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Abstract

Bayesian subspace analysis has been successfully applied in face recognition. However, it suffers from its operating on a whole face

difference and using one global linear subspace to represent the similarity model. We develop a novel approach to address these

problems. The proposed method operates directly on a set of partitioned local regions of the global face differences, and a separate

Gaussian distribution is used to model each sub-intrapersonal space, accordingly. By combining all the local models, we can represent the

complex intrapersonal variations more accurately. We further improve the system performance by reducing the contribution of local

subspaces containing large variations using a smoothing method. The experiments on several standard face sets show that the proposed

method is competitive.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Subspace analysis has attracted much attention in face
recognition over the last decade. The essence of subspace
analysis is to find the intrinsic face manifold in a low-
dimensional space [4]. Although the face image is usually
represented in a high-dimensional pixel space, the low-
dimensional manifold pursuit is reasonable considering the
regularity of facial configuration (e.g., the positions of nose
and eyes in a face image). Eigenface [1], Fisherface [2],
Lapalacianface [4] and the Bayesian method [3] are four
representative subspace methods in the field. Among them,
Eigenface does not consider the class information; Fisher-
face uses the class information but its decision boundaries
are both crisp and simple (linear) in nature; Lapalacianface
seeks to extract more discriminating information using a
local information preserving embedding technique, pro-
vided that sufficient training samples are given. The
Bayesian method also uses supervised information, but in
a way different from the aforementioned methods, i.e., it
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2005.09.018

ing author. Tel: +8625 84892452; fax: +86 25 84498069.

esses: x.tan@nuaa.edu.cn (X. Tan), j.liu@nuaa.edu.cn

nuaa.edu.cn (S. Chen).
tries to construct the similarity model (i.e., intrapersonal
space) of the same individual in a soft (probabilistic) way.
This makes it easier to adapt to unknown samples.
More specifically, in a Bayesian method, the intraperso-

nal space is constructed by collecting all the difference
images (denoted as D, D 2 Rn, where n is the dimension of
face image vectors) between any two image pairs belonging
to the same individual. From these face differences, the
typical intrapersonal variations (denoted by OI ) in the
same individual will be learned and represented as a
likelihood function, i.e., PðDjOI Þ. By assuming OI to be a
high-dimensional Gaussian distribution, the intrapersonal
likelihood (called ML measure) is estimated as
PðDjOI Þ ¼ ð2pÞ

�n=2
jSI j

�1=2 exp �ð1=2ÞDTS�1I D
� �

, where
SI is the covariance matrix on the intrapersonal difference
set fDjD 2 OIg. It can be shown the ML estimation of
PðDjOI Þ is mathematically equalvalent to PCA if the prior
knowledge is not considered [3], and the subsequent
recognition is reduced to the estimation of the Mahalano-
bis distance between a probe face and a face in the
gallery set, i.e., d2

FðD;SI Þ ¼ DTS�1I D in the principal
subspace. By solving the eigenvalue problem on SI , we
can calculate the distance using only the first p principal
components, that is, d2

FðD;SI Þ ¼
Pp

i¼1y2
i =li, where yi is the
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ith principal component of D and li is the corresponding
eigenvalue.

Despite the advantages of the Bayesian method,
it may be unable to handle the complex situation, where
a dataset contains significant transformation difference
caused by large lighting, pose and expression variations.
Based on the previous analysis, we know that the
intrapersonal difference set fDjD 2 OIg plays a critical role
in the method, and the PCA approach is used to learn
the so-needed intrapersonal space. However, the number of
training samples per class used to construct the intraperso-
nal difference set is usually small. Moreover, the
standard PCA working on the global face pattern is
inadequate to faithfully learn the nonlinear intrapersonal
variation. This is due to PCA’s preference to mapping
directions with maximal variations, while those
directions with minimal variations may be unfortunately
ignored as noise. In other words, PCA is prone to be fooled
by large variations. The Bayesian method tries to
circumvent this problem with the Mahalanobis distance,
which gives more weight to projectors with small varia-
tions. However, due to the fact that the Bayesian method
still operates on the global patterns, this distance measure
cannot guarantee to effectively reduce the intrapersonal
variation.

