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Abstract

Fuzzy relational classifier (FRC) is a recently proposed two-step nonlinear classifier. At first, the unsupervised fuzzy c-means (FCM)
clustering is performed to explore the underlying groups of the given dataset. Then, a fuzzy relation matrix indicating the relationship
between the formed groups and the given classes is constructed for subsequent classification. It has been shown that FRC has two advan-
tages: interpretable classification results and avoidance of overtraining. However, FRC not only lacks the robustness which is very
important for a classifier, but also fails on the dataset with non-spherical distributions. Moreover, the classification mechanism of
FRC is sensitive to the improper class labels of the training samples, thus leading to considerable decline in classification performance.
The purpose of this paper is to develop a Robust FRC (RFRC) algorithm aiming at overcoming or mitigating all of the above disad-
vantages of FRC and maintaining its original advantages. In the proposed RFRC algorithm, we employ our previously proposed robust
kernelized FCM (KFCM) to replace FCM to enhance its robustness against outliers and its suitability for the non-spherical data struc-
tures. In addition, we incorporate the soft class labels into the classification mechanism to improve its performance, especially for the
datasets containing the improper class labels. The experimental results on 2 artificial and 11 real-life benchmark datasets demonstrate
that RFRC algorithm can consistently outperform FRC in classification performance.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The classification is widely used in various engineering
problems such as handwriting recognition, medical diagno-
sis and document retrieval. Its task is to assign a new sam-
ple to a class from a given set of classes based on the
features of this sample. Generally speaking, the conven-
tional learning classifiers are designed in a supervised man-
ner, that is, the class labels of the training samples are
directly employed to guide the classification, such as neural
networks (Haykin, 1999) and support vector machines
(SVM) (Cristianini and Taylor, 2000). Due to this charac-
teristic, this kind of classifiers just emphasizes the determi-

nation of the decision functions, but rarely cares about the
revelation of the data structure. Here the data structure
means the relative locations of the samples in the high
dimensional space (Krzanowski, 1988), which is very help-
ful to the transparence and the interpretability of classifica-
tion result. Jain et al. (1999) pointed out that the
unsupervised clustering analysis which aims to allocate a
collection of unlabeled samples into meaningful clusters
is appropriate for the exploration of the inherent data
structure. However, such unsupervised clustering cannot
be directly applied to classification because (1) class labels
of the samples are not used in clustering (Kaufman and
Rousseeuw, 1990); (2) although the clustering method
can be used for classification, each generated cluster may
not be assigned a single class label since the samples from
different classes may fall into a common data group (clus-
ter). Therefore, unsupervised clustering and supervised
classification approaches are more likely to complement
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each other by integrating them together (Pedrycz and
Vukovich, 2004; Musavi et al., 1992; Setnes and Babuška,
1999; Ramirez et al., 2003).

From the viewpoint of integration, the design of Radial
Basis Function neural network (RBFNN) (Musavi et al.,
1992) also follows such a line, i.e., first utilizes unsupervised
clustering methods such as k-means or fuzzy c-means
(FCM) (Bezdek, 1981) to construct its hidden layer and
then uses the mean-squared-error (MSE) criterion between
the target and actual outputs to optimize the connection
weights between the hidden and output layers. In that
way, good generalization performance can be achieved in
practical applications. However, it emphasizes the classifi-
cation more than the revelation of the data structure. As
a result, in its design, the clustering method is just used
as an auxiliary way rather than a method to explore the
underlying structure of the data. To indeed fuse the merits
of the unsupervised clustering and the supervised classifica-
tion methods, an algorithm called Fuzzy Relational Classi-
fier (FRC) (Setnes and Babuška, 1999; Ramirez et al.,
2003) was recently proposed. Unlike RBFNN, FRC first
performs clustering in an unsupervised manner to discover
the inherent structure in data, and then uses the resulted
cluster memberships of each sample to establish the fuzzy
relation matrix R connecting the formed clusters and the
given classes. In this way, FRC indeed integrates the
strengths of clustering and classification effectively, and
as a result it can explore the structure of the given dataset
and then interpret the meaning of the classification results.
It has been experimentally demonstrated that the FRC
works better than the multi-reference minimum distance
classifier (MMDC) and the neuro-fuzzy classifier (NEF-
CLASS) (Setnes and Babuška, 1999). In summary, FRC
has several prominent characteristics as follows: (1) with
the integration of the relation matrix R and the cluster
memberships, the classification result has an intuitive inter-
pretation, which makes FRC’s classification prone to
transparence; (2) FRC is based on unsupervised learning
and thus unlikely to overfit the training samples (Setnes
and Babuška, 1999).

