well-known theorem that MFN with sufficient hidden nodes can approximate any

continuous function to arbitrary precision [1]. Therefore, the adjustable parameters of ICBP are often

less than CBP. However, a valuable character of ICBP is that although it has less adaptable weights, it

is better in generalization and adaptability than CBP [14,20].

For convenience, below listed are some notations used in this chapter:

),,,(10 dxxx : ICBP network input.

1+dx : the extra input as defined above.

η : the ICBP learning rate.

α′ : the ICBP momentum term.

oj

N

j
iji NiVwV

h

,,1,1

0

22 == ∑
=

: the i-th output of ICBP network.

μζ i : the ith element of the desired output vector for pattern μ .

hrjj Nj
e

rgV
j

,,1,
)1(

1)(1 =
+

== − : the activation output of the jth hidden node,

where jr denotes the following sum of weighted inputs:

∑∑
=

+++
=

++−=+=
d

i
iidjijijddji

d

i
jij xawxwwxwxwwxr

1

221
)1(

11
01

1
)1(

0

11)(),((1)

From Eq.(1), if all 1
)1(+djw are assigned +1, then ICBP extends the spherical activation fields of CBP

hidden neurons to quadratic hyper-ellipsoidal; if 1
)1(+djw are set as +1 or –1 alternatively, then the

activation field of ICBP hidden neurons is hyperboloid. Actually different assignments of +1 or –1 to

1
)1(+djw (hNj ...1=) are totally hN2 and thus result in hN2 different ICBP networks.

The sum-of-squares error function is defined as:

∑
=

−=
oN

i
ii VE

1

22)(
2
1 μζ (2)

Adopting BP learning algorithm (in fact, any other improved algorithms can be applied), the weight

adjustments between output and hidden layer are easily derived as follows:

)(')()()1(2122
2

2 twVtwV
w
E

tw ijjijii
ij

p
ij Δ+⋅⋅−=

∂

∂
−=+Δ αζηη μ

ho NjNi ,,0,,,1 == (3)

And the adjusting quantities in the weights between the hidden and input layers are:

)(')1(1011 twVtw ijjiij Δ+=+Δ αηδ

)(' 11 twx ijji Δ+= αηδ (4)

where)1(])([112

1

21
jjlj

N

l
lli VVwV

o

−⋅−= ∑
=

μζδ , djNi h ,,0,,,1 == (5)

Finally, corresponding formula for),,1(, dkak =Δ are:

dkxawVVwVa kk

N

j
djjj

N

i
ijiik

h o

,,1,})1(])[({2 2

1

1
)1(

11

1

22 =⋅⋅−⋅−=Δ ∑ ∑
=

+
=

μζη (6)

3 KSOM [19, 32]

The Self-Organizing Map was developed by Kohonen [4] and is based on unsupervised competitive

learning. Fig.2 shows the structure of a two-layer SOM. Based on the classical Kohonen SOM

formulations [4], we construct the kernel SOM algorithm and modify its objective function with the

mapping Φ as follows:

2
)()()(jj wXwJ Φ−Φ= (7)

where Fxx ∈Φ→Φ)(: , Xx∈ , X is patterns set and F is mapped feature space.

Now through the kernel substitution, we have:

),(2),(),(

)()(2)()()()()()(
2

jjj

j
T

j
T

j
T

j

wXKwwKXXK

wXwwXXwX

−+=

ΦΦ−ΦΦ+ΦΦ=Φ−Φ
 (8)

in this way we obtain a new class of non-Euclidean distance measures in original data space . To seek

the minimum of function)(jwJ , we can choose an arbitrary initial point 0w . Start from 0w and

track along the negative gradient direction)(0wJs −∇= . For each point jw , we define an unit

vector in the negative gradient direction as:

)(

)()(

j

jj

wJ

wJ
s

∇

∇
−= (9)

 Then, adjusting formula for jw based on gradient descent method is:

)(

)(
)()1(

j

j
jjj wJ

wJ
nwnw

∇

∇
−=+ ρ (10)

 Let new learning rate be
j

jwJ
nn

ρ
ηη

)(
)()('
∇

= .

