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Abstract: As an extension to 2DPCA, Generalized Low Rank Approximation of Matrices (GLRAM) 

applies two-sided (i.e., the left and right) rather than single-sided (i.e., the left or the right alone) linear 

projecting transform(s) to each 2D image for compression and feature extraction. Its advantages over 

2DPCA include higher compression ratio and superior classification performance etc. However, 

GLRAM can only adopt an iterative rather than analytical approach to get the left and right projecting 

transforms and lacks a criterion to automatically determine the dimensionality of the projected matrix. 

In this paper, a novel non-iterative GLRAM (NIGLRAM) is proposed to overcome the above 

shortcomings. Experimental results on ORL and AR face datasets and COIL-20 object dataset show 

that NIGLRAM can get not only so-needed closed-form transforms but also comparable performance 

to GLRAM. 
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1. Introduction 

As opposed to conventional Principal Component Analysis (PCA) (Turk and Pentland, 1991) 

manipulating on 1D vectors to extract features, Two-Dimensional Principal Component Analysis 

(2DPCA) (Yang et al, 2004) is directly based on 2D matrix patterns cr
iA ×ℜ∈ , for ni ,,2,1= , 

with n being the number of training images, and r and c their corresponding numbers of rows and 

columns. Thus 2DPCA has two important advantages over PCA (Yang et al, 2004): 1) easier to 

evaluate the image covariance matrix ∑
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the sample mean image; and 2) less time is required to determine the corresponding eigenvectors 
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c lU ×∈ℜ , whose columns are the l eigenvectors of tG  corresponding to the first l largest 

eigenvalues in a decreasing order. Wang et al (2005) pointed out that 2DPCA is related to an existing 

feature extraction method, block-based PCA (Kim et al, 2003) and more importantly is equivalent to 

its special case, line-based PCA. Such revealed equivalence relationship makes 2DPCA better to be 

understood from the viewpoint of the existing block-based PCA method. Furthermore, their 

experimental results on face dataset showed that 2DPCA (or equivalently line-based PCA) achieves 

higher classification accuracy than the typical rectangle block based PCA, which verifies the 

effectiveness of 2DPCA. However, 2DPCA applies linear transformation U only on the single (right 

here) side of each matrix data, i.e., i iY AU= , to obtain its compressed version Yi, leading to lower 

compression ratio (Yang et al, 2004; Ye, 2004). By simultaneously applying two-sided linear 

transformations 1lrL ×ℜ∈  and 2lcR ×ℜ∈  with orthonormal columns to each image data, 

i.e., RALD i
T

i =  to obtain its corresponding compressed version iD , GLRAM improved both 

compression ratio and classification accuracy (Ye, 2004). However, GLRAM can only adopt an 

iterative rather than analytical approach to get the left and right (locally optimal) projecting 

transforms, L and R, and at the same time, lacks a criterion to automatically determine the 

dimensionalities of the projected matrices. In this paper, a non-iterative GLRAM (NIGLRAM) is 

proposed to overcome these shortcomings. 

Here it is necessary for us to mention a more recent work by (Liang and Shi, 2005) in which the 

authors argued and claimed that they revealed the optimality property of GLRAM and accordingly 

found its analytical solution. However, as argued in (Liu and Chen, technical report), their arguments 

are problematic in that 1) the revealed optimality property of GLRAM is incorrect and 2) the 

accordingly found analytical solution is not a real analytical solution to GLRAM. 

The rest of the paper is organized as follows. We review GLRAM in section 2, and then describe 

our NIGLRAM in section 3. In section 4, we present experimental results on ORL and AR face 

datasets, and in section 5 we draw a conclusion of this paper. 

 

2. Review of GLRAM 

GLRAM aims to compute two matrices 1lrL ×ℜ∈  and 2lcR ×ℜ∈  with orthonormal columns, 
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such that RALD i
T

i =  is the compressed version of iA , and T
ii RLDA =

~
 its approximation. 