However, one disadvantage of FRC is its adoption of
fuzzy c-means (FCM) (Bezdek, 1981) to explore the inher-
ent structure of the given dataset. FCM is proved to be
non-robustness (Dave and Krishnapuram, 1997), in other
words, the clustering centers (prototypes) yielded by
FCM deviate from the original real centers. Besides,
FCM is unable to group the datasets consisting of the
non-spherical clusters, so that the interpretation of the
clustering or classification results may be biased. In recent
years, many researchers have tried to solve these two prob-
lems about the fuzzy clustering methods. To make the
results of clustering less sensitive to noise, Wu and Yang
(2002) proposed an alternative c-means clustering algo-
rithm by incorporating robust metrics to the objective
function. Assuming the clusters have elliptic shapes, the
clustering methods (Klawonn and Keller, 1999; Yao
et al., 1999) with Mahalanobis or Minkowski metric were

designed, but these methods are just fit for the datasets
composed of the groups with the same kind of structure.
As far as we know, there are few clustering methods which
can simultaneously overcome the above two disadvantages
of FCM. In our previously proposed kernelized fuzzy c-
means algorithm (KFCM) (Chen and Zhang, 2004; Zhang
and Chen, 2003, 2004), the robust distance metric induced
by the kernel function is utilized to replace the non-robust
Euclidean metric in the objective function of FCM. As a
result, such KFCM is not only proved to be robust accord-
ing to the Huber’s robust statistics (Huber, 1981), but also
able to group the non-spherical clusters in the given data-
set. In addition, KFCM retains the same simplicity in com-
putation as FCM. On the other hand, the other
disadvantage of FRC is that the employment of hard class
labels heavily demotes the classifier’s performance, espe-
cially for the dataset containing the improper hard labels.
Recently, the fuzzy set theory (Zadeh, 1965) has applied
to allow the samples to belong to different classes with
varying memberships, aiming to compensate for the impre-
cision of the hard class labels. Therefore, the soft class
labels designed in this manner can suppress the influence
of the improper hard class labels (Pizzi and Pedrycz,
2000), and more importantly provide more valuable infor-
mation (Sohn and Daqli, 2001).

In this paper, we develop a Robust FRC algorithm
called RFRC which incorporates the previously proposed
KFCM and the soft class labels to mitigate or eliminate
the disadvantages of FRC while maintaining its advanta-
ges. To be widely used, a classifier should be robust, mean-
ing that the designed classifier (its parameter estimation)
can resist the effects of outliers and noises. As presented
before, FRC lacks the robustness due to the non-robust
FCM and error-sensitive hard class labels. Due to the
two-step design of FRC, we realize FRC’s robustness by
the following two steps. In the first training step, we utilize
the KFCM with robust objective function to replace FCM
to achieve robust clustering. Then, in the second training
step of RFRC, we apply the fuzzy set theory to compute
the soft class labels which can more precisely describe the
class information than the hard ones. Consequently,
RFRC incorporating both KFCM and the soft class labels
can make the constructed relation matrix R more really
reflect the fuzzy relation between the classes and clusters
for the subsequent classification, thus significantly decreas-
ing the reject rate (i.e., the reject decisions yielded by FRC)
and boosting the accuracy of FRC. It is worth pointing out
that Setnes and Babuška (1999) just utilized the relation
matrix R to classify but not used it to further analyze the
structure of given data. In this paper, we can mine more
insightful information from this R to help understand the
classification results. For example, we can know whether
the formed clusters are prone to pure or not, whether the
class of the dataset is composed of single-group or multi-
groups, whether the formed clusters for each class is
reliable, and so on, which makes the RFRC interpretable
to some extent. Therefore, RFRC indeed represents a
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transparent alternative to conventional black-box tech-
niques like artificial neural networks.

The rest of this paper is organized as follows: In Section
2, Fuzzy Relational Classifier is reviewed. Section 3
describes our Robust Fuzzy Relational Classifier incorpo-
rating KFCM and the soft class labels. The experimental
results on 2 artificial dataset and the 11 real-life benchmark
datasets are presented in Section 4. Finally, the conclusions
are given in Section 5.

2. Fuzzy relational classifier

2.1. Training of the classifier

The training of the classifier involves two steps. Firstly,
FCM (Bezdek, 1981) algorithm is applied on the training
samples to reveal the natural structures in the given data-
set. Secondly, a fuzzy relation matrix R is established from
the obtained fuzzy partition and the given class labels to
uncover the relationship between the clusters and classes.
These two steps are illustrated in Fig. 1.

In the first step, FCM algorithm is chosen and its objec-
tive function can be formulated as follows:

J FCMðU ; V Þ ¼
Xc

j¼1

XN

i¼1

um
jikxi � vjk2 ð1Þ

where N is the total number of the training samples and c is
the number of clusters; X = {x1,x2, . . . ,xN} and
V = {v1,v2, . . . ,vc} are the training samples and cluster cen-
ters, respectively; and the fuzzy matrix U = (uji)c·N makes
up of the fuzzy memberships of the each training sample
xi to each cluster vj. By definition, each sample xi satisfies
the constraint

Pc
j¼1uji ¼ 1. The parameter m (1 6 m <1)

is a weighting exponent on each fuzzy membership that
determines the amount of fuzziness of the resulting classifi-
cation. In the following experiment, the value of m is set to
2. The outputs of such algorithm allow the training sample
to belong to multiple clusters with varying degrees of mem-
bership, in this way FCM can get much more information

from dataset than the hard clustering methods. Since FCM
clustering method performs in an unsupervised manner
(class labels are not used), the number of prototype in
FCM is independent of the number of classes. Conse-
quently, the resulted fuzzy partition of the training dataset
can more closely represent the underlying structures.