 Substitute (8) into (10), we obtain the weight adjustment formula of KSOM:

)
),(

2
),(

)((')()()(')()1(
j

j

j

jj
jjjj w

wXK
w

wwK
nnwwJnnwnw

∂

∂
−

∂

∂
−=∇−=+ ηη (11)

 In this way, we derive kernelized SOM algorithm strictly following gradient descent method.

Unlike other kernelized algorithms such as SVM and KPCA using the dual representation form for the

solution vectors, in our derivation, we conceptually employ some non-linear mapping to transform

those patterns, together with those weight vectors associated with the neurons, from low-dimensional

space to high-dimensional one. Therefore, the whole learning process of our KSOM is still performed

in the original space and thus making the weight vectors be explicitly represented in the original space.

Moreover, based on the flexibility of kernel mappings, different kernel functions lead to different

distance measures, depending on those concrete problems to be solved. In this paper, we adopt the

following three classical kernel functions which satisfying Mercer condition:

(1) RBF kernel 2

2

2),(σ

yx

eyxK
−

−
= (12)

(2) polynomial kernel (POLY) 2,)(),(≥⋅= dyxyxK dT (13)

(3) logarithm kernel (LOG))1log(),(2

2

σ
yxyxK −+= (14)

 Respectively, substitute (12) into (11),

)(2)(')()1(
22

2
j

wX
jj wXennwnw j −⋅⋅⋅−=+ −− σση (15)

 Substitute (13) into (11),

))()(2)((')()1(11 XwXwwdnnwnw d
j

T
j

dT
jjj

−− −−=+ η (16)

 Substitute (14) into (11),

)(
)1(

1)(')()1(
222 j

j

jj wX
wX

nnwnw −⋅
−+⋅

⋅+=+
σσ

η (17)

The above equations (15), (16), (17) are weight adjustment formulae of the KSOMs based on the

three kernel functions. When ∞→σ , KSOM is degenerated to SOM, i.e., SOM can be taken as a

special case of KSOM.

It can be seen that in KSOM algorithm, although we replace the inner product in pattern space with

kernel function, in essence, clustering still proceeds in the original pattern space. The difference is:

Euclidean distance are no longer the measure between patterns and weight vectors, instead kernel

functions are employed. Herein, we generalize SOM classifier base on Euclidean distance to several

kinds of new classifiers based on different kernel-induced distance measures in the same space.

4 ICBP-KSOM Neural Network Model

ICBP-KSOM is a hybrid neural network architecture combining ICBP model and KSOM,

simulating Weijters developing BP-SOM [7,8], as shown in Fig.3. The ICBP-KSOM architecture adds

a kernel Self-Organizing Map to each hidden layer of the ICBP. During training the weights of ICBP,

the corresponding KSOM is trained on the hidden-unit activation patterns. In addition to ICBP error,

the information from the KSOMs is taken into account when updating the ICBP connection weights.

Through introducing KSOM information into the ICBP error signals, the hidden-unit activation

patterns of the same class samples tend to become “increasingly similar” to each other [7,8,23]. The

extending from BP-SOM to ICBP-KSOM is driven by the thought of utilizing both ICBP’s good

generalization and adaptability and KSOM’s good classification performance and robustness [19, 32]

to create a high quality classifier.

Fig. 3 The BP-SOM Architecture

The purpose of using KSOM is to help to train the ICBP by influencing the δ ′ s of the hidden

layers. Each KSOM is trained with the kernel SOM algorithm using the activation values m
iV of its

corresponding hidden layer. After several training epochs the KSOM achieves some degree of

self-organization. This self-organization information is used to compute a ksom_error for each KSOM,

which is used to influence the ICBP δ ′ s, before they are used to update the weights. Class label and

reliability properties [as defined in (27)] are extended for each KSOM to help determining whether

the ksom_error should be considered. As a whole, the ICBP-KSOM algorithm consists of two parts

[7,8,23]:

1. The learning algorithm of the combined network based on ICBP model.

2. The KSOM updating algorithm to determine the class labels and reliabilities.

The following step-by-step procedure shows how the algorithm works. In this section, we will use

the notations listed below:

μξk : The k-th input of pattern μ .

m
iV : The ith unit output of ICBP layer m.

m
ijw : The connecting weight from the j-th neuron of layer m-1 to i-th neuron of layer m.

m
iδ : The error signal of unit i in ICBP layer m.

