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Abstract. Pseudoinverse Linear Discriminant Analysis (PLDA) is a
classical and pioneer method that deals with the Small Sample Size (SSS)
problem in LDA when applied to such application as face recognition.
However, it is expensive in computation and storage due to manipulat-
ing on extremely large d × d matrices, where d is the dimensionality of
the sample image. As a result, although frequently cited in literature,
PLDA is hardly compared in terms of classification performance with
the newly proposed methods. In this paper, we propose a new feature
extraction method named RSw+LDA, which is 1) much more efficient
than PLDA in both computation and storage; and 2) theoretically equiv-
alent to PLDA, meaning that it produces the same projection matrix
as PLDA. Our experimental results on AR face dataset, a challenging
dataset with variations in expression, lighting and occlusion, show that
PLDA (or RSw+LDA) can achieve significantly higher classification ac-
curacy than the recently proposed Linear Discriminant Analysis via QR
decomposition and Discriminant Common Vectors.

1 Introduction

Linear Discriminant Analysis (LDA) [2] [3] [4] [6] [7] [9] [10] [11] [12] [14] is a
popular feature extraction method in pattern recognition. It searches for a set
of projection vectors onto which the data points of the same class are close to
each other while requiring data points of different classes to be far from each
other, in other words, it calculates the projection matrix W that maximizes the
Fisher’s Linear Discriminant criterion as follows:

JFLD(Wopt) = arg max
W

|WT SbW |/|WT SwW | (1)

where Sw and Sb are respectively the within-class scatter matrix and the between-
scatter matrix. It has been proven that if Sw is non-singular, then the ratio of
(1) is maximized when the column vectors of W are the eigenvectors of S−1

w Sb.
Unfortunately, in recognition task such as face recognition, Sw is typically sin-
gular, due to the fact that the number of the samples is much smaller than the
dimension of sample space, i.e., the so-called Small Sample Size (SSS) problem.



Among many methods that address the SSS problem in LDA, Pseudo Linear
Discriminant Analysis (PLDA) [6] [9] [10] [11] [12] is a classical and pioneer
method that solves the singularity problem by substituting S−1

w with the pseudo
inverse S+

w [5]. The generalization error of PLDA was studied in [9] [10], when the
size and dimension of the training data vary. Pseudo-inverses of scatter matrices
were also studied in [6] and the experimental results in [6] showed that the
pseudo-inverse based methods are competitive with Fisherfaces [2].

Recently, Discriminant Common Vectors (DCV) [3] [7] and Linear Discrimi-
nant Analysis via QR decomposition (LDA/QR) [14] are proposed to solve the
SSS problem in LDA. DCV first projects the training samples to the null space
of within-class matrix, and then maximizes the between-class matrix in this
space. DCV achieves a maximum (infinite) of the criterion in (1), and is re-
ported to yield superior classification accuracy than other LDA based methods,
e.g., Fisherfaces. Like DCV, LDA/QR is also a two-stage method which takes
the following two steps: 1) Project the training samples to the range space of the
between-scatter matrix and 2) Apply LDA in this reduced space. LDA/QR is
computationally efficient compared to other LDA based methods and meanwhile
can achieve competitive classification accuracy to these methods [14].

There is such an interesting phenomenon in DCV, LDA/QR and other LDA
related methods that PLDA was often cited but hardly compared in terms of
classification performance. The reason behind this phenomenon can be explained
as follows: 1) PLDA is a classical and pioneer method for solving SSS problem
incurred in LDA and has been widely studied [6] [9] [10] [11] [12], thus it is often
cited; and 2) PLDA manipulates on very large matrices in such application as
face recognition, and as a result is expensive in both storage and computation,
thus the comparison in terms of classification performance is seldom carried out
[3].

Furthermore, the projection matrix yielded by DCV resides in the null space
of Sw, the projection matrix of LDA/QR is in the range space of Sb, and as will
be revealed in section 4, the projection matrix of PLDA resides in the range space
of Sw. That is to say that, although these methods are all LDA based methods,
they are quite different in the techniques employed. As a result, a comparison
among them is meaningful.

