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Abstract—The goal of this comment is to first point out two loopholes in
the paper by Li et al. (2006): 1) so-designed efficient maximal margin crite-
rion (MMC) algorithm for small sample size (SSS) problem is problematic
and 2) the discussion on the equivalence with the null-space-based methods
in SSS problem does not hold. Then, we will present a really efficient MMC
algorithm for SSS problem.

Index Terms—Efficient algorithm, equivalence, maximal margin crite-
rion (MMC), null space, small sample size (SSS) problem.

I. ORGANIZATION AND PREPARATION

Organization: In this section, we will give some notations and a brief
review of maximum margin criterion (MMC) [3] and point out the two
loopholes. In Section II, we will propose a really efficient MMC, and
then, conclude this comment in Section III.

Let the training set be composed of ¢ classes C, Cs, . .., C., the ith
class have n; training samples, and .rj denote the jth D-dimensional
sample from the 7th class. In total, there willbe n = ) _, n; training
samples. In applications such as face recognition, the small sample size
(SSS) problem often takes place, namely, D > n. The within-class
scatter matrix .S,, and between-class scatter matrix .S, can be denoted
as

S = %ZZ (= mi) (v =m) " = HHE )

im=1 j=1
1 < 0 .
Sy, = - Zm(mi —m)(m; — m)l = H{,Hbl 2)

S =1

where H,, and H, are, respectively, defined as

H, = %[71 —ml,...,mlll —my,..., o, —7nc]
3
H, = %[\/Th(?‘lﬁ —m),....\/nc(mec —m)]. (€))

The m; is the centroid of the 7th class and m is the centroid of the
training set.

MMC [3] aims at maximizing the average margin between classes,
where the interclass margin between the :th and the jth classes can be
denoted as

d(Cy, Cy) = d(mi,mj) — (S(Ci) + 5(C))) (5)
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where d(m;, ;) is defined as the squared Euclidean distance between
m; andm; and S(C;) and S(C}) are, respectively, defined as the traces
of the scatter matrix of the ¢th and jth classes. After some deduction,
the average margin between classes under transformation matrix W is

[3]
JW) = tr(W'(Sy — S, )IW). (6)

Requiring the column vectors in W' to be unit vectors, W can be cal-
culated by solving the eigenequation

(Sp — Sw)w = Aw. @)

II. LOOPHOLES AND A REALLY EFFICIENT MMC ALGORITHM

A. Loopholes in the Efficient MMC Algorithm

The time and storage complexities for directly solving the
eigenequation (7) are, respectively, O(D?*) and O(D?), which
are very demanding for applications such as face recognition. For ex-
ample, the face images in the ORL face database [3] have a resolution
of 112x92 (namely, D = 10304), thus the time and storage costs are,
respectively, in the order of 10'? and 10®, which are very demanding,
especially for personal computers.

In [3], Li er al. proposed to obtain a transformation matrix P €
RP*" that simultaneously diagonalized S, and S; as

Prs,P=A ®)
P'S,P=1, )

and P can be given by
P=30"%y (10)

where © € R™™" is a diagonal matrix whose diagonal en-
tries are the positive eigenvalues of the total scatter matrix
Sy = Sy 4+ Sw,r < min{n — 1, D} is the rank of S;, & € RDPx*r
contains the r orthonormal eigenvectors of S; corresponding to
these positive eigenvalues, and ¥ is the eigenvector matrix of
0 123T5,071/2,

® and © can be calculated in a time complexity of O(Dn?) by
first solving the singular value decomposition of A" A where S, =
AAT: W can be computed in a time complexity of O(n?), and thus,
the time complexity for computing P in (10) is O(Dn?). Further, the
largest matrix employed is D X n, and thus, the space complexity is
O(Dn). As a result, the time and storage complexities for computing
P are, respectively, O(Dn?) and O(Dn). Taking the ORL database
as an example, if the number of training samples n is 200, then r is at
most 199, and the time and storage costs are now, respectively, in the
order of 10 and 10°, which are significant improvements over 10'?
and 10® for directly solving the eigenequation (7).

Li et al. argued in [3] that the columns of P in (10) are the eigenvec-
tors of 2.5, — S, with the corresponding eigenvalues 2A — I, based on
which a fast MMC algorithm was proposed. However, such argument
is problematic in that column vectors of P in (10) are not definitely the
eigenvectors of 25, — S;. An analysis is given as follows.