In the second step, a fuzzy relation matrix R is estab-
lished from the obtained cluster membership matrix U

and the hard class labels. Such original class label is
denoted by one-of-c encoding (Sung-Bae and Kim, 1995)

yi ¼ ½y1i; y2i; . . . ; yli; . . . ; yLi�
T ð2Þ

where yli is the class membership of the ith sample to the lth
class and L is the number of classes. Here yli 2 {1,0},
meaning that the ith sample belongs completely to the lth
class or not. For each training sample xi, the partial rela-
tion Ri is described by a c · L matrix

Ri ¼

ðr11Þi ðr12Þi � � � ðr1LÞi
ðr21Þi ðr22Þi � � � ðr2LÞi
� � � � � � � � � � � �
ðrc1Þi ðrc2Þi � � � ðrcLÞi

2
6664

3
7775 ð3Þ

where (rjl)i is computed by the /-composition operator
(Pedrycz, 1994)

ðrjlÞi ¼ minð1; 1� uji þ yliÞ; l ¼ 1; 2; . . . ; L;

j ¼ 1; 2; . . . ; c ð4Þ

All these relations Ris can be aggregated into the R in terms
of a fuzzy conjunction operator as follows:

R ¼
\N
i¼1

Ri ð5Þ

implemented element-wise by the minimum function

rjl ¼ min
i¼1;2;...;N

½ðrjlÞi� ð6Þ

where rjl represents the fuzzy relationship between the jth
cluster and the lth class.

2.2. Classification of test samples

The classification of a test sample x involves three steps.
Firstly, the cluster membership degree ûx ¼ ½û1x; û2x; . . . ; ûjx;

. . . ; ûcx� is computed by measuring the distances between
the x and the cluster centers

ûjx ¼
jjx� vjjj�2=ðm�1ÞPc
j¼1jjx� vjjj�2=ðm�1Þ ð7Þ

where ûjx represents the cluster membership of the x to the
jth cluster. Secondly, using the obtained ûx and R, the class
membership ŷx ¼ ½ŷ1x; ŷ2x; . . . ; ŷlx; . . . ; ŷLx� of the x can be
computed by fuzzy relational composition

ŷx ¼ ûx �T R ð8Þ
where �T is the sup-t composition operator (Klir and You-
an, 1995). This approach is implemented in terms of

Training Data 

Exploratory Data 
Analysis

Logical 
Interpretation 

Features 

Unsupervised 

Fuzzy Clustering 

Cluster Means

Fuzzy

Partition 

Class Labels

φ -composition,

aggregation 

Fuzzy Relation

Fig. 1. Training of the fuzzy relational classifier.
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ŷlx ¼ max
16j6c
½maxðûjx þ rjl � 1; 0Þ�; l ¼ 1; 2; . . . ; L ð9Þ

Finally, the class membership degree ŷx is defuzzified using
the maximum operator to obtain a crisp decision for
classification

x̂x ¼ arg max
16l6L

ŷlx ð10Þ

where x̂x is the final class label. Note that if the difference
between the first maximal and the second maximal class
membership is too small, a reject decision for the test sam-
ple x should be made. Such a reject decision implies that the
training dataset contains the logical conflict information or
lacks the information in a particular region.

According to the obtained ŷx, we can make following
analysis about the test sample x. The low value of
ŷmax ¼ max16l6LðŷlxÞ means that the inconsistent informa-
tion more likely exists in the training dataset; on the other
hand, the overall high values of ŷlx indicate that available
evidence from the training dataset is insufficient for classi-
fication. Consequently, FRC gives an intuitive interpreta-
tion for the classification result, thus making its
classification prone to transparence.

3. Robust fuzzy relational classifier

In this section, we propose the Robust FRC algorithm
(RFRC) incorporating the KFCM and soft class labels to
overcome the previously mentioned disadvantages of
FRC, and at the same time retain its advantages. Firstly,
we employ our previously proposed robust KFCM to
replace FCM to enhance its robustness against outliers
and its adaptability for the non-spherical data groups. Sec-
ondly, we apply the fuzzy set theory to obtain the soft class
labels aiming to improve the classifier’s performance.

3.1. Kernelized fuzzy c-means

Recently, a number of powerful kernel-based learning
machines, such as Support Vector Machines (SVM) (Cris-
tianini and Taylor, 2000), Kernel Fisher Discriminate
(KFD) (Roth and Steinhage, 2000) and Kernel Principal
Component Analysis (KPCA) (Scholkopf et al., 1998) have
been successfully applied to pattern recognition and data
mining. A common theory behind these algorithms is the
kernel trick, which aims at converting the nonlinear prob-
lem in the original low dimensional input space into a lin-
ear one in the rather high dimensional feature space
(Cover, 1965).