Mathematically, we can formulate this as the following minimization problem: computing optimal L 

and R, by 
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where ||.||F is the Frobenius norm. (1) is equivalent to the following maximization problem (Ye, 2004):  
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Since there are no closed-form solutions to L and R for the maximization of (2), GLRAM, instead, 

employs an alternative iterative optimization way (Ye, 2004), concretely, 

1) For a given R, L maximizes 
2

1 1
( ) ( )

n n
T T T T T

i i i L
i iF

L A R trace L A RR A L trace L M L
= =

= =∑ ∑  

under the constraint of
1

T
lL L I= , where 

1

n
T T

L j j
j

M A RR A
=

=∑ . By means of Lagrangian multiplier 

method, the maximization of ( )T
Ltrace L M L  under the above constraint leads to the following 

eigenvalue problem 

                         LM L L= Λ                                       (3) 

where 
11 2( , , , )ldiag η η ηΛ = is ML non-negative eigenvalues due to the positive semi-definiteness 

of ML and L is a transform matrix consisted of the corresponding eigenvectors. By (2) and (3), we 

have 
1

1
( ) ( )

l
T T

L i
i

trace L M L trace L L η
=

= Λ =∑ , thus for a given R, we can select the l1 eigenvectors of 

ML corresponding to the largest l1 eigenvalues. 

2) Similarly, for a given L, we can also obtain R which consists of the l2 eigenvectors of 

1

n
T T

R j j
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= ∑ corresponding to the largest l2 eigenvalues.  

3) Initialize L with a matrix L0, and repeat 1) and 2) until RMSRE defined as 

1
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T

i i
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= −∑  converges. It is easy to prove that the so-obtained L and R are just 
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local maxima of (2).  

The pseudo-code for computing L and R by GLRAM is given in Algorithm GLRAM. 

 

Algorithm GLRAM 

Input:  Matrices { }n
iA 1= , l1, l2 

Output: Matrices L and R 
1.  Obtain initial L0 and set i to 1 
2.  While not convergent 

3.   Form matrix ∑
=

−−=
n

j
j

T
ii

T
jR ALLAM

1
11  

4.   Compute Ri which is the l2 eigenvectors of MR corresponding to the largest l2 eigenvalues 

5.   Form matrix ∑
=

=
n

j

T
j

T
iijL ARRAM

1
 

6.   Compute Li which is the l1 eigenvectors of ML corresponding to the largest l1 eigenvalues 
7.   i=i+1 
8.  End while 
9.  Set L to Li-1, and R to Ri-1 

 

3. Proposed NIGLRAM 

It has been shown that 2DPCA is better in classification performance and compression than PCA 

(Yang et al, 2004) and GLRAM is further better than 2DPCA (Ye, 2004). However, both 2DPCA and 

GLRAM have some disadvantages. 2DPCA applies linear transformation only on the single side of 

each matrix data, such a transformation yields lower compression ratio and high storage cost (Yang et 

al, 2004; Ye, 2004) and on the other hand, GLRAM can only adopt an iterative rather than analytical 

approach for computing L and R, and more importantly, lacks a optimization criterion to automatically 

determine l1 of L and l2 of R. In this paper, a non-iterative GLRAM (NIGLRAM) is proposed to 

overcome GLRAM’s disadvantages and as a result, a closed-form solution is analytically obtained by 

optimizing alternative objective functions. By a closed form solution, we mean here that the 

projection matrices L and R can be separately obtained in a closed form in term of their respective 

reconstruction error criteria. The contributions of the proposed algorithm include 1) the speedup in 

computation not at the cost of classification accuracy and 2) proposing a criterion to automatically 

determine l1 of L and l2 of R, as done in the traditional PCA. 
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Now, we formulate our NIGLRAM as follows: 

Step1: Use the left linear transformation 1lrL ×ℜ∈  with orthonormal columns to compress a 

given matrix Ai and get its compressed version T
i iB L A= . Let 

~
L
i iA LB=  be an approximation or 

reconstruction of Ai. Now we can obtain L by minimizing the reconstruction error as defined below: 

1
1

2~

: 1
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l
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−∑                              (4) 