From (8) and (9), we can get

PT(25,— SHP=2A-1, an

and

PPY(25,— 5,)P = P(2A—1,). (12)
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However, from (8) and (9), we cannot definitely get

(25, — S,)P = P(2A — 1,.) (13)
since we cannot assure
PP (28, — S,)P = (28, — S))P (14)

in real application. According to matrix theory [1], we can only assure
that the columns of P are the eigenvectors of 2.5, — S, with the corre-
sponding eigenvalues 2A — I;. from (13), and thus, the column vectors
of P in (10) are not definitely the eigenvectors of 2.5, — S;.

Now, let us consider an example of two classes (¢ = 2); each
class has two training samples (n; = n, = 2). Samples from
the first class are around [1 2 4 4 2|7, while those from the
second class are around [4 4 8 1 5]". More specifically, let
2t = [1.0 2.1 3.9 42 2.3)7, 28 = [1.1 1.7 4.3 4.0 1.9)7,2% =
[4.2 4.3 7.8 1.2 5.1]", and 3 = [3.7 3.9 7.9 0.8 4.7]". The
rank of Si,r, is equal to 3 and one can easily get P,2A — I,
A= PPT(QSL. — 5y)P, and B = (25, — S;) P, respectively, as

0.0068253 —4.5483 —1.2639
0.11703 2.0388 —1.1784
P=1] 014688 —1.9274 0.97184
—0.2408 —3.0248 —1.8339
0.15195 23413 -1.097
1.0000 0 0
2A—-1, = 0 —1.0000 0
0 0 —1.0000
0.0068253  4.5483 1.2639
0.11703 —2.0388 1.17840
A= 0.14688 1.9274 —0.97184
—0.2408  3.0248 1.8339
0.15195 —2.3413  1.0970
1.4500 0.12587 0.12906
1.1000  —0.041679 0.19561
B=| 18750 0.099403 —0.10663 (15)
—1.5500 0.017643  0.15713
1.4000 —0.041679 0.19561

From (15), one can easily observe that A # B and, consequently,
neither (14) nor (13) holds. Furthermore, by solving (7) directly, the
three nonzero eigenvalues for S, — .5, areinfact 11.181, —1.2606, and
—0.022869, rather than 1.0000, —1.0000, and —1.0000, as reported
in (15). As a result, the calculated P and 2A — I,. are not the right
solutions to MMC and the so-designed efficient MMC algorithm in [3]
is problematic.

B. Loopholes in Relationship With the Null Space Method

Li et al. argued in [3] that “When the small samples size problem
arises, MMC is actually equivalent to LDA 4 PCA [2] in general.”
However, this argument is incorrect. The null-space-based methods
such as the LDA 4 PCA [2] in fact obtain a projection matrix in the
null space of S, as

Wopt = arg  max  |[WIS,W (16)
WT S, W=0
or, equivalently
Wopr = arg  max  |[W' (S, — Su)W]|. (17)
WTS,W=0

For discussion convenience, we denote the projection matrix for
MMC as Wiume and that for LDA + PCA as W.,,i. Generally
speaking, both Wiyme and Wy,11 maximize tr(W’T (S — Su)W).
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However, MMC’s projection matrix only has orthogonal constraint,
e, WE . Winme is an identity matrix, while LDA + PCA’s projection
has additional constraint, namely, W,".;, Wyun is an identity matrix
and W7 1SwWaun = 0. As a result, they are distinct theoretically,
and tr(WE(Sy — Suw)Waun) < tr(WZ,.(Sp — Suw)Wime) since
LDA + PCA has additional constraint compared to MMC.

To experimentally show this loophole, we perform experiment on the
ORL face database [3], and utilize the first five images of each person
to form the training set. The image resolution is 112x92 and the gray
level values of the images are scaled to [0 1]. We set the number of
projection vectors to 39 (or ¢ — 1) and employ the subspace distance
defined in [1, p. 76] to measure the distance between the subspaces,
respectively, spanned by MMC! and LDA + PCA. The result is that
the subspace distance between them is 0.9330 (note that two subspaces
are identical only when the subspace distance is 0), which clearly shows
that MMC is not identical to LDA + PCA. Furthermore, tr(Wﬁn (Sp—
Su)Wautl) = 47.609 and tr(WZ,.,(Sp — Su ) Winme) = 144.5, from
which we can clearly observe that LDA + PCA cannot achieve the
same objective function value as MMC due to the additional constraint
whs,w = 0.

