
 1

Discriminant Common Vecotors Versus Neighbourhood Components Analysis 

and Laplacianfaces: A comparative study in small sample size problem 

Jun Liu     Songcan Chen* 

Dept of Computer Science & Engineering, Nanjing University of Aeronautics & Astronautics 

Nanjing, 210016, P.R. China 

 

Abstract: Discriminant Common Vecotors (DCV), Neighbourhood Components Analysis (NCA) 

and Laplacianfaces (LAP) are three recently proposed methods which can effectively learn linear 

projection matrices for dimensionality reduction in face recognition, where the dimension of the 

sample space is typically larger than the number of samples in the training set and consequently 

the so-called small sample size (SSS) problem exists. The three methods obtained their respective 

projection matrices based on different objective functions and all claimed to be superior to such 

methods as Principal Component Analysis (PCA) and PCA plus Linear Discriminant Analysis 

(PCA+LDA) in terms of classification accuracy. However, in literature, no comparative study is 

carried out among them. In this paper, we carry out a comparative study among them in face 

recognition (or generally in the SSS problem), and argue that the projection matrix yielded by 

DCV is the optimal solution to both NCA and LAP in terms of their respective objective functions, 

whereas neither NCA nor LAP may get their own optimal solutions. In addition, we show that 

DCV is more efficient than both NCA and LAP for both linear dimensionality reduction and 

subsequent classification in SSS problem. Finally, experiments are conducted on ORL, AR and 

YALE face databases to verify our arguments and to present some insights for future study. 
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1 Introduction 

In face recognition, we usually employ appearance-based methods [1, 2]. One primary 

advantage of appearance-based methods is that it is not necessary to create representations or 

models for face images since, for a given face image, its model is now implicitly defined in the 

face image itself [3]. When using appearance-based methods, we usually represent an image of 

size r×c pixels by a vector in a d-dimensional space, where d=rc. Although such an appearance 

based representation is simple in form, the corresponding dimensionality d is too large to realize 

robust and fast recognition [3], and is typically lager than the number of samples in the training set 

which leads to the so-called small sample size (SSS) problem. A common way to resolve this 

problem is to use dimensionality reduction techniques. Discriminant Common Vecotors (DCV) [7, 

8], Laplacianfaces (LAP) [17] and Neighbourhood Components Analysis (NCA) [18] are three 

recently proposed methods which can effectively learn linear projection matrices for 

dimensionality reduction in face recognition. 

DCV [7, 8] aims at solving the small sample size (SSS) problem in Linear Discriminant 

Analysis (LDA) [4-6] which maximizes the Fisher’s Linear Discriminat criterion as follows: 

( ) arg max T T
FLD opt b wW

J W W S W W S W=                             (1) 

where Sw is the within-class scatter matrix and Sb is the between-scatter matrix. When the SSS 

problem takes place, Sw will be typically singular and LDA can not be applied directly. DCV1 

remedies this by calculating the projection matrix in the null space of Sw, and as a result gets an 

optimum (infinite) of objective function (1). 

LAP [17] originates from viewpoint of preserving the locality structure of the image space. To 

this end, it models a manifold [13-15] structure by a nearest-neighbor graph, constructs a face 

subspace by Locality Preserving Projections (LPP) [16], and performs dimensionality reduction by 

a set of feature images called Laplacianfaces. 

NCA [18] aims at learning a Mahalanobis distance measure to be used in the k Nearest 

Neighbor (KNN) classification. Subtly, it boils learning such Mahalanobis distance down to 

learning a linear projection (or transformation) matrix, and at the same time avoids the inverse 

                                                        
1 Note that, we have proved in [9] that such null space based methods [10] as Generalised K-L Expansion (GKLE) 
[11], PCA plus Null Space (PNS) [12] and DCV are in fact equivalent, so our discussion of DCV in this paper can 
naturally be extended to both GKLE and PNS. 
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operation of the matrix in calculating traditional Mahalanobis distance metric. The projection 

matrix in NCA is obtained through optimizing to the KNN leave-one-out (LOO) classification 

performance on the training set, so the learned Mahalanobis distance metric or equivalently the 

projection matrix is directly related to the classification performance. This is the main 

characteristic of NCA, and is quite different from the dimensionality reduction methods mentioned 

above (e.g., DCV, LAP) whose objective functions are not directly associated with the 

classification decision. By restricting the projection matrix in the distance measure learning to a 

non-square one, NCA can be used for dimensionality reduction [18]. 

The three methods all claimed to be superior to Principal Component Analysis (PCA) [1] and 

PCA+LDA [4-6], namely: 1) DCV is superior to PCA and PCA+LDA in terms of recognition 

accuracy, efficiency and numerical stability [8]; 2) PCA and PCA+LDA can be obtained from 

different graph models in LAP, and LAP provides a better representation and achieves lower 

classification error rates in face recognition [17]; and 3) When labeled data is available, NCA 

performs better both in terms of classification performance in the projected representation and in 

terms of visualization of class separation as compared to the standard methods of PCA and LDA 

[18]. However, there is no comparative study among them in literature. The purpose of this paper 

is to compensate this by a comparative study among them, and to get some sight from such 

comparative study. It is worthwhile to highlight our contributions in this paper as follows: 

1)  We for the first time in literature perform a comparative study among DCV, LAP and NCA, 

and argue that in SSS problem (e.g. face recognition) the projection matrix yielded by DCV 

is the optimal solution to both NCA and LAP in terms of their respective objective functions, 

whereas neither NCA nor LAP may get their own optimal solutions.  

2)  We show that DCV is more efficient than both NCA and LAP for both linear 

dimensionality reduction and subsequent classification in SSS problem 

3)  We reveal the essence of DCV, i.e., calculating the projection matrix is equivalent to 

solving a thin QR decomposition problem, which is easier for both understanding and being 

extended to its nonlinear version by kernel trick [22-25]. 

4)  We experimentally give the application scope of DCV, namely, when MSV (defined in 

section 4) is relatively small, it performs well while on the contrary when MSV is relatively 

large, it performs poorly. 
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The rest of the paper is organized as follows. In section 2, DCV, NCA and LAP are respectively 

reviewed. In section 3, we carry out a comparative study among these three methods in SSS 

problem. In section 4, we report experimental results on several face databases. Finally in section 

5, we provide some concluding remarks and suggestions for future work. 

 

2 Review of the three methods 

Let the training set be composed of C classes, with the i-th class containing Ni (>1) 

d-dimensional samples. Suppose that the training samples are linearly independent, which can be 

generally satisfied in such applications as face classification. Then there will be a total of 

M=N1+N2+…+NC linearly independent training samples. Note that in such high dimension data 

classification as face recognition, the SSS problem exists, namely d>>M generally holds. 

We give two equivalent descriptions of the training samples in order to review the three 

methods clearly and concisely utilizing the corresponding descriptions in [8, 17, 18] respectively. 

More specifically, such two equivalent descriptions are as follows: 

1) Description {xi
j}: Let xi

j be a d-dimensional column vector which denotes the j-th sample 

from the i-th class, and then 
1

1 1 1 2
1 2 1[ , , , , ]

C

C
N NX x x x x x=  contains all the training 

samples;  

2) Description {yi, zi}: Let yi be the i-th column in X and the according class label in zi.  