In this paper, we propose an efficient two-step method called RSw+LDA
for feature extraction. The novelty of the proposed method lies in that: 1) it is
much more efficient than PLDA in both computation and storage; and 2) it is
theoretically equivalent to PLDA, meaning that it produces the same projection
matrix as PLDA.

In the following, we will review PLDA in section 2, give our RSw+LDA
method in section 3, and reveal its equivalence relationship with PLDA in section
4. In section 5, experiments on AR face dataset are carried out to verify the
effectiveness of PLDA (or RSw+LDA). And finally, we conclude this paper in
section 6.



2 Pseudo Linear Discriminant Analysis (PLDA)

Let the training set composed of C classes, and xij be a d -dimensional column
vector which denotes the j -th sample from the i -th class. The within-class and
between-class scatter matrices can be defined as:

Sw =
1
N

C∑

i=1

Ni∑

j=1

(xi
j −mi)(xi

j −mi)T = HwHT
w (2)

Sb =
1
N

C∑

i=1

Ni(mi − m̄)(mi − m̄)T = HbH
T
b (3)

where mi, Hw and Hb are respectively defined as:

mi =
1
Ni

Ni∑

j=1

xi
j (4)

Hw =
1√
N

[x1
1 −m1, . . . , x

1
N1
−m1, . . . , x

C
NC

−mC ] (5)

Hb =
1√
N

[
√

N1(m1 − m̄), . . . ,
√

NC(mC − m̄)] (6)

m̄ is the mean sample of the total training set, Ni is the number of training
samples for the i -th class and N (=N1 + N2 + . . . + NC) is the total number of
training samples from these C classes.

To calculate pseudo inverse S+
w , PLDA performs the Singular Value Decom-

position (SVD) [5] of Sw as:
Sw = Q1ΛQT

1 (7)

where Λ = diag(λ1, λ2, . . . , λk) contains the positive eigenvalues of Sw, k (gen-
erally equals N-C ) is rank of Sw and Q1 consists of the eigenvectors of Sw

corresponding to the k positive eigenvalues. According to [5], the pseudo inverse
of Sw is:

S+
w = Q1Λ

−1QT
1 (8)

Then PLDA calculates the eigenvectors of S+
w Sb corresponding to positive eigen-

values as the projection vectors.
Although simple in form, PLDA is expensive in both storage and compu-

tation. An analysis is given as follows: 1) the SVD in (7) can be calculated
indirectly [3] through applying SVD to HT

wHw first in O(dN2) floating point
operations (flops) [5], and the space complexity is O(dN); 2) calculating the
eigenvalues and corresponding eigenvectors of S+

w Sb is expensive, since it costs
O(d3) flops in computation and O(d2) in storage. In total, the space and time
complexity for PLDA is O(d2) and O(d3) respectively. In such applications as
face recognition, the sample dimensionality d is typically large, e.g., for 100×100
face image, d equals 10000. As a result, it will cost several hundred Mega Bytes
(MB) to store the matrix S+

w Sb, and flops in the order of 1012 to calculate its
eigenvalues and eigenvectors.



3 RSw+LDA: An alternative way to perform PLDA

To alleviate PLDA’s high storage and computation cost, an alternative method,
RSw+LDA is proposed in this section. RSw+LDA, which stands for LDA in the
Range Space of the within-class scatter matrix (RSw), is a two-stage method
that operates as follows:

1) Calculate Q1 in (7), and project the training samples by Q1 to the range
space of the within-class matrix, where the within-class matrix and between class
matrix can respectively be written as:

S
′
w = QT

1 SwQ1 = Λ (9)

S
′
b = QT

1 SbQ1 = (QT
1 Hb)QT

1 Hb)T (10)

2) Calculate the eigenvectors of Λ−1S
′
b corresponding to positive eigenval-

ues, and put them into a matrix U. Then W = Q1U is the projection matrix
calculated by RSw+LDA.