Finally, in the end of this section, it is worthwhile to note that, al-
though the P computed by (10) is not the correct solution to MMC,
it is in fact the solution to the generalized linear discriminant analysis
(GLDA) method [4], which was proven equivalent to LDA 4 PCA [2]
when rank(S;) = rank(S,, )+rank(Ss) in [4]. This partially explains
the reasons why MMC was mistaken as equivalent to LDA + PCA in
[3] and why the so-called fast algorithm proposed in [3] yielded iden-
tical classification performance to LDA + PCA in some experiments.

C. Really Efficient MMC Algorithm

Despite of the loopholes pointed out in this comment, MMC is a
good method that is related to margin between classes. Thus, a really
efficient algorithm for MMC in SSS problem is of great importance,
and we will offer one in the following.

Let & contain the eigenvectors of S; corresponding to the zero eigen-
values, and then, the column vectors in [ <i>] constitute a set of or-
thonormal bases for the space R . According to matrix knowledge [1],
any w in R” can be written as

w=bp+ dp (18)

where p and p are v X 1 and (D — ) x 1 vectors, respectively.

Keeping in mind 5:® = 0, 5, ® = 0and S, P = 0, and substituting
(18) into (7), we get

(Sp — Su)®p = A(Bp + Dp). (19)

Premultiplying &7 to both sides of (19), we get
(B75,® — 75, 8)p = Ap. (20)

Premultiplying ®7 to both sides of (19), we get
0= M\p. (21)

We can set p = 0, since 1) A should be as positive as possible in order
to maximize MMC'’s objective function (6), and thus, it would be better
than p = 0 by using (21); and 2) when the samples are projected by
dp, all the training samples concentrate to a common vector and the
extracted features by <i>ﬁ contain no discriminant information, and thus,
we can set p = 0. Now, substituting p = 0 into (18), we have

w = P$p. (22)

Due to typically large dimensionality, when implementing MMC, we em-
ploy the really efficient MMC algorithm to be given in Section II-C rather than
directly solving (7).



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS

It is easy to observe that the ws for MMC can be calculated in terms of
the following three steps: 1) calculate ®, 2) calculate ps by (20), and 3)
obtain ws from (22). The time complexity of the newly proposed MMC
algorithm is analyzed as follows: 1) ® can be obtained in O(Dnz), 2)
dTS,d = (T H,)(®THy)T and 7S, = (T H, ) (®TH,)T
can be computed in O( Dnc) and O(Dn?), respectively, 3) ps can be
obtained in O(r?), and 4) ws can be received from (22) in O( Dnc). As
a result, the time complexity is O( Dn?), which is much more efficient
than O(D?) consumed by directly solving (7). Furthermore, since the
largest matrix employed in the computation is D X n, the space com-
plexity is O(Dn), which is far less than O(D?) needed by directly
solving (7).

To experimentally verify the correctness of the newly proposed effi-
cient algorithm, we employ it to calculate the projection matrix W on
the two class samples given in Section II-A. Experimental results show
that

—0.43224 024384  —0.70655
—0.32817 050625  0.28324

W= -056102 —0.42688 —0.27138 (23)
0.46483  0.51061 —0.48782
—0.41793 049122  0.33006

WWT (25, — SOW = (25, — SHW
—4.8328 —0.030730  0.016158
—3.6692 —0.063819 —0.0064773

= | —6.2726  0.053814  0.0062062 (24)

51972 —0.064368  0.011156
—4.6728 —0.061925 —0.0075481

and the eigenvalues are 11.181, —1.2606, and —0.022869, equal to
those directly computed by (7). Thus, the eigenvectors and eigenvalues

calculated by the newly proposed efficient MMC are the solutions to
(7), and the correctness of the proposed algorithm is experimentally
proven.

III. CONCLUSION

In this comment, we point out two loopholes appearing in [3] both
theoretically and experimentally, namely, 1) so-designed efficient
MMC algorithm for SSS problem is problematic, and 2) the discussion
on the equivalence with the null-space-based methods in SSS problem
does not hold. Then, we present a really efficient MMC algorithm for
the SSS problem.
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