A kernel is a function K that for all x, z from the original
input space X satisfies

Kðx; zÞ ¼ h/ðxÞ;/ðzÞi ð11Þ
where h/(x),/(z)i denotes the inner product operation and
/ is an implicit nonlinear map from the input space X to a
rather high dimensional feature space F

/ : x! /ðxÞ 2 F ð12Þ

Using this mapping /, the kernelized version of FCM can
be described as below

J KFCMðU ; V Þ ¼
Xc

j¼1

XN

i¼1

um
jik/ðxiÞ � /ðvjÞk2 ð13Þ

Similar to FCM, each sample xi satisfies the constraintPc
j¼1uji ¼ 1. Through the kernel substitution, we have

k/ðxiÞ � /ðvjÞk2 ¼ ð/ðxiÞ � /ðvjÞÞTð/ðxiÞ � /ðvjÞÞ
¼ /ðxiÞT/ðxiÞ � /ðvjÞT/ðxiÞ

� /ðxiÞT/ðvjÞ þ /ðvjÞT/ðvjÞ
¼ Kðxi; xiÞ þ Kðvj; vjÞ � 2Kðxi; vjÞ ð14Þ

in this way, a new class of non-Euclidean distance measures
in original input space (also an Euclidean distance in the
feature space) are obtained. Obviously, different kernels
will induce different measures for the original space. Partic-
ularly, K(x,y) in this paper is taken as the radial basis func-
tion (RBF) kernel

Kðx; yÞ ¼ exp
�kx� yk2

r2

 !
ð15Þ

where r is the kernel parameter and significantly affects the
clustering result. In order to simplify the selection of this
kernel parameter, we define the parameter r in terms of
(Abe, 2005)

r2 ¼ max16i6Nkxi � �xk2

k
ð16Þ

where N is the number of training samples, the parameter k
is a scale factor and �x ¼

PN
i¼1xi=N . To get an appropriate

value of r, we indirectly determine it by seeking an appro-
priate scale factor k in {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15}
according to the trial-and-error approach (Abe, 2005).
Though the parameter r so obtained is unlikely to be opti-
mal, the selection procedure can drastically be simplified.

By the definition of RBF kernel, we obtain K(xi,xi) = 1
and K(vj,vj) = 1, and hence the objective function (13) of
KFCM can be simplified to

J KFCMðU ; V Þ ¼ 2
Xc

j¼1

XN

i¼1

um
jið1� Kðxi; vjÞÞ ð17Þ

To minimize JKFCM(U,V), uji and vj need to be computed
according to the following iterative formulas:

uji ¼
ð1� Kðxi; vjÞÞ�1=ðm�1ÞPc
j¼1ð1� Kðxi; vjÞÞ�1=ðm�1Þ ð18Þ

vj ¼
PN

i¼1um
jiKðxi; vjÞxiPN

k¼1um
jiKðxi; vjÞ

ð19Þ

Note that the obtained centers {vj} still lie in the original
space rather than in the transformed higher dimensional
feature space, so that the computational simplicity is still
retained.

W. Cai et al. / Pattern Recognition Letters 28 (2007) 2250–2263 2253
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According to Huber’s robust statistics (Huber, 1981; Wu
and Yang, 2002), a robust procedure should possess all of
the following properties: (1) it should have a reasonably
good accuracy at the assumed model; (2) small deviations
from the model assumptions should impair the perfor-
mance only by a small amount; (3) larger deviations from
the model assumptions should not cause a catastrophe.
From this point of view, FCM is not a robust estimator
(Dave and Krishnapuram, 1997). In contrast, the distance
metric 1 � K(xi,vj) induced by RBF kernel is proved to be a
robust measure (Hathaway and Bezdek, 2000; Jajuga,
1991), hence KFCM based on RBF kernel is a robust esti-
mator according to M-estimator (Huber, 1981; Leski,
2003). It is still worth pointing out that according to
Huber’s robust statistics, KFCM based on polynomial
and sigmoid kernels are not robust due to the non-robust
property of the distance metrics induced by them. Conse-
quently, in this paper, we just choose RBF kernel to guar-
antee the so-needed robustness of the clustering result and
the subsequent classification.

Furthermore, we compare the regions formed by FCM
and KFCM induced by RBF kernel in the input space.
For FCM, the ith region determined by the center vi can
be described as

RegionFCM
i ¼ xjkx� vik2

< kx� vjk2
; i 6¼ j

n o
¼ xjðvi � vjÞTðx�

vi � vj

2
Þ > 0; i 6¼ j

n o
ð20Þ

All the regions decided by all the centers form a Voronoi
tessellation (Bezdek, 1981) in the input space and the
boundary between the regions is a hyper plane which can
only be induced by hyper-spherical clusters. In our KFCM,
the distance function 1 � K(x,vi), induced by RBF kernel,
is in fact a non-Euclidean distance in the original input
space. Similar to FCM, the center vi obtained by KFCM
also forms a region with respect to one of the clusters.
The RegionKFCM

i can be formulated as follows:

RegionKFCM
i ¼ xj

X1
n¼1

ð�1Þn

n!

kx� vik2n

r2n

(

<
X1
n¼1

ð�1Þn

n!

kx� vik2n

r2n
; i 6¼ j

)
: ð21Þ

Here we have used

1� Kðx; viÞ ¼ 1� exp
�kx� vik2

r2

 !

¼ 1�
X1
n¼0

ð�kx� vik2
=r2Þn

n!