Now, we are in a position to analyze the computation and storage costs of
RSw+LDA as follows: 1) Similar to PLDA, calculating Q1 consumes O(dN2)
flops in computation and O(dN) in space; 2) Λ−1S

′
b is a k × k matrix, where k

generally equals N-C, then it will cost O(k2) in storage and O(k3) in computation
to calculate the eigenvalues and eigenvectors. Considering the fact that d is
typically larger than N in such application as face recognition, the space and
computation cost for RSw+LDA is O(dN) and O(dN2) respectively. We compare
the space and time complexity for RSw+LDA and PLDA in Table 1, from which
we can observe that RSw+LDA is much more efficient than PLDA in both
storage and computation.

Table 1. Space and computation complexity comparison between RSw+LDA and
PLDA

Method Space Time

PLDA O(d2) O(d3)

RSw+LDA O(dN) O(dN2)

4 Equivalence between RSw+LDA and PLDA

In this section, we try to reveal that RSw+LDA is in fact equivalent to PLDA,
meaning that they can obtain the same projection matrix, for which an analysis
is given as follows:

PLDA’s eigen-equatioin can be formulated as:

S+
w Sbw = λw (11)



For discussion convenience, let Q2 be a matrix composed of the d-k orthonor-
mal eigenvectors of Sw corresponding to its zero eigenvalues. Consequently the
column vectors in [Q1 Q2] constitute a set of orthonormal basis vectors for
the vector space Rd×1. According to the matrix theory [5], w in (11) can be
written as:

w = [Q1 Q2][pT
1 pT

2 ]T = Q1p1 + Q2p2 (12)

Now substituting (8) and (12) into (11), we get

Q1Λ
−1QT

1 Sb(Q1p1 + Q2p2) = λ(Q1p1 + Q2p2) (13)

By the definition of Q1 and Q2, we have QT
1 Q1 = I1, QT

2 Q2 = I2, QT
1 Q2 =

O1, QT
2 Q1 = O2, where I1 and I2 are identity matrices, O1 and O2 are zero

matrices. Hence, pre-multiplying QT
1 and QT

2 respectively to both sides of (13)
leads to:

Λ−1QT
1 Sb(Q1p1 + Q2p2) = λp1 (14)

0 = λp2 (15)

As aforesaid, in PLDA, the eigenvectors of S+
w Sb corresponding to positive

eigenvalues are employed as projection vectors. Consequently λ > 0, then from
(15), we get:

p2 = 0 (16)

Substituting (16) into (14) and (12), we get

Λ−1QT
1 SbQ1p1 = λp1 (17)

w = Q1p1 (18)

Note that in RSw+LDA, U calculated in its second stage is indeed the eigen-
vectors of (17) corresponding to positive eigenvalues, namely the p1’s calculated
by PLDA in (17) in fact constitute the matrix U obtained in RSw+LDA. From
(18), it is easy to conclude that the projection matrix for PLDA is Q1U , the
same as that of RSw+LDA. As a result, the equivalence relationship between
RSw+LDA and PLDA is theoretically verified.

5 Experiments

As mentioned in the introduction, in the recent articles, such as [3] [14], which
address the SSS problem in LDA, there is no comparison with PLDA in classifi-
cation performance yet, which partially attributes to PLDA’s demanding compu-
tation and storage requirement [3]. Favored by the proposed RSw+LDA, which
has been proven to be not only theoretically equivalent to PLDA but also more
efficient than PLDA in terms of both computation and storage cost, we can
carry out the comparison between PLDA (or RSw+LDA) with other methods.
To verify the effectiveness of PLDA, we compare PLDA with the Eigenfaces [13]
and the recently proposed Linear Discriminant Analysis via QR decomposition
(LDA/QR) [14] and Discriminant Common Vectors (DCV) [3].
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Fig. 1. An illustration of 26 images of one subject from AR face database.