Following similar optimization procedure as that in GLRAM, 1lrL ×ℜ∈  consisting of the 

eigenvectors of the matrix ∑
=

=
n

i

T
iiL AAN

1
 corresponding to the first l1 largest eigenvalues is the 

solution to (4). Here, l1 is a user specified value or a value determined by parameter 1θ  according to 

the following inequality: 
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where rλλλ ,,, 21  are LN ’s nonnegative eigenvalues arranged in a decreasing order. The 

determination of l1 here is reminiscent of what is done in PCA for selecting the number of the principal 

components, and as a result easy for both understanding and employment.  

Step 2: On the basis of Step 1, we use the right linear transformation 2lcR ×ℜ∈  with 

orthonormal columns to compress iB , and get its compressed matrix i iD B R= . Let 
~

T
i iB D R=  be 

an approximation or reconstruction of Bi. Similarly, we can obtain R by minimizing the reconstruction 

error as defined below: 

2
2

2~

: 1
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c l T
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i i
R R R R I i F
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And R consisting of the l2 eigenvectors of matrix 
1 1

n n
T T T

R i i i i
i i

N B B A LL A
= =

= =∑ ∑  corresponding to 

the first l2 largest eigenvalues is the solution to (6). Hear, l2 can also be a specified value or a value 

determined by parameter 2θ  according to the following inequality: 
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where cμμμ ,,, 21  are RN ’s nonnegative eigenvalues arranged in a decreasing order. In addition, 

the determination of l2 here is also similar to what is done in PCA for selecting the number of the 

principal components, and as a result easy for both understanding and employment. 

Step 3: Combining the compression results in the previous two steps, we immediately get Ai‘s 

final compressed version T
i iD L A R= , and its reconstructed data is 

~
T T T

i i iA LD R LL A RR= = . 

The pseudo-code for computing L and R by NIGLRAM is given in Algorithm NIGLRAM. 

 

Algorithm NIGLRAM 

Input:  Matrices { }n
iA 1= , l1, l2 or NMSE−== 121 θθ  

Output: Matrices L and R 

1. Form matrix ∑
=

=
n

i

T
iiL AAN

1
 

2. Compute L which is the l1 eigenvectors of LN  corresponding to the first largest l1 eigenvalues, l1 

is a given value, or otherwise, l1 is a value determined by (5) 

3. Form matrix ∑
=

=
n

i
i

TT
iR ALLAN

1
 

4. Compute R which is the l2 eigenvectors of RN  corresponding to the first largest l2 eigenvalues, l2 

is a given value, or otherwise, l2 is a value determined by (7) 

 

Our NIGLRAM is in fact a three-step analytical algorithm, namely, we compress Ai to Bi in the 

first step, then compress Bi to Di in the second step, and finally we combine the compression results of 

the previous two steps to get Ai’s final compressed data and the reconstructed data. Unlike GLRAM 

which directly optimizes (2), our NIGLRAM approximately optimizes it by minimizing (4) and (6) 

sequentially instead, and thus gets a non-iterative algorithm for solving L and R. For better comparing 

GLRAM and NIGLRAM from the theoretical point of view, let us look at the following two 

inequalities: 
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L A R trace R A LL A R trace A LL Aθ
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( ) ( ( ) ) ( )
n n n

T T T T T
i i i i i i

i i i
trace A LL A trace L A A L trace A Aθ
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where θ1 and θ2 are defined in (5) and (7) respectively. 