It is obvious that the two descriptions have the following relationship:  

1 2 1
i

k j i ky x iff k N N N j and z i−= = + + + =                   (2) 

We use the first description for DCV and the second description for both NCA and LAP. 

 

2.1 Discriminant Common Vectors (DCV) 

Before describing DCV, we first introduce the idea of common vectors from which DCV is 

originated. The idea of common vectors is originally introduced for isolated word recognition 

problems [19, 20] in the case where the number of samples in each class is less than or equal to the 

dimensionality of sample space. These approaches extract the common properties of classes in the 

training set by eliminating the differences of the samples in each class. A common vector for each 

individual class is obtained by removing all the features that are in the range space of the scatter 
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matrix of its own class and then the obtained common vectors are used for recognition.  

To solve the small sample size problem in (1), the DCV method utilizes the idea of common 

vector. However, instead of using a given class’s own scatter matrix, it uses the within-class scatter 

matrix of all the classes to obtain the common vectors. The major characteristic of the DCV 

method is that its projection matrix PDCV resides in the null space of the within-class scatter matrix. 

Consequently PDCV concentrates the samples from the same class to a unique discriminnant 

common vector and the Fisher’s Linear Discriminat criterion defined in (2) achieves a maximum 

(infinite in fact). In [8], the authors gave two theoretically identical ways for implementing the 

DCV method, i.e., one by eigen-decomposition and the other by difference subspace and the 

Gram-Schmidt Orthogonalization Procedure. Due to the latter’s efficiency over the former, we 

introduce DCV implemented by the latter procedure as follows: 

Step 1: Calculate the range space of the within-class matrix, which is identical to the range space 

of the difference subspace Hw. Here, Hw is defined as 

1

1 1 2 1
1 1 1 1[ , , , , , ]

Cw N NH b b b b− −=                                       (3) 

where 

, 1, 2, , , 1, 2, , 1
i

i i i
j j N ib x x i C j N= − = = −                            (4) 

is the j-th difference vector of the i-th class. Apply the Gram-Schmidt orthogonalization procedure 

to Hw, and get  

1wH UV=                                                           (5) 

then U is an orthonormal matrix whose column vectors span the range space of the within-class 

matrix. 

Step 2: Choose any sample from each class (typically, the last sample of the i-th class xi
Ni) and 

project it to the null space of the within-class matrix through the following equation: 

i i

i i T i i T i
com j j N Nx x UU x x UU x= − = −                                     (6) 

where xi
com is a common vector of the i-th class and is independent of index j. 

Step 3: Form the matrix Bcom, where  

1 2 1[ , , , ]C
com com com comB b b b −=                                             (7) 

and 
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, 1, 2, 1i i C
com com comb x x i C= − = −                                     (8) 

Apply the Gram-Schmidt orthogonalization procedure to Bcom, and get  

2com DCVB P V=                                                       (9) 

then PDCV is the projection matrix calculated by DCV. 

 

2.2 Neighbourhood Components Analysis (NCA) 

  NCA aims at learning a Mahalanobis distance metric which can be denoted as 

( , ) ( ) ( ) ( ) ( )T T T T T T T
i j i j i j i j i jdist y y y y AA y y A y A y A y A y= − − = − −     (10) 

where A is a projection matrix that transforms the data. NCA subtly converts learning the 

Mahalanobis metric to learning the projection matrix A, which can be clearly observed from (10). 

NCA looks for the distance metric (or equivalently the projection matrix A) through maximizing 

the KNN leave-one-out (LOO) performance on the training data. To this end, NCA adopts a 

differentiable cost function based on stochastic (“soft”) neighbor assignments in the transformed 

space to measure the KNN performance as follows: 

  Each data sample yi selects another data sample yj as its neighbor with some probability pij, and 

inherits its class label from the data sample it selects. The probability pij is defined using a softmax 

over Euclidean distances in the transformed space (transformed by projection matrix A): 

2

2

exp( )
, 0

exp( )

T T
i j

ij iiT T
i kk i

A y A y
p p

A y A y
≠

− −
= =

− −∑
                           (11) 

Under the stochastic selection rule, the possibility pi that data sample yi will be correctly classified 

can be computed as: 

i

i ij
j C

p p
∈

= ∑                                                        (12) 

where  

{ | }i j iC j z z= =                                                    (13) 

denotes the set of data samples in the same class as yi. 

NCA then calculates the projection matrix A by maximizing the expected number of points 

correctly classified under the scheme: 
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( )
i

i ij
i i j C

f A p p
∈

= =∑ ∑∑                                            (14) 

Differentiating f with respect to the projection matrix A yields a gradient rule in the following 

equation: 

2 ( ( )( ) ( )( ) )
i

T T
i ik i j i j ij i j i j

i k j C

f p p y y y y p y y y y A
A ∈

∂
= − − − − −

∂ ∑ ∑ ∑       (15) 

In maximizing the criterion in (14), we can simply employ a gradient based optimizer such as 

conjugate gradients based on (15). Furthermore, by restricting A to be a nonsquare matrix of d×m 

(m<<d) NCA can also do linear dimensionality reduction such as face recognition [18]. 

  The algorithm for NCA can be explained as follows: 

Step 1: Initialize the projection matrix A. 

Step 2: Use the conjugate gradients optimizer to optimize (14), where each iteration step can be 

decomposed into the following four sub-steps: 

  a) Project the training samples by the projection matrix A to yield ATyi, for i=1, 2, …, M 

  b) Calculate the square Euclidean distance among the training samples in the transformed space, 

i.e., ||ATyi-ATyj||2, for i, j=1, 2, …, M 

  c) Compute pij and pi according to (11) and (12) respectively 

  d) Calculate (15) and update the projection matrix A by a conjugate gradients optimizer. 

Repeat a), b), c) and d) l times for the convergence of (14) and yield the projection matrix PNCA=A 

for NCA. 

 

2.3 Laplacianfaces (LAP) 

  The LAP method aims at preserving the local structure of the image space. To this end, a face 

subspace called Laplacianfaces is obtained by locality preserving projections (LPP) [16], and each 

face image in the d-dimensional image space is mapped to m(<<d)-dimensional Laplacianfaces 

subspace. The objective function for LAP is defined as: 
2min ( )T T

i j ij
ij

w y w y S−∑                                          (16) 

where w is a projection vector, wTyi is the one-dimensional representation of yi and the matrix S is 

a similarity matrix defined as follows: 
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2
exp( / ),

0

i j i j

ij j i

y y t if y is among k nearest neighbors of y

S or y is among k nearest neighbors of y

otherwise

⎧ − −
⎪⎪= ⎨
⎪
⎪⎩

      (17) 

or 

2
exp( / ),

,

0

i j i j

ij j i i j

y y t if y is among k nearest neighbors of y

S or y is among k nearest neighbors of y and z z

otherwise

⎧ − −
⎪⎪= =⎨
⎪
⎪⎩

     (18) 

where t is a suitable value set to the average of ||yi-yj||2, namely 

2

2

1
i j

ij
t y y

M
= −∑                                                  (19) 

Equation (17) gives a definition of the similarity matrix S in an unsupervised manner while (18) 

gives a definition in a supervised manner. Note that according to our personal communications 

with one of the authors of [17], the LAP method is in fact performed in a supervised manner in 

their experimental parts, namely, the KNN search is actually restricted to a single class rather than 

the whole database1, so in this article, we will focus on the similarity matrix S defined in a 

supervised way. And consequently, when not specially noted, by LAP in the following discussion, 

we mean that (18) is used. 