M: The output layer has Mm = .
m
ih : The input for ith unit of ICBP layer m, ∑ −=

j

m
j

m
ij

m
i Vwh 1 , where m>0.

α : The influence of ksom_error vector on the error signal of ICBP hidden layer nodes.

r: The reliability of KSOM winning unit i*.

t: The threshold parameter of KSOM winning unit i*, typically setting at 0.95 to prevent unreliable

KSOM elements to influence the error signals of ICBP.

4.1 The Learning Algorithm of ICBP-KSOM

1. Initialize the ICBP weights to small random values.

2. Choose a pattern μξ and apply it to ICBP input layer so that for all k

 μξkkx = , and ∑
=

+ =
d

k
kkd xax

1

22
1 (18)

3. Propagate the signal forward through the network using

)()(1∑ −==
j

m
j

m
ij

m
i

m
i VwghgV (19)

for each i and m until the final outputs M
iV have all been calculated.

And ICBP weights connecting the extra node to all the hidden nodes: hdj Njw ,,1,1
)1(=+

are assigned a common constant. And in this work, they are all assigned as –1’s.

4. After propagating an input sample through the ICBP, the activation values of the hidden layers

are used as training inputs for the KSOM’s, which are trained following the kernel SOM

algorithm discussed in Section 3. Next, a winner *i is selected from each KSOM, which has

the same class label as the input pattern. Then an error vector mν is computed using

m
j

m
ji

m
j Vw −= *ν (20)

 for each node j in m-th hidden layer.

5. Compute the deltas for ICBP output layer:

])[(M
ii

M
i

M
i Vhg −′= μζδ (21)

6. Compute the deltas for the ICBP preceding layers by propagating the errors backwards:

 ∑−− ′=
j

m
j

m
ij

m
i

m
i whg δδ)(11 (22)

7. Apply the error vector computed from KSOM to update the deltas:

⎪⎩

⎪
⎨
⎧ >+−

=
−

otherwise

trifr
m
i

m
i

m
im

i δ

ανδα
δ

1)1(
 (23)

8. Update all connection weights according to)()()1(twtwtw ij
m
ij

m
ij Δ+=+ , where

)()1(1 twVtw m
ij

m
j

m
i

m
ij Δ′+=+Δ − αηδ (24)

 As for three-layer ICBP network model applied in this work, we use Eq.(3), (4) and (6) to

update the weight adjustments 2
ijwΔ between output and hidden layer, 1

ijwΔ between the

hidden and input layers, and),,1(, dkak =Δ , respectively. Whereas 21, ii δδ can be

derived according to Eq.(21), (22) and (23), with the results shown in Eq.(3) and (5).

9. Turn to step 2 and repeat for the next pattern until all patterns have been processed.

4.2 The KSOM updating algorithm

1. Initialize all the label counters to zero.

2. Choose a pattern μξ and apply it to ICBP input layer so that for all k

μξkkx = , and ∑
=

+ =
d

k
kkd xax

1

22
1 (25)

3. Propagate the signal forward through the network using

)()(1∑ −==
j

m
j

m
ij

m
i

m
i VwghgV (26)

for each i and m until the final outputs M
iV have all been calculated.

4. Apply the activation values of the hidden layers to the accompanying KSOM. Increase the

label counter of KSOM element winner by one for the label of the current pattern.

5. Turn to step2 and repeat for the next pattern until all patterns have been presented.

6. After all patterns have been propagated through ICBP-KSOM, choose the final class label and

reliability as defined in (27) for each KSOM element according to:

 The label with the biggest count is selected as the class label for the KSOM element.