From (8), we know that maximizing (2) can be decomposed to two sequential steps: 1) calculate 

the L that maximizes 2 RS Nθ=  (note that θ2 is a function of L); and 2) calculate the R that makes 

the inequality in (8) be equality. The realization of the first step is relatively difficult in that we can 

not explicitly express θ2 as a function of L. Different from GLRAM which employs iterative 

optimizing procedure, our NIGLRAM optimizes S approximately by calculating L that maximizes 

RN  instead, i.e., calculating L that makes the inequality in (9) meet equality. According to the matrix 

theory (Golub and Van Loan, 1996), the L and R calculated in our NIGLRAM obviously make the 

inequalities in (8) and (9) become equalities. Let L* and L** be the left transformation matrices 

respectively calculated by GLRAM and NIGLRAM, we have the following inequalities: 

* * * *
2( ) ( ) ( ) ( )R RS L L N L N Lθ= ≤                                              (10) 

** ** ** *
2( ) ( ) ( ) ( )RS L L N L S Lθ= ≤                                              (11) 

* **( ) ( )R RN L N L≤                                                          (12) 

from which, we can easily get: 

** * ** * *
2 ( ) ( ) ( ) ( ) ( )R RL N L S L S L N Lθ ≤ ≤ ≤                                        (13) 

It is obvious that when θ2(L**) is near 1, NIGLRAM will achieve near objective function value to 

GLRAM. 

Mathematically, if L and R are the local optima of Eq (2), they should respectively satisfy the 

following two equations: 

1
( )

n
T T

i i L
i

A RR A L L
=

= Λ∑                                                (14) 

1
( )

n
T T
i i R

i
A LL A R R

=

= Λ∑                                                (15) 

Therefore in terms of (14-15), R obtained by NIGLRAM is exactly a local optimum in the sense of  
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(2) while L is not. 

The time complexity for performing NIGLRAM is ))(( 2/3crnO × , while that for GLRAM is  

)),max()(( 21
2 nllcrIO +  (Ye, 2004), where I is its iteration times. As will be shown in section 4, 

NIGLRAM is far faster than GLRAM, thus much computation time can be saved, especially in 

determining their individual l1 and l2. In GLRAM, it is difficult to determine the optimal l1 and l2 

theoretically, and thus extensive trial-and-error experiments have to be repeatedly performed to select 

appropriate l1 and l2. But in NIGLRAM, by first performing its step 1 and 2 only once, we can get all 

eigenvalues and their corresponding eigenvectors, and then construct so-needed Ls according to 

different specified l1s or θ1s, and in turn for a given l1 or θ1, Rs are similarly constructed according to 

specified l2s or θ2s. It is an analytical solution that leads NIGLRAM to time-saving.  

Furthermore, as are shown in (5) and (7), 1θ  and 2θ  determine l1 and l2, respectively; and on 

the other hand, the parameters θ1 and θ2 are related to the normalized mean square error (NMSE) 

defined as  

∑∑
==

−=
n

i
Fi

n

i F
ii AAANMSE

1

2

1

2~
                      (16) 

Thus we can automatically determine l1 and l2 by NMSE criterion. NMSE is a commonly used 

criterion to measure the reconstruction quality, so using NMSE to automatically determine l1 and l2 

makes the compression easier controllable than using l1 and l2 directly. We show the relationship 

between θ1, θ2 and NMSE as below: 

Assume L and R to be the transform matrices computed in NIGLRAM as described before, we 

can get the following inequality according to the matrix theory (Golub and Van Loan, 1996). 
2~ 2

1 1 1 1

2
2

1 1

2 2
2 1 1 2

1 1 1

( ) ( ( ) )

( )

( ) (1 )

n n n n
T T T T T T

i i i i i i i iF
i i i iF

n n
T T

i i iF
i i

n n n
T

i i i iF F
i i i

A A A LL A RR trace A A trace R A LL A R

A trace A LL A

A trace A A A

θ

θ θ θ θ

= = = =

= =

= = =

− = − = −

≤ − ×

≤ − × = −

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑

   (17) 

Thus we obtain the inequality 

1 2(1 )NMSE θ θ≤ −                                   (18) 

which clearly shows the relationship among θ1, θ2 and NMSE. For simplicity, we set θ1=θ2 in the 
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experiments here, and let NMSE−== 121 θθ for a given NMSE. Thus, we can use NMSE as a 

criterion to automatically determine l1 and l2, while GLRAM has no such criterion. 