By minimizing (16), LAP incurs a heavy penalty if neighboring points (belonging to the same 

class) yi and yj are mapped far apart, i.e., if (wTyi-wTyj)2 is large. Therefore, LAP attempts to assure 

that, if yi and yj are “close”, then wTyi and wTyj are close as well. As a result, the local information 

in the original image space is preserved in the computed LAP.  

Minimizing (16) is equivalent to minimizing the following equation: 

21 ( ) ( )
2

T T T T T T
i j ij

ij
w y w y S w Y D S Y w w YLY w− = − =∑                  (20) 

where Y=[y1, y2, …, yM], and D is a diagonal matrix with its entries being the column (or row since 

S is symmetric) sums of S, Dii=ΣjSji and L=D-S is the Laplacian matrix. Matrix D provides a 

natural measure on the data samples, namely the bigger the value Dii (corresponding to yi) is, the 

                                                        
1 Besides, he kindly tells us that k should be less than the number of training samples in each class., and t defined 
in (19) is also under his suggestion. 
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more “important” is yi. By imposing a constraint wTYDYTw=1, the minimization problem reduces 

to finding: 

arg min

1

T T

w
T T

w YLY w

w YDY w =
                                                 (21) 

The projection vector w that minimizes (21) can be solved through the generalized eigenvalue 

problem 

T TYLY w YDY wλ=                                                 (22) 

As is described in the beginning of section 2, in such application as face recognition, the 

dimensionality of the image d is typically larger than the number samples M, i.e., d>>M. The rank 

of YDYT is at most M, while YDYT is a d×d matrix, which implies that YDYT is singular. To 

overcome the singularity of YDYT, LAP employs a procedure similar to the PCA+LDA or the 

Fisherface method proposed by Belhumeur et al [5], namely applying a PCA projection first. More 

specifically, LAP operates as follows: 

Step 1: PCA projection. Project the face images yi, i=1, 2, …, M to the PCA subspace by keeping 

the 98 percent information in the sense of reconstruction. For sake of simplicity, yi is used to 

denote the images in the PCA subspace in the following steps. And this PCA subspace is denoted 

as WPCA. 

Step 2: Construct the nearest-neighbor graph in a supervised manner and calculate the 

similarity matrix S. Let G denote a graph with M nodes. The i-th node corresponds to the face 

image yi. An edge is put between node i and j, if yi and yj satisfies the following two conditions: 1) 

they belong to the same class, or in other words, zi=zj; and 2) yi is among KNN of yj, or yj is among 

KNN of yi. Based on the constructed nearest neighbor graph, the similarity matrix S can be 

calculated through (18). 

Step 3: Eigenmap. Compute the eigenvectors and eigenvalues for the generalized eigenvector 

problem in (22). Let WLPP be a matrix whose column vectors are the m eigenvectors corresponding 

to the first m smallest eigenvalues. Then  

LAP PCA LPPP W W=                                                    (23) 

is the calculated projection matrix by LAP. 
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3 A comparative study among the three methods 

 From section 2, we can clearly observe that the three methods are originated from different 

starting points, namely: a) DCV aims at solve the small sample size problem in LDA, and to this 

end, it restricts the solution to the null space of the within-class matrix Sw, and gets an optimum 

(infinite in value ) of objective function (1); b) NCA intends to learn a Mahalanobis distance 

metric or equivalently a projection matrix through maximizing the KNN LOO classification 

performance on the training set through (15); c) LAP models a manifold structure by a 

nearest-neighbor graph, aims at preserving the local structure of the image space and optimizes 

(17). In what follows, we carry out a comparative study among DCV, NCA and LAP. For 

convenience of comparison, we first give the properties of DCV, NCA and LAP in section 3.1. 

Then we give comparison between DCV and NCA in section 3.2, and comparison between DCV 

and LAP in section 3.3. The computational costs in calculating the projection matrices by the three 

methods are investigated in section 3.4, and storage cost and the computational cost for classifying 

a given unknown sample are discussed in section 3.5. 

 

3.1 Properties of DCV, NCA and LAP 

3.1.1 Properties of DCV 

  The main characteristic of DCV is that, the projection matrix PDCV resides in the null space of 

the within-scatter matrix and concentrates the samples from the same class to a unique 

discriminant common vector. This fact is stated in the theorem 1. 

Theorem 1 [8] The projection matrix yielded by DCV concentrates the samples from the same 

class to a unique common discriminant common vector, namely  

i

T i T i
DCV j DCV NP x P x=                                                  (24) 

which is independent of index j. 

 

Considering the fact that{xi
j} and {yi, zi} are the equivalent descriptions of the training sample 

set, we can easily draw the following corollary.  

Corollary 1 PDCV concentrates the samples from the same class to a unique common discriminant 

common vector, i.e., if zi=zj 
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T T
DCV i DCV jP y P y=                                                   (25) 

  From Corollary 1, we can easily get the following corollary which shows that PS,, a projection 

matrix derived from PDCV, also concentrates the samples from the same class to a unique common 

vector. 

Corollary 2 Denote PDCV=[w1, w2, …, wC-1], and S=[s1, s2, …, sC-1], where si is an integer 

satisfying 1≤si≤C-1 for i=1, 2, … C-1. Let PS be defined as:  

1 2 1[ , , , ]S S S
S CP w w w −=                                              (26) 

where  

, 1, 2, , 1
i

S
i sw w i C= = −                                          (27) 

Then when zi=zj, the following equation holds. 

T T
S i S jP y P y=                                                       (28) 

Proof: From corollary 1, we can easily get that when zi=zj, wk
Tyi=wk

Tyj, where wk is the k-th 

column vector in PDCV. Since the column vectors in PS are the corresponding column vectors 

sampled from PDCV, then naturally if zi=zj, (28) holds. 

 

Now let us reveal the essence of DCV, namely, computing the projection matrix by DCV is 

equivalent to solving a thin QR decomposition problem, in the following theorem:  

Theorem 2 Let matrix Hb be defined as 

1 2 1[ , , , ]b CH b b b −=                                                 (29) 

where 

, 1, 2, 1
i C

i C
i N Nb x x i C= − = −                                       (30) 

Apply a thin QR decomposition to [Hw Hb], and have 

[ ] 1
1 2

2

[ ]w b

R L
H H Q Q

O R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                     (31) 

where Q1 and Q2 are orthonormal matrices, R1 and R2 are upper triangular matrices, O a zero 

matrix, and L a matrix. Then we have  

2DCVP Q=                                                          (32) 
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Proof: Considering the thin QR decomposition in (32), we can easily get 

1 1wH Q R=                                                          (33) 

1 2 2bH Q L Q R= +                                                    (34) 

1
T

bL Q H=                                                          (35) 

1 1 2 2
T

b bH Q Q H Q R− =                                                (36) 

Employing (6-8), (29-30), we can get 

T
com b bB H UU H= −                                                 (37) 

Note that Gram-Schmidt orthogonalization procedure is one way to implement the thin QR 

decomposition [21], and such decomposition is unique if the matrix has full column rank. Hw, Bcom 

and [Hw Hb] have full column ranks due to the fact that the training samples are linearly 

independent. Consequently, from (5) and (33), we have 

1U Q=                                                             (38) 

1 1V R=                                                             (39) 

Similarly, employing (9), (36) and (37), we have  

2DCVP Q=                                                           (40) 

2 2V R=                                                             (41) 

This ends the proof of this theorem. 