In this paper, we present a novel method to improve the
Bayesian method. Our strategy is to learn a set of local
intrapersonal subspaces rather than a global one to capture
the complex intrapersonal variations. More specifically, the
proposed method operates directly on a set of partitioned
local regions of the global face differences, and then
constructs corresponding sub-intrapersonal spaces sepa-
rately using a simple Gaussian distribution. Finally, all the
sub-intrapersonal spaces are combined within a probabil-
istic framework for subsequent recognition.

The significance of the proposed method is threefolds.
First, since the whole complex intrapersonal variation is
represented by a set of local low-dimensional Gaussian
distributions rather than one single high dimensional
Gaussian distribution, it is expected that the variation
can be modeled more faithfully. Second, experimental
results show that most of local intrapersonal variations in a
dataset are relatively small and only a small portion of
them are large but contrarily dominate the whole
intrapersonal variations. In this paper, we use a smoothing
method to effectively control the contribution of local
models with large variation, thus effectively reducing the
intrapersonal variation. Third, due to the low dimension-
ality of local regions, the learning procedure of the method
is very efficient, making it suitable for large datasets with
very high dimensionality.

In Section 2 the proposed algorithm is described in
detail. Experiments are carried out in Section 3, where
the comparing results between the proposed method
and several state of the art subspace algorithms are
presented on several standard face databases. We conclude
in Section 4.
2. Local intrapersonal space analysis

In the proposed method, we decompose the global
intrapersonal variation manifold into M local spaces, and
use a simple Gaussian distribution to represent each of
them. More specifically, in the training stage, the intra-
personal difference sample set is first constructed by
computing all the difference images between any two
image pairs belonging to the same individual. Then the
obtained difference images are partitioned into local
regions. In this paper for simplicity, we adopt the equally
sized partition scheme [5], that is, each difference image is
partitioned into M equally sized local regions (sub-
patterns) in a non-overlapping manner. Each local region
is further concatenated into corresponding column vectors
with dimensionality of l. Then we collect these vectors at
the same position of all difference face images to form a
training set, in this way, the M separate local difference sets
are formed (i.e., Dkj

M
k¼1) and the corresponding local

intrapersonal variation is denoted as OI ;kj
M
k¼1. Under the

independent assumption among local regions, the global
intrapersonal likelihood PðDjOI Þ can then be expressed as
the product of M local intrapersonal likelihoods
PðDkjOI ;kÞ, i.e.:

PðDjOI Þ ¼
YM
k¼1

PðDkjOI ;kÞ. (1)

If a Gaussian distribution is assumed on each local
subspace, it follows that

PðDkjOI ;kÞ ¼ ð2pÞ
�l=2
jSI ;kj

�1=2 exp �
1

2
DT

kS
�1
I ;kDk

� �
, (2)

where SI ;k is the covariance matrix on the kth intrapersonal
difference set fDkjDk 2 OI ;kg, i.e., SI ;k ¼ DkDT

k . As men-
tioned before, when no prior knowledge is available, the
ML estimation of PðDkjOI ;kÞ is PCA [3], which in turn
reduces to solve an eigenvalue problems of the covariance
matrix SI ;k, and the resulting local intrapersonal subspace
is spanned by the first q eigenvector of the SI ;k. In each
subspace, we can either adopt the squared Euclidean
distance or the squared Mahalanobis distance as the
‘‘distance’’ measure for recognition. The square of the
Euclidean distance is defined to be

ðdk
EÞ

2
¼
Xq

i¼1

ðyk
i Þ

2 (3)

and that of the Mahalanobis distance:

ðdk
FÞ

2
¼
Xq

i¼1

ðyk
i Þ

2=lk
i , (4)

where yk
i is the ith principal component of the kth local

region and lk
i the corresponding eigenvalue. Obviously, dk

E

is a special case of dk
F if lk

i is not considered. In practice, the
choice of Eqs. (3) or (4) is dataset-dependent. Empirically,
if the local regions contain large-scale variations as in the
ORL dataset, the squared Mahalanobis distance (Eq. (4))
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can be used, otherwise, the squared Euclidean distance (Eq.
(3)) is preferred. In the following experiments, the squared
Euclidean distance (Eq. (3)) is adopted as the default
setting. This is mainly due to the observation that the local
variations contained in each face regions are generally very
small (see experimental section), and the Euclidean-based
distance could be helpful to reduce the risk of amplifying
irrelevant dimensions with small variance.
Fig. 1. Algorithm of local int
Now, by applying a logarithmic transformation on
both sides of Eq. (1) and combining it with Eq. (2), we
obtain the total squared distance D between any two
images I1; I2:

DðI1; I2Þ ¼
XM
k¼1

DT
kS
�1
I ;kDk9

XM
k¼1

ðdk
Þ
2, (5)
rapersonal space analysis.
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Fig. 2. Histograms of intrapersonal local pairwise distances on the ORL

dataset.
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where ðdk
Þ
2 is the kth local square-of-distances, which can

be evaluated using either Eqs. (3) or (4).
Another key issue for the proposed method is how to

reduce the overall intrapersonal variation. We address the
problem using a traditional smoothing method. Here the
exponential function is chosen for that purpose, that is,

dk
s ¼ expð�ðdk

Þ
2=2Þ, (6)

where dk
s is the smoothed version of kth local squared

distance defined in (3) or (4). Such a transformation
not only controls the contribution of each local model,
but also changes the squared distance into a similarity
measure, with the property that the larger the squared
distance, the smaller the similarity. Consequently, the
influence of large local variations on the total similarity is
smoothed and the overall intrapersonal variation is
effectively reduced.

To this end, simply by replacing ðdk
Þ
2 with dk

s in Eq. (5),
we obtain the total similarity of a probe t to the prototype
image Ic of each class (c ¼ 1,y,C), that is,

Sðt; IcÞ ¼
XM
k¼1

dk
s ðD

k
t;cÞ, (7)

where Dk
t;c is the kth local intrapersonal difference between t

and Ic. And we recognize the face class with the maximal
similarity to the probe face image, i.e.,

labelðxÞ ¼ arg max
c¼1;...;C

ðSðt; IcÞÞ. (8)

The detailed description of the above-proposed algo-
rithms is shown in Fig. 1.

3. Experimental results

In the first experiment, we demonstrate how the global
pattern may cover the truth of intrapersonal variation. The
faces are from the ORL database (http://www.uk.
research.att.com/facedatabase.html). It contains 40 per-
sons with 10 images for each person. All the images are
cropped to the size of 56� 46 pixels. The face images
contain significant intrapersonal variations caused by
rotation, expression and sample size. We partitioned the
difference images into 8� 23 local regions (sub-patterns),
and computed the intrapersonal pairwise squared
Euclidean distance for each region. The histogram
of the obtained distances is depicted in Fig. 2. Fig. 2
indicates that 83.6% local distances are less than 0.4� 106

(small compared to the largest one, 1.9� 106), however,
their contribution to the overall intrapersonal distances is
only 61.5%. In other words, nearly 40% total variation is