We carry out the following experiments on AR [8] face datasets which consists
of over 3200 images of frontal images of faces of 126 subjects. Each subject has
26 different images which were grabbed in two different sessions separated by
two weeks, and 13 images in each session were recorded. As shown in Fig. 1, for
the 13 images, the first one is of neutral expression, the second to the fourth are
of facial expression variations, the fifth to the seventh of illumination variations,
the eighth to the tenth wearing glasses and the eleventh to the thirteenth wearing
scarf. We carry out experiments on a subset of AR face dataset which consists
of 2600 images of 100 subjects with each one having 26 images. We make use
of the face images from the first session (a-m) for training and those from the
second session (n-z) for testing. The face images are preprocessed by Martinez
[8] with a resolution of 165×120, and we resize them to 66×48 and rescale the
gray level values to [0 1]. When classifying a given unknown sample, it is first
projected by the obtained projection matrix, and then it is classified to the same
class as its nearest neighbor in the training samples based on Euclidean distance.
We report the experimental results in Table 2, from which we can observe that
PLDA achieves significantly higher classification accuracy to Eigenfaces (90%
information in terms of reconstruction is retained), and such LDA based methods
as DCV and LDA/QR in case of great facial variations.

To partially explain the reason why PLDA performs better than such meth-
ods as DCV and LDA/QR on AR face dataset, we give an r criterion that



Table 2. Classification accuracy (%) comparison

PLDA DCV LDA/QR Eigenfaces

78.2 71.4 70.8 56.4

measures the ratio of the variances between within-class and between-class as
follows:

r = trace(Sb)/trace(Sw) (19)

When r > 1, the between-class variance is large compared to the within-class
variance, vice versa. In our experiment on AR, r equals 0.3823, meaning that the
samples within the same class have much larger variance than the ones among
difference classes. In this case, the estimate for the class mean mi is biased due
to large within-class variance and limited training samples in each class, and
as a result the estimate for the between-class scatter matrix Sb is also biased.
However, compared to Sb, the within-class scatter matrix Sw can more reliably
be estimated without the explicit calculation of mi, which can be read from the
following equation

Sw =
1
N

C∑

i=1

Ni∑

j=1

(xi
j−mi)(xi

j−mi)T =
1
N

C∑

i=1

1
Ni

Ni∑
p=1

Ni∑
q=1

(xi
p−xi

q)(x
i
p−xi

q)
T (20)

For LDA/QR, it first projects the samples to the range space of the ill-
estimated Sb, and thus operates poorly due to the so-called centroid sensitivity
problem [14]. For DCV, it discards the information in the range space of within-
class matrix and concentrates the samples from the same class to a unique com-
mon vector, which is not reasonable when the within-class variance is very large.
Furthermore, as reported in [7] when MSV defined in [7] is larger than 0.15, DCV
operates poorly, then considering the fact that the MSV value equals 0.1967 here,
it is reasonable that DCV operates poorly. For PLDA, or RSw+LDA, it first
projects the samples to the range space of Sw, which can be relatively reliably
estimated in the case of great within-class variations. Further it acknowledges
the variance among the same class samples and projects them to different sam-
ples. Thus PLDA can obtain better classification performance compared to DCV
and LDA/QR.

6 Conclusion

In this paper, we propose an effective and efficient RSw+LDA method for fea-
ture extraction and theoretically verify that RSw+LDA is actually equivalent
to PLDA, a classical and pioneer method that addresses SSS problem in LDA.
RSw+LDA relaxes the demanding computational and storage requirement in
PLDA, and thus makes possible the comparison between PLDA and other meth-
ods. We carry out experiments on AR face dataset to compare the classification
performance between PLDA and such methods such as Eigenfaces, DCV and



LDA/QR, and the conclusion is that PLDA can significantly outperform these
methods on this dataset of great within-class variance. Furthermore, based on
the proposed RSw+LDA, we can extend the PLDA method to its nonlinear form
utilizing the kernel trick similar to [1], and we are currently exploring on this
point to make PLDA deal with data of nonlinear distribution better.
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