 

  Favored by this revealed essence, DCV can be understood more clearly than the three steps 

described in section 2.1 and be easily extended to its nonlinear version utilizing kernel QR 

decomposition [25]. In addition, again based on this revealed essence, we can verify that when the 

training samples are linearly independent, the extracted discriminant common vectors for different 

classes are different in the following theorem. 

Theorem 3 When the training samples are linearly independent, the extracted features for training 

samples from different classes are different, namely,  

,
i j

T i T j
DCV N DCV NP x P x for all i j≠ ≠                                       (42) 
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Proof: Since Q1 and Q2 in (31) are orthogonal, then from (34) and (40), we have  

2
T

DCV bP H R=                                                        (43) 

When the training samples are linearly independent, the matrix [Hw Hb] has full column rank, and 

consequently the diagonal entries of R2 are all positive. Denote R2=[r1, r2, …, rC-1], and rC a d×1 

zero column vector, we can easily verify that 

0, , , 1, 2, ,i jr r i j and i j C− ≠ ≠ =                                  (44) 

Employing (29), (30) and (43) together, we have  

( ) , 1, 2,
i C

T i C
DCV N N iP x x r i C− = =                                      (45) 

which leads to  

, , 1, 2, ,
i j

T i T j
DCV N DCV N i jP x P x r r i j C− = − =                            (46) 

From (44) and (46), it is obvious that (42) holds and this ends the proof of this theorem. 

 

Again recalling that{xi
j} and {yi, zi}are equivalent description of the training sample set, we can 

easily draw the following corollary: 

Corollary 3 The extracted features for training samples from different classes by PDCV are 

different, i.e., if zi≠zj, 

T T
DCV i DCV jP y P y≠                                                     (47) 

 

3.1.2 Property of NCA 

We show that the value of NCA’s objective function in (14) is at most M, namely, the number of 

training samples, in the following theorem. 

Theorem 4 The possibility pi that data sample yi will be correctly classified is at most 1, and as a 

result the objective function in (14) is at most M, namely  

1ip ≤                                                              (48) 

and 

( )f A M≤                                                           (49) 

Proof: It is easy to verify that  
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1
i

i ij ij
j C j

p p p
∈

= ≤ =∑ ∑                                              (50) 

and consequently,  

( ) 1i
i i

f A p M= ≤ =∑ ∑                                            (51) 

which ends the proof of this theorem. 

 

3.1.3 Property of LAP  

We show that the value of the objective function of LAP is at least 0 in the following theorem. 

Theorem 5 For any projection matrix W, the objective function (18) or (20) is at least 0, namely  

( ) 0T Ttrace W YLY W ≥                                              (52) 

Proof: It is obvious that (wTyi-wTyj)2≥0, and Sij≥0, then (wTyi-wTyj)2Sij≥0. From (20), we have  

21/ 2 ( ) 0T T T T
i j ijij

w YLY w w y w y S= − ≥∑                            (53) 

Denote W=[w1, w2,…, wm], we have wi
TYLYTwi≥0, hence trace(WTYLYTW) ≥0. And this ends the 

proof of this theorem. 

   

3.2 DCV versus NCA 

  We first show that for a sufficiently large positive number β, βPDCV is the optimal result of NCA. 

We formally verify this argument in theorem 6 as follows: 

Theorem 6 When β is a sufficiently large positive number, βPDCV becomes the optimal result of 

NCA with respect to the objective function (14) or equivalently the following equation holds 

lim ( )DCVf P M
β

β
→∞

=                                                  (54) 

Proof: Let 

2

1 min( ), , 1, 2,T T
DCV i DCV j i jP y P y i j M and z zα = − = ≠                 (55) 

α1 is ensured to be positive from (47) in Corollary 3. Furthermore, employing (25) in Corollary 1, 

we have 

2
exp( ( ) ( ) ) 1,T T

DCV i DCV j i jP y P y if z zβ β− − = =                       (56) 

From (11), (12), (55) and (56), we have 
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2

2
1

( 1) exp( ( ) ( ) )

( 1) ( )exp( )

T T
i DCV i DCV kk i

i i

N P y P y

N M N

β β

α β
≠

− ≤ − −

≤ − + − −

∑                     (57) 

and 

2
1( 1) /[( 1) ( )exp( )] ( 1) /( 1) 1i i i i i iN N M N p N Nα β− − + − − ≤ ≤ − − =      (58) 

Then from (14) and (58), we have  

lim 1, 1, 2, ,ip i M
β→∞

= =                                           (59) 

and 

1 1

lim ( ) lim lim
M M

DCV i i
i i

f P p p M
β β β

β
→∞ →∞ →∞

= =

= = =∑ ∑                           (60) 

This ends the proof of this theorem. 

In fact, when β is only a relatively large number, e.g., α1β2≥1000, or equivalently β≥β1, where β1 

is defined as follows: 

1 11000 /β α=                                                   (61) 

we have exp(-α1β2)=0 numerically, and consequently, we have pi=1, for i=1, 2, …, M, and 

f(βPDCV)=M numerically.  

  Now we will show that there is a category of projection matrices derived from PDCV which will 

achieve the optimal value of (14) in the following Corollary. 

Corollary 4 Let PDCV=[w1, w2, …, wC-1], and S=[s1, s2, …, sC-1], where si is an integer satisfying 

1≤si≤C-1 for i=1, 2, … C-1. Let PS be a matrix defined through (26) and (27), and further satisfies 

that when zi≠zj, PS
Tyi≠PS

Tyj, then we have: 

lim ( )Sf P M
β

β
→∞

=                                                   (62) 

Proof: From Corollary 2, we have if zi=zj PS
Tyi= PS

Tyj. Similar to the proof in theorem 6, we can 

define α2 to be the minimal distance among the training samples belonging to different classes in 

the subspace spanned by PS as: 

2

2 min( ), , 1, 2,T T
S i S j i jP y P y i j M and z zα = − = ≠                   (63) 

and α2 is positive due to the fact that when zi≠zj, PS
Tyi≠PS

Tyj. Following a similar proof procedure, 

we can easily get (62), and this ends the proof of this Corollary. 

Similarly, when β is only a relatively large number, e.g., α2β2≥1000, or equivalently β≥β2, where 
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β2 is defined as follows: 

2 21000 /β α=                                                   (64) 

we have exp(-α2β2)=0 numerically, and consequently, we have f(βPS)=M numerically. 

  Corollary 4 says that if PS is a projection matrix that satisfies: 1) its column vectors are sampled 

randomly from those column vectors of PDCV and 2) when zi≠zj, PS
Tyi≠PS

Tyj, then βPS is the 

optimal result of NCA considering (14). For simplicity, in the following discussion, we give a 

special PS defined as follows: the first C/2 column vectors are the corresponding first C/2 column 

vectors of PDCV, and the last C/2-1 column vectors are also composed of the first C/2-1 column 

vectors of PDCV, namely 

(:,1: ( / 2)) (:,1: ( / 2))
(:, ( / 2 1) : ( 1)) (:,1: ( / 2 1))

S DCV

S DCV

P C P C
P C C P C

=
+ − = −

                         (65) 

It is obvious that, compared to PDCV, PS has a loss in the discriminant information to some degree. 