due to about 16.0% local regions with large variation.
This very insight, which seems to be ignored by
most previous researches, provides one of the major
justifications of our algorithm. It actually suggests an
efficient and effective way to reduce the overall intraperso-
nal variation, i.e., by punishing those local models with
large variation.
Next, we want to compare the performance of the local
intrapersonal space analysis to the global intrapersonal
space analysis (i.e., the standard Bayesian method) as well
as other state of the art subspace analysis methods,
including eigenface, fisherface, Lapalacianface and a local
PCA method named subpattern-based PCA (SpPCA [5]).
In the experiments, 98% information in the sense of
reconstruction is kept in the PCA subspaces for all the
compared methods. For fisherface and Lapalacianfaces,
(C�1) projectors are extracted, where C is the number of
total classes. The experiments are conducted on four well-
known databases, i.e., AR [6], Yale [2], ORL and FERET
[7]. The AR dataset contains 100 subjects and each subject
has 26 face images taken in two sessions. For each session,
there are 13 face images. Here the first 7 faces from the first
session of each person are used for training (700 faces in
total), and the first 7 faces from the second session of each
person (700 faces in total) for testing. The 1400 images are
all cropped into the same size of 66� 48 pixels. Face
images in this dataset have very significant intrapersonal
variations including large expression and lighting changes.
The Yale set contains 165 face images of 15 persons, with
each person having 11 images. The first 6 faces of each
person are used for training and the latter 5 for testing. All
the images are cropped into 50� 50 pixels. This dataset is
used to examine the system performance when both facial
expressions and illumination are varied. On the ORL
dataset, the first 5 images of each person are selected for
training and the latter 5 for testing. This dataset is
challenging for its variations in pose, expression and
sample size. On this dataset, the squared Mahalanobis
distance (Eq. (4)) is used. Finally, a larger dataset from
FERET is used. This dataset contains 1195 subjects with
two faces for each person. Images of 195 persons are
randomly selected for training, and the remaining 1000
persons are used for testing. So, there are a total of 390

http://www.uk.research.att.com/facedatabase.html
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Table 1

Classification accuracy (%) comparison of our method with other methods on four datasets

Dataset Our method Bayesian Eigenface Fisherface Lapalacianface SpPCA

AR 89.6(22� 6�) 84.3 74.1 85.3 85.1 77.7

ORL 91.5(8� 2) 82.5 88.5 85.5 85.0 90.0

YALE 84.0(10� 10) 76.0 77.3 82.7 82.7 81.3

FERET 91.3(12� 12) 89.3 76.8 85.2 87.7 79.7

�The size of local region obtaining the corresponding performance.

Table 2

Sensitivity of the proposed method to the size of local regions

AR(66� 48a) ORL(56� 46) YALE(50� 50) FERET(60� 60)

6� 8b 11� 8 22� 6 8� 2 28� 2 8� 23 5� 5 10� 10 25� 10 10� 5 12� 12 15� 15

Accuracy (%) 89.3 89.1 89.6 91.5 91.0 91.0 84.0 84.0 84.0 89.2 91.3 89.9

Mean (%) 89.3 91.2 84.0 90.1

Std 0.06 0.08 0.0 1.14

aSize of the original image.
bSize of the local region.
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images in the training set, 1000 face images in the gallery,
and 1000 face images for probe. All the images are cropped
into 60� 60 pixels. The experimental results are given in
Table 1. The proposed local intrapersonal space method
outperforms all other methods consistently of all the face
datasets.

Finally, we study the sensitivity of the proposed
method to the size of the local regions. The top 1
matching rates under different local region size in
the four datasets are shown in Table 2. The results
reveal that our algorithm is insensitive to the size of local
region.
4. Conclusions

We proposed a novel method to model the intra-
personal variation. The proposed method decomposes
the complex intrapersonal manifold into a set of local
models, and uses a separate simple Gaussian distribution
to represent each of them. In addition, we effectively
reduce overall intrapersonal variation by reducing the
contribution of those local models with large local
variation with a smoothing method. Experimental results
on four well-known face datasets reveal that the pro-
posed local-pattern-based method achieves a higher
accuracy than the traditional global-pattern-based Baye-
sian algorithm as well as Eigenface, Fisherface and the
recently proposed Lapalacianface when only a few images
are available. In the future work, we will focus on
addressing the partial occlusion problems using the
proposed method.
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