  Incidentally, it is worthy pointing out that: 1) our methodology in NIGLRAM can also similarly be 

applied to extend GLRAM+SVD (Ye, 2004) which is an extension of GLRAM and exhibits good 

reconstruction performance. However, since the focus of this paper is on designing a non-iterative 

form of GLRAM, such extensions are beyond the topic of this paper and thus omitted here. 2) in 

NIGLRAM, we first determine L and then R, then a nature question is that “can we first determine R 

and then L?”. The answer is positive. In fact, we can rewrite (8) and (9) as follows: 

2

1
1 1 1

( ( ) ) ( )
n n n

T T T T T T
i i i i i

i i iF

L A R trace L A RR A L trace A RR Aα
= = =

= ≤∑ ∑ ∑                   (19) 

2
1 1 1

( ) ( ( ) ) ( )
n n n

T T T T T
i i i i i i

i i i

trace A RR A trace R A A R trace A Aα
= = =

= ≤∑ ∑ ∑                    (20) 

where α1 and α2 are respectively defined in the similar way to the θ1 and θ2. Then similar to 

NIGLRAM, R and L can be analytically obtained. Considering the fact that first determining R and 

then L is theoretically similar to NIGLRAM, we will only dwell on NIGLRAM in the following 

experiment parts.  

 

4. Experimental results 

4.1 Dataset description and experiment setting 

ORL face dataset consists of 400 different grey scale images of 40 different persons, with a 

resolution of 112×92. The main challenge on this dataset is of pose and expression variation.  

AR face dataset (Martinez and Benavente, 1998) is a large face dataset containing over 3200 

165×120 color images of frontal images of faces of 126 subjects. In our experiment on AR, we use a 

subset of AR, which contains 700 face images of 100 persons with seven images each. The seven 

images are selected from the first session, mainly subject to both expression and light variations.  

We use m-fold-cross-validation for experiments on ORL and AR. More specifically, we divide 

the given dataset into m non-overlapping subsets with equal size. Then we perform the training and 

testing m times, each time leaving out one of the subsets for testing, and using the rest subsets for 

training. As a consequence, the experimental results reported in this article are the average ones over 
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the m times. Here, the value of m is 10 for ORL, and 7 for AR, respectively.  

COIL-20 is an object database from the Columbia Object Image Library and contains 1440 

images of 20 objects, with each object having 72 128×128 images that are numbered from 0 to 71. 

Images of the objects are taken at pose interval of 5 degree, which corresponds to 72 poses per object. 

In our experiments on COIL-20, we use those images numbered 0, 4, 8, …, 68 (at interval of 4) for 

training and the rest for testing. 

When reporting classification performance, we employ two classifiers: 1-Nearest-Neighbor 

(1NN) and Nearest Mean (NM), and both classifiers are based on Euclidean distance. 

 

4.2 On optimizing S approximately 

In this subsection, we carry out experiment on ORL face dataset, and set l1= l2=20. We perform the 

NIGLRAM algorithm to calculate its left projection matrix L**, and calculate the eigenvalues of 

matrix 
1

n
T T
i i

i

A LL A
=
∑ . Experiments consistently show that the leading l2 (=20) eigenvalues 

consistently account for over 99.9999% of the sum of all the eigenvalues (namely, θ2(L**) is over 

99.9999%). From (13), we know that NIGLRAM can get near objective function value to GLRAM, 

despite that it optimizes (2) approximately. 

It is worthwhile to note that since NIGLRAM optimizes (2) approximately, it achieves the 

suboptimal result in the sense of (2), however, the difference between optimal and suboptimal results 

is not so distinct, which will be shown in the next subsection. 