¼
X1
n¼1

ð�1Þn

n!

kx� vik2n

r2n
ð22Þ

Obviously, all the RegionKFCM
i (i = 1,2, . . . ,c) form no

longer a Voronoi tessellation in the original space but a
more complex partition that is difficult to be described
explicitly. From the above analysis, it is obtained that the
kernel tricks can make the algorithm more likely adapt to
non-spherical shape of clusters in data, which also accords
with the conclusion obtained by Chen and Zhang (2004),
Girolami (2002) and Kim et al. (2004).

Finally, the process of KFCM algorithm is summarized
in Fig. 2 where the number c of the clusters is determined
by a cluster validity index or the slightly awkward trial-
and-error approach. In conclusion, KFCM can effectively
remedy the shortcomings of FCM, and still retain its sim-
plicity in computation.

3.2. Soft class label

For a training sample xi, its hard class label just gives
the yes-or-no decisions for the given classes. Naturally, it
is unable to differentiate the membership degrees to the dif-
ferent classes, and therefore possibly misses some valuable
class information. Even worse, the improper class label

KFCM Algorithm 

Step1. Randomly select c training samples as the initial cluster centers and set ε>0 to a very 

small value.  

Step2. Update the partition matrix using (18). 

Step3. Update the prototypes using (19) 

Repeat Steps2–3 until the following termination criterion is satisfied: 

| |<new old ε−V V

Fig. 2. KFCM algorithm.
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caused by various reasons most likely demotes the classi-
fier’s performance.

To mitigate the above weaknesses of the hard class label,
we utilize the soft one to represent the class information in
RFRC. The soft label of the xi can be written as
yi = [y1i,y2i, . . . ,yli, . . . ,yLi]

T, where yli takes its value from
[0,1] rather than {0, 1} in the hard label. Cover and Hart
(1967) pointed out that half of the class information for
one sample is hidden in its neighbors, and hence it is neces-
sary to incorporate the local class information into the
design of the soft class label. In practice, one form of the
soft class label motivated by the fuzzy k-nearest neighbor
method (FkNN) (Keller et al., 1985) is computed as
follows:

yli ¼

0:51þ 0:49ðnli=kÞ if l ¼ the same as the label

of the kth pattern

0:49ðnli=kÞ if l 6¼ the same as the label

of the kth pattern

8>>><
>>>:

ð23Þ

where yli represents the class membership of the xi to the
class l, k is the number of the xi’s neighbors and nli stands
for the number of neighbors of the xi that belong to the lth
class. The constant value 0.51 makes the ‘‘dominant class’’
membership of training sample not to be affected, that is to
say, the sample is not moved to a different class. It is worth
noting that the soft class label of each sample satisfies the
constraint

PL
l¼1yli ¼ 1. By examining the formula (23),

we can give the following intuitive interpretation that if
very few neighbors of xi belong to the same class, the mem-
bership degree is kept close to 0.51; on the other hand, if
nli = k, meaning that all neighbors of xi are in the same
class, then yli returns 1.0.

From the viewpoint of the classifier FRC, the predeter-
mined hard class label has no chance to correct or suppress
the improper class label, thus possibly demoting the FRC’s

performance (Ramirez et al., 2003). In contrast, it is the
incorporation of the soft class labels into the RFRC’s clas-
sification mechanism that enhances the error tolerance of
this classifier. In addition, the hard label in FRC fails to
fuzzify or refine the class memberships, while the more pre-
cise soft class label possibly makes RFRC obtain more real
relationship between clusters and classes, as a result, it can
effectively boost the FRC’s performance.

Here we design a synthetic dataset shown in Fig. 3 to
examine the superiority of the soft class label over the hard
one. This dataset is randomly generated in terms of two
Gaussian distributions with the means [3.5,0] and [�3.5,0]
respectively and the common variance diag[2.5,2.5] (diag
denotes diagonal matrix). Meanwhile, this dataset is
corrupted by the Gaussian noise with mean [0, 0] and the
variance diag[2,2]. We use half of this dataset for training
and the other half for testing. After the training phase,
the two cluster centers are located at [�3.69, 0.28],
[3.35,�0.51] in FRC and [�3.68, 0.27], [3.34,�0.52]
in RFRC, and the relation matrices Rs in FRC and RFRC

are RFRC ¼
0:23 0:00
0:00 0:06

� �
and RRFRC ¼

0:54 0:00
0:00 0:43

� �
,

respectively. Note that the cluster centers in FRC are close
to those in RFRC, but their relation matrices are so differ-
ent from each other. This means that the difference between
the performances of FRC and RFRC can attribute to the
employment of the different type of class labels. In the test
phase, FRC just achieves the classification accuracy of
49.0% and reject rate of 51.0% respectively, while RFRC
87.0% and 0.0% respectively. From this example, we can
observe that the soft class label indeed works better than
the hard one.

3.3. More insight from relation matrix R

In (Setnes and Babuška, 1999), the established R is just

utilized to classify but not used to further mine more infor-
mation hidden in it. Intuitively, we can discover more
information from this R to help understand further both
the structure of given data and the relationship between
the structure and their classes. In this subsection, we
attempt to compensate their shortcoming by analyzing
the distribution characteristics of the elements of the R.
For such a purpose, we need to introduce the following def-
inition of the so-called row dominant element of a matrix.