However, βPS is also the optimal solution to (14), which will be verified in the experiment parts. 

Furthermore, NCA employs a conjugate gradient optimizer to optimize (14), and as a result, 

PNCA can only obtain a local minimum in the sense of (14), which will again be shown in the 

experimental parts. 

  Finally, from the above analyses, we can draw some conclusions as follows: 1) the projection 

matrix yielded by DCV can become an optimal projection matrix for NCA under the objective 

function (14); 2) from Corollary 4, there is a category of matrices derived from PDCV that can yield 

the optimal result in sense of (14) and meanwhile losses certain discriminant information to some 

extend, so study should be carried on NCA to tackle this problem; and 3) due to the possibility of 

trapping into the local minima in the optimizing procedure, NCA maybe never gets its optimized 

projection matrix in the sense of (14). 

 

3.3 DCV versus LAP 

  Like the description in section 3.2, we first show that PDCV is optimal in the sense of LAP’s 

objective function (16) in the following theorem: 

Theorem 7 PDCV is the optimal solution to the objective function (16) of LAP, namely: 

( ) 0T T
DCV DCVtrace P YLY P =                                           (66) 
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Proof: For any given pair of samples yi and yj, we have the following two facts: 1) if their 

corresponding class labels meets zi≠zj, then according to the definition of the similarity matrix S in 

(18), we have Sij=0. Thus, in this case, we have (wk
Tyi-wk

Tyj)2Sij=0, where wk is the k-th column 

vector of PDCV=[w1, w2, …, wC-1]; 2) if their corresponding class labels meets zi=zj, then we have 

wk
Tyi=wk

Tyj from Corollary 1. Thus in this case, we still have (wk
Tyi-wk

Tyj)2Sij=0. In summary, for 

any pair of yi and yj and all k, we always have (wk
Tyi-wk

Tyj)2Sij=0. Furthermore, combining (20), we 

get the following equation 
2( ) 1/ 2 ( ) 0T T T T

DCV DCV k i k j ij
ijk

trace P YLY P w y w y S= − =∑                   (67) 

Recalling that we have presented in theorem 5 that trace(WTYLYTW) ≥0, then PDCV is the optimal 

result of LAP when the objective function (16) is considered. This ends the proof of this theorem.  

  In the LAP method, the authors employed the PCA projection as the first step, and kept 98 

percent information in the sense of reconstruction error, then solved the generalized eigenvalue 

problem in (22) in the projected PCA subspace. However, doing so may lead to such a 

shortcoming that some directions corresponding to the small eigenvalues are thrown away in the 

PCA step, which has a potential to remove directions that contain discriminative information. 

Furthermore, we will show in the experimental parts that trace(PLAP
TYLYTPLAP) is generally 

positive, which means that the projection matrix PLAP yielded by LAP is generally not optimal in 

the sense of (16). 

  In section 2.3, we describe the definition of the similarity matrix S in two ways, namely the 

unsupervised and supervised. Our discussion on the LAP method in this article refers to the 

supervised manner. Now, we will also make remarks on the Laplacianfaces method in the 

unsupervised form, and denote it as ULAP with the obtained corresponding projection matrix as 

PULAP. 

Assuming that in the ULAP method, the similarity matrix S has been calculated through (17), 

and accordingly, the matrix L and D are calculated respectively. As described in section 2.3, YLYT 

is a d×d matrix with a rank of at most M, then its null space has a rank over d-M. Enlightened by 

the idea of DCV, the optimal solution to the ULAP method in terms of (16) or equivalently (20) 

should reside in the null space of YLYT (Notice: when the projection vectors reside in this null 

space, both (16) and (20) get the optimal value 0). However, we have the following two facts: 1) 
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For a given sample yi, the obtained projection matrix will concentrate the samples in its 

neighborhood to a common vector; and 2) The k nearest neighbors of a given sample yi inevitably 

include the samples from the different class from yi. These two facts tell us that the extracted 

features are not good for classification, since the training samples from different classes may be 

concentrated to a common vector. Furthermore, considering the extreme condition where k is set 

to M-1 in (17), it is obvious that the obtained optimal projection vectors definitively reside in the 

null space of the total scatter matrix. Consequently, the extracted features for the training samples 

become a unique common vector, and contain no discriminative information for classification. 

Although in the ULAP method, a PCA stage is applied prior to the optimization procedure, its 

objective function is in fact (16) or equivalently (20). According to our discussion in the above 

paragraph, the extracted features of ULAP are not good for classification, which will further be 

shown in our experiment parts. 

 

3.4 Computational cost in calculating the projection matrices 

We follow Golub and Van Loan [21] in definition of floating point operation (flop) count, 

counting a scalar addition, multiplication, or division as one flop. From theorem 2, we see that 

calculating PDCV is in fact a thin QR decomposition to [Hw Hb], and as a result, consuming 

2d(M-1)2 flops utilizing the modified Gram-Schmidt algorithm [21]. 

We calculate the flops that needed by NCA as follows. In each iteration step, NCA consumes 

2dmM flops in a), 3mM2 flops in b), 2M2 flops in c) and dmM+dmM2 flops in d). Then NCA 

consumes about 3l(dmM+dmM2) flops, where l stands for the total number of iteration steps.  

As for the LAP method, it first applies a PCA stage which keeps 98 percent information in the 

sense of reconstruction error. Let the number of kept eigenvectors in the PCA stage be g, where 

g<M-1. PCA converts calculating the leading g eigenvectors corresponding to the d×d total scatter 

matrix St=BBT to solving the eigen-decomposition problem of the M×M matrix BTB [1]. 

Employing the symmetric QR decomposition algorithm [21] for the eigen-decomposition problem, 

the PCA stage consumes about 9M3+2dM2+2dMg flops. The LAP method then solves the 

generalized eigenvalue problem in (22), and costs another 14g3 flops utilizing both Cholesky 

decomposition and symmetric QR decomposition [21]. So LAP consumes about 

9M3+2dM2+2dMg+14g3 flops in total. 
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  For better comparison among their computation costs, we list them in Table 1, from which we 

can observe that DCV is the most efficient, followed by LAP and NCA. 