 

4.3 Comparison among GLRAM, 2DPCA and NIGLRAM 

We try three different values of l1 and l2 for GLRAM and NIGLRAM, namely l1= l2=15, l1= 

l2=20, and l1= l2=25, and results are listed in Table 1. At the same time, results by 2DPCA under the 

same compression ratio are also reported in the corresponding columns. From Table 1, we can clearly 

see that, under the same compression ratio, both GLRAM and NIGLRAM yield comparable or higher 

classification accuracies and lower RMSREs and NMSEs than 2DPCA, which benefits from a 

two-sided rather than a single-sided transformation. Generally speaking, GLRAM produces slightly 

lower reconstruction errors (measured in terms of RMSRE or NMSE) than NIGLRAM, but such 

differences can almost be negligible. Further, NIGLRAM achieves almost identical classification 
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performance to GLRAM despite the relatively higher reconstruction errors. This is in accord with 

such a phenomenon in the PCA related methods, namely the lower reconstruction errors may not 

definitely means higher classification performance. Comparing the classification performance by the 

1NN classifier and the NM classifier, 1NN classifier consistently yields higher classification accuracy 

than NM classifier in all the experiments.  

To give a concrete idea of the reconstruction abilities of the three methods, Fig. 1 shows images 

for 5 different persons from ORL dataset. The 5 images in the first row are the original images from 

this dataset, the second row are the ones compressed by our NIGLRAM with l1= l2=20, and the third 

and the fourth row are the ones compressed under the same compression ratio by GLRAM and 

2DPCA respectively. It is clear that when using the same compression ratio, the images compressed 

respectively by GLRAM and our NIGLRAM have better visual quality than those compressed by 

2DPCA. And at the same time, the images compressed respectively by GLRAM and NIGLRAM 

almost have the same visual quality. 

 

 

 

 

 
Fig. 1 First row: original images; Second row: images compressed by NIGLRAM; Third row: images 

compressed by GLRAM; Fourth row: images compressed 2DPCA. 

 

Their CPU times (performed on the computer with CPU: Pentium(R) 4 1.7GHz; RAM: 256Mb) 

consumed for calculating corresponding projecting transforms are also reported in Table 1. 
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NIGLRAM consumes slightly more time than 2DPCA, but both NIGLRAM and 2DPCA consume 

much less time than GLRAM, which contributes to the existence of analytical solutions to the 

projecting transforms.  

 

Table 1: Classification accuracy, NMSE, RMSRE and consumed time on ORL, AR and COIL-20 

Dataset Method l1=l2=15 l1=l2=20 l1=l2=25 

2DPCA 
97.25a / 89.50b / 2.45c

0.04690d / 3633.5e 
97.75 / 93.50 / 2.45

0.03190 / 2996.5
98.25 / 94.25 / 2.45 

0.02393 / 2790.6 

GLRAM 
98.25 / 94.50 / 13.9 

0.01631 / 2142.8 
98.25 / 94.50 /14.8
0.01176 / 1819.7 

98.25 / 94.50 / 15.1 
0.008944 / 1586.7 

ORL 

NIGLRAM 
98.25 / 94.50 / 3.17 

0.01636 / 2146.1 
98.25 / 94.50 / 3.24

0.01181 / 1823.6 
98.25 / 94.50 / 3.35 
0.008975 / 1589.5 

2DPCA 
71.29 / 68.71 / 2.84 

0.0842 / 7144.5 
71.14 / 64.57 / 2.84

0.05937 / 5070.6 
74.43 / 69.14 / 2.84 

0.04471 / 4400.3 

GLRAM 
87.57 / 81.86 / 54.2 

0.02185 / 3075.8 
89.14 / 83.29 / 57.3

0.01475 / 2526.8 
90.00 / 83.86 / 58.3 

0.01047 / 2129.1 
AR 

NIGLRAM 
87.43 / 82.00 / 3.94 

0.02192 / 3080.9 
89.29 / 83.29 / 3.97

0.01478 / 2529.4 
90.00 / 83.71 / 4.25 

0.01049 / 2131.0 

2DPCA 
99.86 / 88.75 / 2.63 

0.1232 / 5065.0 
99.72 / 90.14 / 2.63

0.06428 / 3659.4 
99.44 / 90.14 / 2.63 

0.05121 / 3266.3 

GLRAM 
99.07 / 91.67 / 27.9 

0.03189 / 2577.3 
99.17 / 92.13 / 29.7

0.02276 / 2177.2 
98.98 / 92.13 / 30.5 

0.01683 / 1872.3 
COIL 

NIGLRAM 
99.17 / 91.67 / 3.42 

0.03191 / 2578.1 
99.26 / 92.13 / 3.51

0.02277 / 2177.8 
98.98 / 92.13 / 3.65 

0.01683 / 1872.6 
a Average classification accuracies (%) under given l1 and l2 by 1NN classifier 
b Average classification accuracies (%) under given l1 and l2 by NM classifier 
c Average time (seconds) consumed for computing transformation matrices 
d Average NMSE under given l1 and l2 
e Average RMSRE under given l1 and l2 