Definition of the row dominant element: For any c · L
matrix A, the row dominant element of the ith row is defined
as follows: first sort ai1,ai2, . . . ,aij,ai(j+1), . . . ,aiL in a non-
increasing order to b1,b2, . . . ,bj,b(j+1), . . . ,bL, i.e., b1 P b2

� � � bj P b(j+1) P � � �P bL; secondly find the smallest j

(1 6 j 6 L � 1) that satisfies bj � b(j+1) P s > 0. If such j

exists, then b1,b2, . . . ,bj are termed as row dominant ele-

ments; otherwise, this row has no dominant elements. In
the following experiments, s is empirically set to 0.4. In
what follows, we will apply those row dominant elements

to mine the structural knowledge of dataset hidden in the
Fig. 3. Synthetic dataset with two Gaussian distributions corrupted by
noise.
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R. For a given c · L relation matrix (where c is the number
of the clusters, also the number of the rows, and L that of
the classes, also the number of the columns)

R ¼

r11 r12 � � � r1L

r21 r22 � � � r2L

� � � � � � � � � � � �
rc1 rc2 � � � rcL

2
6664

3
7775

its ith row elements denote the memberships of the ith clus-
ter to all the classes, while its jth column elements denote
the belongings of the jth class to all the clusters. For a
row corresponding to a cluster, if the multiple dominant
elements exist in the row, it indicates that the cluster con-
sists of the samples mainly from those classes correspond-
ing to the row dominant elements; in particular only one
dominant element appears in one row, the corresponding
cluster consists of the samples mainly from only one class,
meaning that the cluster is relatively pure; if there is no
dominant element in one row, indicating that the corre-
sponding cluster consists of the samples from multiple clas-
ses. For the columns corresponding to the given classes, we
still utilize these row dominant elements to analyze its prop-
erties. If multiple row dominant elements appear in one col-
umn, we can infer that the corresponding class contains
multi-clusters which correspond to the row dominant ele-
ments; while the class associating with a single row domi-
nant element only consists of single cluster; further if no
row dominant element exists, the samples in the class are

scattered or distributed to multiple clusters. It is worth
pointing out that the above analysis depends on both the
clustering methods and composite operators used. Conse-
quently, the relation matrix R indeed plays an important
role not only in classification but also in discovery of the
structural knowledge in given dataset.

Now let us give an example below, given RRFRC ¼
0:54 0:00
0:00 0:43

� �
in the above subsection, in which the differ-

ence between the two row elements 0.54 (0.43) and 0.00
(0.00) is larger than 0.4, and thus 0.54 (0.43) marked by
the squares is a row dominant element. This indicates that
all the samples in the cluster v1 (v2) belong to the class 1
(class 2) and the relationship between clusters and classes
is reliable mainly due to the other element of absolute zero.

3.4. Time complexity of RFRC

RFRC proceeds in two steps. In the first step, perform-
ing KFCM costs the time complexity of O(NcI), where I is
the number of iterations. Then, in the second step, comput-
ing the relation matrix R costs the time complexity of
O(NcL). For a given dataset, the values N and L are fixed,
therefore, the value of c determines the time complexity of
RFRC to great extent. Consequently, an appropriate c

value should be chosen to make a tradeoff between the time
complexity and classification accuracy of RFRC, which is
very consistent with the conclusion drawn in (Alippi
et al., 2001).

RFRC Algorithm

Training Phase: 

Step1: Apply the KFCM on the training dataset {xi}, and obtain the cluster membership degrees {ui}

and cluster centers {vj} according to (18) and (19), respectively. 

Step2: Compute the soft class labels {yi} for all the training samples by (23). 

Step3: Establish the fuzzy relation matrix R using {ui} and {yi} of all the training samples according 

to (4-6). 

Test Phase: 

Step4: For a test sample x, compute the cluster membership degrees ûx by (18). 

Step5: Compute the class memberships yx using R and ûx according to (8) and (9). 

Step6: Examine the values of the yx, if the difference between the first maximal and the second 

maximal class membership is too small, a reject decision for the sample x should be made; 

otherwise the class label ω̂x is yielded in items of (10).

Fig. 4. RFRC algorithm.
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3.5. Summary of the RFRC algorithm

In this subsection, the whole process of the proposed
Robust FRC (RFRC) algorithm is summarized in Fig. 4
and again it is worth mentioning that RFRC still retains
the following characteristics of FRC:

(1) RFRC utilizes a fuzzy relation matrix R to establish
the correspondence between structures and the class
labels.

(2) It can effectively deal with the classes that cannot be
described by a single structure in the dataset.

(3) It always learns the given training dataset without
overtraining.

(4) It represents a transparent alternative to conventional
black-box techniques.

4. Experimental results and discussion

In order to evaluate the performances among FRC,
RFRC and RBFNN, we carry out the experiments on 2
artificial and 11 real-life datasets, and then compare their
performances including the classification accuracies and
reject rates.