 Compute the corresponding reliability as follows:

timescountinglabelsclasstotal

labeltheoftimescountingyreliabilit = (27)

5 Experiment Results

In order to compare our ICBP-KSOM with BP-SOM, we present experimental results on three

benchmark classification tasks (viz. the data-calculation task, the parity-12 task and the task of

detecting splices in DNA sequences). In these experiments, three classical kernel functions were

applied to BP-KSOM and ICBP-KSOM, i.e., RBF kernel, polynomial kernel and logarithm kernel.

The BP or ICBP learning rate was set to 0.25 and the momentum to 0.4. α was set to 0.25, and the

reliability threshold t to 0.95 . Class labeling was performed at each 5th cycle (Weijters, 1995; Weijters

et al, 1997).

5.1 Date Calculation Task [7,8,23]

The date calculation task is the problem to classify dates (e.g., April 6, 1997) to the day of the week

on which they fall. It is an example of task which easily leads to overfitting in MFNs trained by BP.

Norris described the problem in his paper and concluded that BP was not able to learn this task, unless

it was decomposed into three easier subtasks [7,8,12]. The dates used to train and test the two models

were chosen from July 1, 1970 to April 1, 2004. The training set consists of 4110 instances, and the

test set consists of 1000 new instances. The input for the networks consists of 85 inputs representing

the year (35 units), the month (12 units) and the day of the month (31 units). The developers of the

BP-SOM algorithm tested BP-SOM by comparing its performance with that of normal BP. In order to

compare our three new models discussed earlier with BP-SOM, we applied them to the date

calculation task respectively. We tested the two models using a hidden layer with 15, 20 and 40 units

and a SOM or a kernel-based SOM with 10x10 2D grid SOM output layer. We used 20 different

random initializations and training was stopped at 2000 epochs. The average classification errors and

error variances are given in Table 1 and Table 4, respectively. Mostly, the average error rates and error

variances of our ICBP-KSOMs are obviously less than those of CBP, ICBP and BP-SOM, except that

the error variance of logarithm kernel (LOG) ICBP-KSOM is bigger than that of ICBP with 15 hidden

nodes. However, the average error rates and error variances of LOG ICBP-KSOM with 20 or 40

hidden nodes all show significantly better generalization performances over CBP, ICBP and BP-SOM.

Therefore, the network structure can influence ICBP-KSOM performance heavily, while for this

simulation task, ICBP-KSOM with 40 hidden nodes exhibits the best generalization capability.

Insert Table 1 here

5.2 12-Parity Task [7,8,23]

The 12-Parity task is the problem to determine whether a pattern of 12 0’s and 1’s contains an even

number of 1’s. The training set contained 1,000 different instances selected at random out of the 4096

(212) possible patterns of length 12. The test set contained 100 new instances. There were four

different networks tested using hidden layers of 15, 20, 40 units, respectively. The SOM or KSOM

used for the four integrated networks has a size of 10X10. Each network configuration performed 20

testing runs using 20 different random initializations. The average classification errors and error

variances after 1000 epochs are shown in Table 2 and 4. The results again indicate better classification

and generalization performances of our algorithm.

Insert Table 2 here

5.3 Gene Detection [7,8,24]

A third comparative experiment was performed using the gene benchmark data sets extracted from

the Proben1 benchmark collection [24]. The data set detects intron/exon boundaries (splice junctions)

in nucleotide sequences. From a window of 60 DNA sequence elements (nucleotides), we can decide

whether the middle is either an intron/exon boundary (a donor), or an exon/intron boundary (an

acceptor), or none of these. The data set features 3000 training instances and 190 test instances. The

MFN or ICBP used in the experiments contained 120 input units, 10 hidden units and 3 output units

(representing ‘intron-exon boundary’, ‘exon-intron boundary’, or ‘neither’). Here, the size of the

corresponding SOM or KSOM was set to 33× . Table 3 and 4 displays the classification results of

the four models, again indicating advantages of our ICBP-KSOM network over CBP, ICBP, and

BP-SOM.