 

Table 1 Flops needed to calculate the projection matrix 
DCV NCA LAP 

2d(M-1)2 3l(dmM+dmM2) 9M3+2dM2+2dMg+14g3 

 

3.5 Storage cost 

  We first analyze the storage complexity in the process of computation for these three methods 

as follows: 1) From Theorem 2, we get that calculating the projection matrix by DCV is equivalent 

to solving a thin QR decomposition to matrix [Hw Hb] which is of size d by M-1. Thus the space 

complexity for DCV in process of computation is O(dM). 2) For LAP, it first applies a PCA stage 

whose space complexity is O(dM) [27], and then LAP manipulates on matrices whose sizes are 

less than d by M for calculating its projection matrix. Thus the space complexity for LAP is also 

O(dM). 3) In NCA’s Step1, it needs to store A, which is of size d by m; in Step 2(a), it takes a 

space complexity of O(dm) to calculate ATyi; in Step 2(b-d), NCA manipulates on matrices whose 

sizes are less than d by m (keeping in mind that m<<d and M<<d). Thus the space complexity for 

NCA is O(dm) in process of calculating the projection matrix. In summary, NCA has the least 

space complexity in process of computation, followed by LAP and DCV 

Let the three methods all keep C-1 projection vectors. In the DCV method, PDCV concentrates 

the training samples from the same class to a unique common vector. Then it needs to store (C-1)C 

elements for the extracted features of all the training samples, while both NCA and LAP need to 

store (C-1)M elements. As a result, DCV consumes much less memory than both NCA and LAP. 

When used to classifying an unknown sample, DCV only needs to compare with the C 

(C-1)-dimensional features rather than the M (C-1)-dimensional features by both NCA and LAP. 

Consequently, DCV is computationally more efficient during classification than both NCA and 

LAP. 

 

4 Experiments 

  In section 3, we have presented our theoretical arguments. And now, we carry out experiments 

on three face datasets: ORL, YALE and AR in order to: 1) verify experimentally that the 



 20

projection matrix of DCV provides the optimal solution to both NCA and LAP in terms of (14) 

and (16) respectively; 2) investigate the values of objective functions (14) and (16) by the 

projection matrices of NCA and LAP respectively; 3) report the classification accuracies of DCV, 

NCA and LAP, and give the application scope of DCV from the analysis of the results. In what 

follows, we will give dataset description and experiment setting in section 4.1, detail 1) and 2) in 

section 4.2, and 3) in section 4.3. 

4.1 Dataset description and experiment setting 

The ORL face dataset contains 400 images of 40 persons, where each person has 10 gray level 

images with a resolution 112×92. Fig.1 shows ten images of the first person in this dataset. All the 

images were taken against a dark homogeneous background with the subjects in an upright frontal 

position, and with tolerance for some tilting and rotation of up to about 20°. The images for each 

person have variations in facial expression (open/closed eyes, smiling/ non-smiling), and facial 

details (glasses/no glasses), and there is some variation in scale up to about 10%. We resize the 

images to a resolution of 56×46 for computation convenience, and rescale the gray level values of 

all images to [0 1]. 

 

     

(1)       (2)       (3)      (4)        (5) 

     

(6)       (7)       (8)       (9)      (10) 

Fig. 1Ten images from one person in the ORL face database 
 

The YALE face dataset contains 165 grayscale face images of 15 persons, with each one having 

11 images. The images are cropped into 50×50, and the gray level values of all images are rescaled 

to [0 1]. The challenge of this dataset is expression and illumination. Fig. 2 shows the eleven 

images of one person from this dataset. 
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(1)       (2)      (3)       (4)      (5)       (6) 

         
(7)       (8)       (9)      (10)     (11) 

Fig. 2 Eleven images from one person in the YALE face database 

The AR [26] face dataset consists of over 3200 images of frontal images of faces of 126 

subjects. Each subject has 26 different images which were grabbed in two different sessions 

separated by two weeks, 13 images in each session were recorded. For the 13 images, the first one 

is of neutral expression, the second to the fourth are of smile, anger and scream expression, the 

others are either light or scarf variation. In our experiments here, we use the 1400 gray level 

images from 100 objects, where each object has 14 images. More specifically, these 14 images 

correspond to (a)-(g) and (n)-(t), as are illustrated in Fig. 3. The 1400 images are preprocessed by 

Martinez [26] with a resolution of 165×120. Here, for computational convenience, we resize them 

to 66×48 and the gray level values are rescaled to [0 1].  

             
(a)         (b)        (c)        (d)         (e)        (f)        (g) 

           
(h)        (i)        (j)         (k)        (l)        (m) 

             
(n)         (o)        (p)        (q)        (r)         (s)        (t) 

           
(u)        (v)        (w)        (x)         (y)        (z) 

Fig. 3 Images from one person in the AR face dataset 
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After describing the three data set used in our experiments, it is worthwhile to make some 

remarks on the experiment settings as follows:  

1) We perform experiments on these three dataset in two manners: 1) in a deterministic manner, 

more specifically, the training samples and testing samples are organized as depicted in Table 2, 3 

and 4 respectively; 2) in a random manner, i.e., in each run, randomly selecting r (5 for ORL, 6 for 

YALE and 7 for AR) samples of each person for training and the rest for testing, and such 

experiments are independently repeated 20 times. We carry out the deterministic experiments 

based on the following two considerations: 1) they can be reproducible; and 2) they enable us to 

have a good look at the performance of specific partition. Meanwhile, the random experiments 

enable us to analyze the classification performance from the viewpoint of statistics. 

Table 2 Deterministic partition of training samples and testing samples on ORL face dataset 
 ORL1 ORL2 ORL3 ORL4 

Training set 1, 2, 3, 4, 5 6, 7, 8, 9, 10 1, 3, 5, 7, 9 2, 4, 6, 8, 10 
Testing set 6, 7, 8, 9, 10 1, 2, 3, 4, 5 2, 4, 6, 8, 10 1, 3, 5, 7, 9 

 

Table 3 Deterministic partition of training samples and testing samples on YALE face dataset 
 YALE1 YALE2 YALE3 YALE4 

Training set 1, 2, 3, 4, 5, 6 6, 7, 8, 9, 10, 11 1, 3, 5, 7, 9, 11 2, 4, 6, 8, 10, 11 
Testing set 7, 8, 9, 10, 11 1, 2, 3, 4, 5 2, 4, 6, 8, 10 1, 3, 5, 7, 9 

 
Table 4 Deterministic partition of training samples and testing samples on AR face dataset 

 AR1 AR2 AR3 AR4 
Training set a, b, c, d, e, f, g n, o, p, q, r, s, t a, b, c, d, n, o, p, q a, e, f, g, n, r, s, t 
Testing set n, o, p, q, r, s, t a, b, c, d, e, f, g e, f, g, r, s, t b, c, d, o, p, q 

 

2) The number of projection vectors in each dimensionality reduction method is set to C-1 in all 

our experiments; 

3) When performing experiments on NCA, we try four initializations for the projection matrices: 

1) PDCV; 2) PS, which is defined in (64); 3) PPCA; 4) PLDA, which is the projection matrix by 

PCA+LDA method [4-6]. Accordingly, the obtained projection matrices (through optimizing (14)) 

are denoted as A1, A2, A3 and A4 respectively. 

5) In LAP and ULAP, the value of k in (17) and (18) is set to the number of training samples in 

each class subtracted by 1. 
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Table 5 Values of α1, α2, β1, β2, and those of the corresponding objective function (14) by PDCV, PS, 
β1PDCV and β2PS. 