4.1. Artificial datasets

4.1.1. Artificial dataset1

In this subsection, we testify the robustness of RFRC
including the training robustness and classification robust-
ness. The training robustness means that the parameter esti-
mation of a classifier can resist the effects of outliers and
noises; the classification robustness implies that a classifier
can make a reasonable decision for a test outlier. For this
propose, the two-dimensional artificial dataset1 composed
of two classes is designed. The samples in class 1 are ran-
domly generated from a Gaussian distribution with mean
[0,0] and variance diag[0.5,0.5]; the samples in class 2 are
uniformly generated in a 3 · 3 rectangle centered at
[3.5,0]. The training and test datasets follow the same dis-
tribution. In order to examine the training robustness, two
outliers [�20,100] and [�100,20] as the training samples
are added to class 1 and one outlier [100,100] is added to
class 2. For testing the classification robustness, 3 outliers
located at [130, 150], [50,�210] and [�140,�30] are added
to the test dataset.

Firstly, we analyze the important parameters in both
FRC and RFRC under the condition of the number of cen-
ters is set to 2 to examine their training robustness. The cor-
responding parameters including the estimated cluster
centers and relation matrices Rs are listed in Table 1. It
can seen from Table 1 that the clustering centers
[23.58,93.46] and [1.39,0.07] obtained by FCM in FRC
are heavily deviated from the original centers, meaning that
they are very sensitive to outliers and thus naturally fail to
reveal the inherent structure of the dataset. Such non-

robust clustering result causes the RFRC lack the dominant
elements in each row. According to the analysis in Section
3.3, this RFRC reveals the unreliable relationship between
the clusters and classes. In contrast, the centers
[�0.18, 0.19] and [3.32,0.11] obtained by KFCM in RFRC
are very close to the original centers so that they can still
relatively really uncover the structure of this dataset. Based
on these unbiased clustering centers, the obtained RRFRC

has the row dominant elements 0.66 and 0.51 which are
marked by the squares in Table 1, implying that more real
relationship between the formed clusters and classes is
revealed by this RRFRC. Hence, it is the robustness of the
estimation for the cluster centers obtained by KFCM in
RFRC that makes RRFRC able to relatively really reflect
the underlying data structure.

Secondly, we inspect whether such a robustness of the
training can lead to the classification robustness (in fact, this
is our aim of designing RFRC classifier), in other words,
whether RFRC can make the reasonable decision for the
test outlier. Before testifying the corresponding classifica-
tion results on the test outliers, we still need to analyze
the experimental results on the normally-generated test
samples which are illustrated in Fig. 5a–c. The character
‘r’ in these figures denotes a reject decision for a test sample
and the ‘e’ denotes a misclassified sample. Besides, the ‘o’
and ‘+’ are the correctly classified samples in class 1 and
2, respectively. From Fig. 5a, we can see that most
(97.5%) of the test samples are not identified by FRC
and thus the corresponding reject decisions are resulted,
and while in Fig. 5c, about half of the samples are misclas-
sified by RBFNN. In contrast, in Fig. 5b, RFRC correctly
classifies all of the test samples due to its training
robustness.

Further, we analyze the classification results on three
test outliers and the corresponding parameters including
the cluster and class memberships are displayed in Table
2. From this table, we can observe that for FRC, the cluster
memberships of the outlier [130, 150] to the two clusters are
0.27 and 0.73 respectively, such an apparent difference
between the two values makes the outlier categorized to
the second cluster. For the other two outliers, there are also
similar consequences. Actually, the outliers, as isolated
points far deviated from the given distribution, should
not be categorized to any clusters or classes, hence the clus-
ter memberships now obtained by FCM in FRC are obvi-
ously unreasonable and anti-intuitive. The same result can
be obtained for RBFNN. In contrast, in RFRC, the cluster

Table 1
Parameters of FRC and RFRC on artificial dataset1 including three
training outliers

FRC RFRC

Cluster centers v1 = [23.58 93.46] v1 = [�0.18 0.19]
v2 = [1.39 0.07] v2 = [3.32 0.11]

Relation matrix RFRC ¼
0:23 0:16
0:00 0:00

� �
RRFRC ¼ 0:66 0:00

0:00 0:51

� �
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memberships for all the three outliers are all [0.50, 0.50],
meaning that the outliers belong equally to the two clusters
and thus are impossible to be categorized to any cluster,
which reflects exactly the nature of the outliers. Due to
its biased cluster memberships and biased parameter R,
FRC makes reject decisions for almost all the test samples
(seen from Fig. 5) including the three outliers. Obviously,
such reject decisions attribute to the non-robustness of
RFRC in the training phase, which further leads to the
robustness lack of the FRC in the classification. For
RBFNN, though rejecting the outliers [50,�210] and
[�140,�30] relatively reliably, it still classifies the outlier
[130,150] to a class with the bigger class membership
(0.33) as shown in Table 2, as a result, the classification
robustness of RBFNN is difficult to be ensured. In con-
trast, RFRC generates the same class memberships of
0.09 and 0.00 for all the three outliers to the two classes
respectively, the margin between these memberships is so
small that the outliers will not be categorized to any given
classes and thus a reject decision can reasonably be made.
In conclusion, RFRC cannot only classify the normally-
generated test samples correctly (seen from Fig. 5), but also
make the reasonable reject decision for the test outlier,
therefore we have reason to believe that it is the training
robustness that ensures the classification robustness of
RFRC.