 

4.4 Principal angles between the transformations of GLRAM and NIGLRAM 

  Principal angles (Golub and Van Loan, 1996) between two subspaces are usually used to measure to 

what extent the two subspaces intersect with each other, and the number of principal angles that have 

a degree of zero measures the rank of the intersection of subspaces. In order to explain why 

NIGLRAM can achieve comparable performance to GLRAM, we report in Fig. 2 the degrees of the 

principal angles between the transformations of both methods. The experiments are carried out on 

ORL dataset with l1=l2=20. From Fig. 2, we can see that most of degrees of the principal angles 
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between Ls (or Rs) respectively calculated by GLRAM and NIGLRAM are very small (close to 0), 

which explains the reason why NIGLRAM achieves comparable performance to GLRAM. Moreover, 

comparing Fig. 2(a) and (b), we can also see that the degrees of principal angles yielded by the R are 

generally less than those by the L, which is due to such a fact that the right transformation R 

calculated by NIGLRAM is the local optimum in the sense of (2), while on the contrary, L calculated 

by NIGLRAM is not. 

 

 (a)                                  (b) 
Fig. 2 Degrees of principal angles between Ls (and Rs) calculated respectively by GLRAM and 
NIGLRAM. 

 

4.5 Using NMSE to determine l1 and l2 automatically 

In NIGLRAM, we can use NMSE as a selecting criterion to compute l1 and l2 automatically, 

while GLRAM has no such explicit criterion. Results on Table 2 show how NMSE serves as a 

criterion of computing l1 and l2 automatically. From the same table, we can see that, the change in 

NMSE does hardly affect the classification accuracies on ORL and COIL-20 datasets, but affect 

observably the classification accuracies on AR dataset. A possible explanation for this phenomenon is 

that ORL and COIL-20 are datasets relatively easier to be classified than AR. 

 

Table 2: l1 and l2 determined automatically by NMSE criterion in NIGLRAM 

NMSE ORL AR COIL 
0.005 98.25a / 38.00b / 37.00b 90.14 / 46.71 / 31.74 98.7 / 66.00 / 37.00 
0.010 98.25 / 26.20 / 21.00 89.71 / 32.43 / 20.86 99.0 / 46.00 / 24.00 
0.015 98.25 / 20.00 / 14.00 88.43 / 25.57 / 15.57 98.8 / 37.00 / 18.00 
0.020 98.25 / 17.00 / 10.00 87.43 / 21.57 / 12.29 99.0 / 31.00 / 15.00 

a Average classification accuracy (%) by 1NN classifier under given NMSE 
b Average values of l1 and l2 automatically determined by given NMSE 
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5. Conclusion 

   In this article, NIGLRAM is proposed as an extension to GLRAM. Compared to GLRAM, the 

proposed method adopts an analytical rather than an iterative solution. And as a consequence, 

NIGLRAM can be performed more efficiently. Experimental results on ORL and AR dataset show 

that NIGLRAM not only is more computationally efficient than GLRAM, but also keeps comparable 

classification accuracy and reconstruction performance. Furthermore, we show that in NIGLRAM, 

NMSE can be used as a criterion to automatically determine l1 and l2, while GLRAM has no such 

explicit criterion. 

  As is revealed in (8), maximizing (2) is identical to optimizes S. Then future study can be done to 

directly optimize S analytically (note that GLRAM optimizes it iteratively) rather than optimizing S 

approximately as employed in our NIGLRAM. 
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