Insert Table 3 here

5.4 T-Test [31]

 To find out whether ICBP-KSOM is better than the other three models, we carry out t-test on the
classification results of the 20 runs for the above three simulation tasks for statistically significant
differences between ICBP-KSOM (RBF, POLY, LOG) and CBP, ICBP, BP-SOM, respectively. The

null hypothesis 0H demonstrates that there is no significant difference between the mean number of

patterns misclassified by ICBP-KSOM and CBP, ICBP or BP-SOM. The t-values are listed in Table 5,

from which we can see that in most cases the hypothesis 0H are rejected at the 5% significance

level (t-value >= 1.686), which means our ICBP-KSOMs possess significantly superior classification

capabilities to the other models. The case of acceptance to the hypothesis 0H appears mostly in the

comparison to ICBP in the Parity-12 task. From Table 2, 4 and 5, we find that it is relatively easy to
classify the Parity-12 task and all the four types of models perform closely to each other in this
simulation. For this particular application, ICBP model represents a similar classification performance,
which can be viewed as a special case.

A remark: We notice that in both this and the first experiments, the numbers of ICBP hidden nodes are

both less than those of input nodes, which contradicts our claims in Section 2. In fact, the number of

hidden nodes is, in theory, greater than those of the input nodes due to the proven result that a forward

multi-layer networks with sufficiently large hidden node number can approximate any continuous

function to arbitrary precision. However, in practice, such a conclusion does not necessarily always

hold because of only the finite training samples available.

6 Conclusions

Retaining the original structure of BP-SOM, we obtain a new network ICBP-KSOM by introducing

our ICBP network model and KSOM to BP-SOM architecture and using the similar way of

combination. On the one hand, our ICBP network has an interesting property that although it may

have less adaptable weights, it is better in generalization and adaptability than CBP. On the other hand,

our KSOM possesses high reliability and robustness for linear inseparable classification problems.

Therefore, our thought of combining them together following the same way as BP-SOM is natural and

rational. The results of benchmark classification experiments and t-test prove the feasibility and

effectiveness of our new integrated algorithm. Such an integration renders them more useful than

either. The ICBP-KSOM network architecture showed better classification and generalization

performances in various experiments, viz. date-calculation, parity-12, and gene boundary detection. In

general, we conclude that the hybrid ICBP-KSOM architecture and learning algorithm successfully

combines advantages of our ICBP and KSOM models.

Acknowledgements

We thank Jiangsu Natural Science Key project (BK2004001), Jiangsu “QingLan” Project Foundation

and the Returnee’s Foundation of China Scholarship Council for partial supports respectively.

References

[1] H. Simon, Neural Networks, A Comprehensive Foundation, Published by Prentice-Hall, Inc.,

(1999).

[2] J.A. Hertz, A.S. Krogh & R.G. Palmer, Introduction to the theory of neural computation,

Addison-Wesley, (1991).

[3] N. Cristianini and J.S. Taylor, An introduction to SVMs and other kernel-based learning methods,

Cambridge Univ. Press, (2000).

[4] T. Kohonen, Self-organisation and Associative Memory, Berlin, Springer Verlag, (1989).

[5] V. N. Vapnik, The nature of statistical learning theory, Springer Verlag, (1995).

[6] V. N. Vapnik, Statistical learning theory, Wiley, (1998).

[7] A. Weijters, The BP-SOM architecture and learning rule, Neural processing letters, 2(6) (1995)

13-16.

[8] A. Weijters, V. D. Bosch, H. J. Herik,. Intelligible neural networks with BP-SOM, Marcke and

Daelemans, (1997) 27-36.

[9] B. Scholkopf, A.J. Smola & K.R. Muller, Nonlinear component analysis as a kernel eigenvalue

problem, Neural Computation, 10(5) (1998) 1299-1319.

[10] B.Z. Zhang and S.C. Chen, Equivalence between vector quantization and ICBP networks. Journal

of Data Acquisition and Processing (in Chinese) 16(3) (2001) 291-294.