PDCV PS  
v1 α1 β1 v2 v3 α2 β2 v4 

ORL1 199.98 7.001 11.951 200 197.69 3.0715 18.044 200 
ORL2 199.96 6.4200 12.480 200 194.92 1.7008 24.248 200 
ORL3 199.97 7.0760 11.888 200 195.72 2.0082 22.315 200 
ORL4 199.94 6.0884 12.816 200 195.60 2.4045 20.393 200 

YALE1 89.897 6.6540 12.259 90 83.350 1.8923 22.988 90 
YALE2 89.663 5.2458 13.807 90 82.297 0.69782 37.855 90 
YALE3 89.465 4.4365 15.013 90 77.583 0.58613 41.305 90 
YALE4 89.824 5.5749 13.393 90 84.591 2.1525 21.554 90 

AR1 487.57 1.9022 22.928 700 409.99 0.65064 39.204 700 
AR2 480.68 1.8758 23.089 700 408.19 0.50193 44.635 700 
AR3 366.24 1.2815 27.934 700 389.18 0.42745 48.368 700 
AR4 258.48 1.5978 25.017 700 308.21 0.41230 49.248 700 

 

4.2 PDCV as an optimal solution to the objective function of both NCA and LAP 

We first verify our argument that βPDCV (β is a relatively large number) is the optimal solution 

to the objective function of NCA and report experimental results in Table 5. From this table, we 

can observe that v1=f(PDCV)<M, namely, PDCV can not directly attain a optimum of (14). However, 

the corresponding α1s defined through (55) are all positive, and we can calculate β1s according to 

(61). From v2=f(β1PDCV) reported in Table 5, we can easily get that v2=M, and as a result our 

argument mentioned in the beginning of this paragraph is experimentally proven. In addition, from 

the same table, we can see that v3=f(PS)<M while v4=f(β2PS)=M, and this verifies Corollary 4 

experimentally, namely, there is a category of projection matrices derived from PDCV which will 

achieve the optimal value of (14). Note that, as described in section 4.1, the gray level values are 

rescaled to [0 1] in all the experimental data. However, if such gray level values are in the range of 

[0 255], both f(PDCV) and f(PS) will naturally equal M, since the calculated β1 and β2 in Table 5 are 

all less than 255. In NCA, we try four initialization matrices PDCV; PS, PPCA and PLDA, and obtain 

corresponding projection matrices A1, A2, A3 and A4 by a conjugate gradient optimizer. For better 

understanding of such optimizing procedure, we plot the values of the objective function (14) 

during each iteration step on ORL1 in Fig. 4, from which we can see that: 1) the initializations 

using PDCV; PS, PPCA and PLDA respectively generally lead to local optima of (14), not the global 
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optima; 2) the initialization with PPCA yields lower objective function value than PDCV; PS and 

PLDA. Meanwhile, the values of (14) yielded respectively by A1, A2, A3 and A4 on ORL1-ORL4 and 

YALE1-YALE4 reported in Table 6 confirm such conclusions.  

 
Table 6 Values of the objective function (14) by A1, A2, A3 and A4 
Dataset A1 A2 A3 A4 
ORL1 199.99 199.98 195.99 199.98
ORL2 199.98 199.98 194.00 199.98
ORL3 199.98 199.98 193.00 199.98
ORL4 199.98 199.98 190.65 199.98

YALE1 89.988 89.984 66.995 89.989
YALE2 89.985 88.417 72.999 89.991
YALE3 89.985 89.377 62.997 89.996
YALE4 89.986 89.990 72.000 89.692

 

Fig. 4 Illustration of NCA to obtain A1, A2, A3 and A4 with corresponding initializations on ORL1. 

 

Secondly, we verify our argument that PDCV is the optimal solution to (16). Our experiments on 

ORL, YALE and AR show that trace(PDCV
TYLYTPDCV) is less than 1e-10 and consequently can be 
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considered to be zero numerically, then we can say that PDCV is the optimal solution to (16). Now, 

we turn to the values of objective function (16) by LAP and ULAP, or equivalently the values of 

trace(PLAP
TYLYTPLAP) and trace(PULAP

TYLYTPULAP), and report them in Table 7, from which we can 

obviously observe that neither PLAP nor PULAP is the optimal solution to the objective function (16) 

since its optimal value is 0. In addition, the values of trace(PULAP
TYLYTPULAP) are greatly larger 

than those of trace(PLAP
TYLYTPLAP), which signifies that ULAP is inferior to LAP in classification 

performance. We will verify this in the following report of classification performance. 

 

Table 7 Values of objective function (16) by PLAP and PULAP 
 ORL1 ORL2 ORL3 ORL4 

PLAP 183.34 183.53 209.17 209.14 
PULAP 1145.8 1226.7 1316.5 1321.6 

 YALE1 YALE2 YALE3 YALE4 
PLAP 92.682 114.15 119.16 79.236 
PULAP 1458.6 1093.0 1463.4 1141.5 

 AR1 AR2 AR3 AR4 
PLAP 5639.3 5553.8 5628.2 7512.7 
PULAP 25367 25006 20677 39240 

 

4.3 Classification performance 

  Now, we report the classification accuracies of DCV, NCA, and LAP on the three datasets. The 

classification accuracies reported here follow the subsequent two procedures: 1) we first utilize 

these methods respectively to extract the (C-1)-dimensional features, and 2) a nearest neighbor 

classifier with Euclidean distance is employed for classification based on the extracted features.  

  Firstly, let us look at the classification performance of the NCA method reported in Table 8, 

from which we can see that the initial transformation matrix plays an important role in the 

classification performance of NCA. More specifically, although the initialization with both PS and 

PLDA lead to comparable objective function values to PDCV, the classification performances by 

A2and A4 are generally inferior to those by A1. Thus, one important problem in NCA is to choose 

the proper initialization matrix. In addition, we have reported in section 4.2 that β2PS can achieve 

the optimal value in the sense of objective function (14), and we have also discussed in section 3.2 

that compared to PDCV, there is a loss of discriminative information in PS. Our experimental results 

reported in Table 8 show that PS works significantly more poorly than PDCV. So the other 
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important problem in NCA is to cope with such fact that there exist certain projection matrices 

which yield the optimum of (14) and meanwhile inherently have a loss in discriminant information 

compared to the projection matrix of DCV. (Note that, for NCA, we report the experiments on 

ORL and YALE in a deterministic manner, and the rest experiments are omitted due to the 

following two reasons: 1) NCA is time consuming for relative large dataset; and 2) the 

classification performance of NCA can be read from that of DCV, since the projection matrix 

(multiplied by a factor) of the latter is the optimal solution to the former)  

 
Table 8 Classification accuracies (%) on three datasets in deterministic partition 

NCA 
Dataset DCV 

A1 A2 A3 A4 
PS LAP ULAP

ORL1 91.5 91.5 86.5 90.0 87.5 84.0 85.0 72.5 

ORL2 92.5 93 92.0 89.5 92.0 91.0 91.0 77.0 

ORL3 97.5 97.5 92.0 95.5 92.0 92.0 91.0 82.0 

ORL4 98.0 98.0 97.0 93.0 94.0 96.0 93.5 85.5 

avg 94.9 95.0 91.9 92 91.4 90.8 90.1 79.3 

YALE1 89.3 89.3 77.3 72.0 81.3 69.3 82.7 74.7 

YALE2 81.3 82.7 62.7 70.7 84.0 76.0 82.7 72.0 

YALE3 92.0 93.3 65.3 78.7 86.7 76.0 92.0 76.0 

YALE4 86.7 85.3 72.0 64.0 77.3 66.7 85.3 64.0 

avg 87.3 87.7 69.3 71.3 82.3 72.0 85.7 71.7 

AR1 83.6 / / / / 69.9 85.1 67.4 

AR2 83.3 / / / / 72.3 84.7 68.7 

AR3 84.8 / / / / 51.2 77.2 72.0 

AR4 78.3 / / / / 63.8 79.3 67.2 

avg 82.5 / / / / 64.3 81.6 68.8 

/: the corresponding experiments are not conducted 

avg: the average classification accuracy of the corresponding four independent experiments 

 

  Secondly, we look at the classification performances of LAP and ULAP. Our experiments on the 

three dataset in deterministic partitions consistently show that LAP yields significantly better 

results than ULAP. Such experimental results are in accord with: 1) that trace(PULAP
TYLYTPULAP) 

are greatly larger than those of trace(PLAP
TYLYTPLAP), as is revealed in section 4.2; and 2) what we 

argue in section 3.3, namely in the SSS problem, ULAP is not good for classification.  