[11] D.E. Rumelhart, G. E. Hinton & R. J. Williams, Learning internal representations by error

propagation, Parrallel Distributed Processing: Explorations in the Microstructure of Cognition 1:

Foundations, (1986) 318-362.

[12] D. Norris, How to build a connectionist idiot (savant). Cognition, 35 (1989) 277-291.

[13] L. Zhang, W. D. Zhou, & L.C. Jiao, Kernel clustering algorithm, Chinese Journal of Computers,

25(6) (2002) 587-590.

[14] Q. Dai, S. C. Chen, & B. Z. Zhang, Improved CBP neural network model with applications in

time series prediction, Neural Processing Letters, 18 (2003) 197-211.

[15] S. Ridella, S. Rovetta & R. Zunino, Circular back-propagation networks for classification, IEEE

Transactions and Neural Networks , 8(1) (1997) 84-97.

[16] S. Ridella, S. Rovetta & R. Zunino, Circular back-propagation networks embed vector

quantization, IEEE Transactions and Neural Networks 10(4) (1999) 972-975.

[17] S. Ridella, S. Rovetta & R. Zunino, CBP networks as a generalized neural model, Int. Conf.

Neural Networks (1997)

[18] V. Vapnik and C. Cortes, Support vector networks, Machine Learning, 20 (1995) 273-297.

[19] Z. S. Pan, S. C. Chen & D. Q. Zhang, A kernel-based SOM classification in input space, Acta

Electronica Sinica, 32(2) (2004) 227-231.

[20] B. Z. Zhang, The research on the performance and applications of improved BP neural networks,

Thesis of Master degree, Computer Science Department of Nanjing University of Aeronautics

and Astronautics, Feb. 2001.

[21] B. Z. Zhang, S. C. Chen, The equivalence between ICBP and the Bayesian classifier, Tech.

Report No. 021, Dept. of Computer Science & Engineering, Nanjing University of Aeronautics

and Astronautics, 2001.

[22] D. MacDonald, C. Fyfe: The kernel self-organizing map, http:// cis.paisley.ac.uk/

fyfe-ci0/kernel/kmeans.ps

[23] J. Eggermont, Rule-extraction and learning in the BP-SOM architecture, Thesis of Master degree,

Computer Science Department of Leiden University, Aug. 1998.

[24] L. Prechelt, Proben1: A set of neural network benchmark problems and benchmarking rules.

Technical Report 24/94, Fakultat fur informatic, University Karlsruhe, Germany, 1994.
[25] S. C. Chen, D. Q. Zhang, Robust Image Segmentation Using FCM Kernel-Induced Distance

Measure, IEEE Transactions on Systems, Man, and Cybernetics—part B: Cybernetics, 34(4)
(2004) 1907-1916

[26] V. Roth, V. Steinhage, Nonlinear discriminant analysis using kernel functions, Neural
Information Processing Systems A Solla, T. K. Leen, and K.-R. Muller, Eds. Cambridge, MA:
MIT Press 12, (2000) 568–574.

[27] J. H. Chen, C. S. Chen, Fuzzy kernel perceptron, IEEE Trans. Neural Networks, 13 (2002)
1364–1373.

[28] T. M. Cover, Geomeasureal and statistical properties of systems of linear inequalities in pattern
recognition, Electron. Comput., 14 (1965) 326–334.

[29] M. Girolami, Mercer kernel-based clustering in feature space, IEEE Trans. Neural Networks, vol.

13 (2002) 780–784.

[30] S. Weiss, C. Kulikowski, Computer Systems that Learn, San Mateo, CA: Morgan Kaufmann.

(1991)

[31] R. Dutta, E. L. Hines, J. W. Gardner & P. Boilot, Bacteria classification using cyranose 320

electronic nose, Biomedical Engineering Online, 1(4) (2002) 1-7.

[32] P. Andras, Kernel-Kohonen networks, International Journal of Neural Systems, 12(2) (2002)

117-135.

[33] Z. H. Zhou and S. F. Chen, Neural network ensemble, Chinese Journal of Computers, 25(1)

(2002) 1-8.