  Thirdly, we make a comparison of all the methods present to draw the following conclusions:  

1) DCV achieves comparable classification accuracies to NCA initialized with PDCV, and 
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meanwhile significantly higher classification accuracies than NCA with other initialization 

matrices, which can clearly be observed from Table 8. This result is in accord with the fact 

that: 1) βPDCV is the optimal solution to NCA; and 2) the initialization matrix plays an 

important role in NCA. 

2) DCV achieves higher classification accuracies than the LAP method on ORL1-ORL4, 

YALE1, YALE3, AR3, and ORL and YALE in a random manner, whereas comparable or 

even inferior classification accuracies to the LAP method on the rest, as can be observed from 

Table 8 and 9. We attribute this phenomenon to: 1) the projection matrix of DCV is the 

optimal solution to the objective function of LAP; 2) DCV works well in the case that the 

samples belonging to the same class have relatively small variance while poorly when they 

have relatively large variance. The first has already been verified, and we will detail the 

second in the following. 

 

Table 9 Average classification accuracies (%) on three datasets in 20 runs 
 DCV LAP 

 CA STD CA STD 

ORL 96.2 0.016812 91.4 0.023736

YALE 83.0 0.10900 81.9 0.10020

AR 94.0 0.06135 94.2 0.064372

CA: classification accuracy 
STD: the standard derivation of the classification accuracies in 20 runs 

 

Table 10 Values of MSV respectively on ORL, YALE and AR in a deterministic manner 
dataset ORL1 ORL2 ORL3 ORL4 
MSV 0.0837 0.0852 0.0881 0.0888 

dataset YALE1 YALE2 YALE3 YALE4
MSV 0.1207 0.1187 0.1305 0.1150 

dataset AR1 AR2 AR3 AR4 
MSV 0.1568 0.1564 0.1032 0.1690 

 

  In order to partially explain the reason why DCV works better on some datasets, and meanwhile 

yields comparable or even inferior classification accuracies on the rest, we define the mean 

standard variance (MSV) as: 

1
iMSV SV

C
=                                                      (68) 
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where SVi is the standard variance of the i-th class defined as: 

2

1 1

1 1 ( )
1

iNd
i

i jk ik
k ji

SV x m
d N= =

= −
−∑ ∑                                    (69) 

where xi
jk denotes the k-th element of the d-dimensional sample xi

j, and similarly, mik denotes the 

k-th element of the mean sample of the i-th class mi: 

1

1 iN
i

i j
ji

m x
N =

= ∑                                                     (70) 

We report the values of MSV on ORL, YALE and AR data in a deterministic manner in Table 10, 

from which we can see that when DCV achieves significantly better classification performance 

than LAP, the value of MSV is relatively small (e.g., on ORL1-ORL4, AR3, the values of MSV are 

all below 0.11), while on the contrary, when the value of MSV is relatively large (e.g., on AR1, 

AR2 and AR4, the values of MSV are all above 0.15), DCV yields inferior classification accuracy 

compared to LAP. However, this is the preliminary experiments, and is worthy of further study. 

 

5 Conclusion and future work 

In this paper, we have a comparative study among DCV, NCA and LAP to find that in SSS 

problem, the projection matrix of DCV is the optimal solution to both NCA and LAP in case of 

their respective objective functions, whereas neither NCA nor LAP may achieve their optimal 

objective function value. Both theoretical analysis and experimental simulations are presented to 

verify our arguments. In addition, we show that DCV is much more efficient than both NCA and 

LAP in both calculating the projection matrix and the classification of a given unknown sample, 

and reveal the essence of DCV, i.e., calculating the projection matrix is equivalent to solving a thin 

QR decomposition problem. The revealed essence makes DCV easier to be understood and to be 

extended to its nonlinear version through kernel QR decomposition [25]. Finally, we 

experimentally show that DCV is not definitively superior to LAP although the former achieves 

the optimal solution to the latter, and give possible explanations, namely, when the mean standard 

variance (MSV) is relatively small, DCV works significantly better than the other methods 

whereas when MSV is relatively high, DCV works poorly. 

  In our point of views, future study should be carried out in the following aspects: 

1) Clarify the relationships among different methods, which brings convenience to practitioner 
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in selecting specific method from a large number of similar methods present. 

2) NCA is a very good method, since it relates the feature extraction procedure with the 

classification performance. However, in the SSS problem, the following question should be 

tackled: 1) how to choose the proper initialization matrix; and 2) how to deal with such 

case that certain projection matrices yield the optima of its objective function whereas it is 

obvious that there is a loss of information.  

3) DCV is a good method for solving SSS problem in (1), and achieves the optimum of the 

criterion (1), (14) and (16). However, as revealed in the experimental parts, it does not 

definitively yield significantly better classification performance over LAP. Our preliminary 

result shows that DCV works well when MSV is relatively small and poorly when MSV is 

relatively high. Thus study should be carried out to improve the classification performance 

of DCV when MSV is relatively high. 

4) Based on the revealed essence, the DCV method can be easily extended to its nonlinear 

version through kernel QR decomposition [25]. Furthermore, by using specific kernel (such 

positive kernel as Gaussian kernel), the kernelized DCV can be applied to non-SSS 

problem, while the original DCV can not. 
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Table captions: 

Table 1 Flops needed to calculate the projection matrix 

Table 2 Deterministic partition of training samples and testing samples on ORL face dataset 

Table 3 Deterministic partition of training samples and testing samples on YALE face dataset 

Table 4 Deterministic partition of training samples and testing samples on AR face dataset 

Table 5 Values of α1, α2, β1, β2, and those of the corresponding objective function (14) by PDCV, PS, 

β1PDCV and β2PS. 

Table 6 Values of the objective function (14) by A1, A2, A3 and A4 

Table 7 Values of objective function (16) by PLAP and PULAP 

Table 8 Classification accuracies (%) on three datasets in deterministic partition 

Table 9 Average classification accuracies (%) on three datasets in 20 runs 

Table 10 Values of MSV on ORL, YALE and AR in a deterministic manner 

 

Figure captions: 

Fig. 1Ten images from one person in the ORL face database 

Fig. 2 Eleven images from one person in the YALE face database 

Fig. 3 Images from one person in the AR face dataset 

Fig. 4 Illustration of NCA to obtain A1, A2, A3 and A4 with corresponding initializations on ORL1. 

 

 