[34] Z. H. Zhou, et al., View-invariant face recognition based on neural network ensemble, Chinese

Journal of Computer Research & Development, 38(10) (2001) 1204-1210.

Table 1. The average classification error on the test set using 20 different random initializations. The

network consisting of 15, 20, 40 hidden units was trained for 2000 epochs on the Date Calculation

task.

ICBP-KSOM
Hidden nodes CBP ICBP BP-SOM

RBF POLY LOG

15 23.28 11.25 11.57 8.98 9.84 7.48

20 17.26 9.64 8.96 4.09 4.45 3.84

40 9.71 5.90 6.43 3.84 2.02 2.12

Table 2. The average classification error on the test set using 20 different random initializations. The

network consisting of 15, 20, 40 hidden units was trained for 1000 epochs on the 12-Parity task.

ICBP-KSOM
Hidden nodes CBP ICBP BP-SOM

RBF POLY LOG

15 6.72 3.29 4.67 2.93 3.37 2.77

20 5.67 2.72 3.35 1.98 2.27 1.87

40 4.57 1.84 2.71 1.30 1.59 1.06

Table 3. The average classification error on the test set using 20 different random initializations. The

network consisting of 10 hidden units was trained for 200 epochs on the gene detection task.

ICBP-KSOM
Hidden nodes CBP ICBP BP-SOM

RBF POLY LOG

10 37.51 10.45 10.67 7.90 8.46 9.46

20 26.26 9.30 10.43 7.43 7.29 6.87

40 19.03 8.90 9.88 5.65 4.39 6.87

Table 4. The error variance after 20 tests running on the three simulation tasks, where Hn represents

the number hidden nodes utilized in each model.

ICBP-KSOM
Simulations Hn. CBP ICBP BP-SOM

RBF POLY LOG

15 56.55 5.07 11.32 4.62 4.57 11.15

20 36.56 12.95 5.57 5.0 0.88 1.33
Date

Calculation
40 29.25 5.60 9.53 2.36 1.05 0.54

15 4.56 7.14 8.38 2.35 3.68 4.42

20 7.33 4.35 4.40 0.70 2.05 0.68
12-Parity

Task
40 6.26 1.12 3.92 0.82 2.36 0.61

10 125.70 8.32 8.98 2.07 7.08 8.42

20 123.05 5.44 9.35 3.55 4.19 4.43

Gene

Detection

Task 40 41.41 7.05 6.51 4.39 1.13 9.14

Table 5. Comparison using t-test of CBP, ICBP, BP-SOM and ICBP-KSOM with RBF, POLY and
LOG kernels, respectively.

CBP ICBP BP-SOM
Simulations Hn

RBF POLY LOG RBF POLY LOG RBF POLY LOG

15 7.96 7.49 8.37 3.18 1.99 4.07 2.82 1.90 3.76

20 8.90 9.12 9.50 5.70 6.08 6.69 6.52 7.73 8.49
Date

Calculation
40 4.56 6.09 6.06 3.18 6.55 6.64 3.28 5.90 5.91

15 6.28 5.09 5.75 0.83* 0.39* 0.94* 2.31 1.63* 2.31

20 5.67 4.84 5.85 1.43* 0.77* 1.65* 2.63 1.85 2.85
12-Parity

Task
40 5.35 4.43 5.83 1.67* 0.58* 2.56 2.50 1.95 3.37

10 11.41 10.99 10.56 3.44 2.21 1.05* 3.62 2.40 1.26*

20 7.29 7.33 7.49 2.73 2.82 3.38 3.64 3.71 4.18

Gene

Detection

Task 40 8.62 9.78 7.45 4.19 6.88 2.20 5.58 8.65 3.31

The asterisk (*) indicates the difference between the two corresponding models is not significant at

5% significance level, i.e. t-value < 1.686.

Captions of figures:

Fig. 1 ICBP three-layer network model

Fig. 2 SOM network structure

Fig. 3 The BP-SOM Architecture

Fig. 1 ICBP three-layer network model

Fig. 2 SOM network structure

Fig. 3 The BP-SOM Architecture

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