4.1.2. Artificial dataset2
This artificial dataset named dataset2 is designed to

explore the classification ability for the non-spherical shape

of data groups. This is a three-dimensional dataset with
two classes. The samples in this dataset are randomly gen-
erated on two planes in which one is zero-section (i.e.
z = 0) plane and the other is one-section (i.e. z = 1) planes.
The samples in each plane (class) are uniformly generated
in a 1 · 2 rectangle centered at [1,0.5]. The training and test
datasets are generated from the same distribution. Table 3
gives the parameters of FRC and RFRC including the clus-
ter centers, relation matrix R, accuracy and reject rate
when the number c of the centers is set to 2 and Fig. 6a–
c illustrate the corresponding classification results.

From the results listed in Table 3, we can observe that:
(1) the cluster centers in FRC deviate from their corre-
sponding original centers [1, 0.5,0] and [1, 0.5,1], while the
generated centers in RFRC are relatively close to the origi-
nal centers, indicating that KFCM can group the non-
Euclidean inherent structures of dataset; (2) as seen from
RFRC in Table 3, due to the absence of the row dominant
elements, FRC is difficult to establish the reliable relation-
ship between the clusters and classes, while RFRC can ful-
fill this through the RRFRC; (3) FRC makes the reject
decisions for the test samples of 77.5%, while RFRC clas-
sifies all of the test samples correctly due to the unbiased
cluster centers and reliable relation matrix. In summary,
RFRC is also suitable for the non-spherical clusters com-
pared with FRC.

From Fig. 6a, we can see that most test samples are not
identified by FRC and thus corresponding reject decisions
are resulted, and in Fig. 6c about half of the samples are
misclassified by RBFNN. In contrast, in Fig. 6b all the
samples are correctly classified by RFRC.

Table 2
Cluster and class memberships of three test outliers by FRC, RFRC and
RBFNN

Outlier FRC RFRC RBFNN

[130, 150] û ¼ ½0:27 0:73� û ¼ ½0:50 0:50� û ¼ ½0:27 0:73�
ŷ ¼ ½0:00 0:00� ŷ ¼ ½0:09 0:00� ŷ ¼ ½0:13 0:33�

[50, �210] û ¼ ½0:67 0:33� û ¼ ½0:50 0:50� û ¼ ½0:67 0:33�
ŷ ¼ ½0:00 0:00� ŷ ¼ ½0:09 0:00� ŷ ¼ ½0:02 0:00�

[�140, �30] û ¼ ½0:67 0:33� û ¼ ½0:50 0:50� û ¼ ½0:67 0:33�
ŷ ¼ ½0:00 0:00� ŷ ¼ ½0:09 0:00� ŷ ¼ ½0:15 0:19�

Table 3
Comparison between FRC and RFRC on artificial dataset2

FRC RFRC

Cluster centers v1 = [1.43 0.49 0.44] v1 = [1.25 0.45 0.02]
v2 = [0.52 0.55 0.51] v2 = [1.15 0.49 0.93]

Relation matrix RFRC ¼
0:18 0:13
0:14 0:18

� �
RRFRC ¼ 0:52 0:02

0:01 0:51

� �
Accuracy 19.2% 100%
Reject rate 77.5% 0%
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Fig. 5. Classification results on normally-generated test samples of artificial dataset1 by FRC, RFRC and RBFNN, respectively.
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Finally, we also examine the classification robustness on
this dataset as Section 4.1.1, though the dataset assumes a
non-spherical distribution different from the dataset1, the
similar conclusion can still be drawn and thus omitted here.

4.2. Real-life datasets

4.2.1. Data description

To further investigate the performance of RFRC, we use
11 real-life datasets cited from the UCI Machine Learning
Repository (Blake et al., 1998) which is a repository of dat-
abases, domain theories and data generators collected by
the machine learning community for the empirical analysis
of machine learning algorithms.

Table 4 summarizes the characteristics of the employed
datasets including the name of the dataset, the number of
samples, the number of features and the number of classes.
Taking the dataset Balance as an example, it has 625 3-class
samples where three classes contain 49, 288 and 288 sam-
ples, respectively, and each sample is composed of four
features: left-weight, left-distance, right-weight and right-
distance.

4.2.2. Experiment setup

In the following Section 4.2.3, we first employ the Xie–
Beni index (Xie and Beni, 1991) to determine the value c of

the cluster centers and then compare the classification
results of FRC, RFRC and RBFNN under this setting.
However, the value of c determined by such particular clus-
ter validity index may not lead to the optimal performance
of the classifier. Therefore, in Section 4.2.4 we instead uti-
lize the trial-and-error approach to seek the optimal value
of c in the range from the number of classes up to cmax.
Here the parameter cmax is set to

ffiffiffiffi
N
p

in items of J.C. Bez-
dek’s suggestion (Bezdek, 1998), where N is the number of
the training samples.

In all of our experiments, each dataset is randomly par-
titioned into two halves: one half is used for training and
the other for testing. This process runs repeatedly and inde-
pendently for 100 times, and only their averaged results are
reported. It is worth mentioning that the features of each
sample are normalized to the range between 0 and 1. For
comparison fairness, we introduce the reject level
d 2 [0, 1] to control the number of reject decisions for a
given test dataset. Concretely, we first record the maximal
and minimal class memberships (denoted respectively by
y_max and y_min) yielded on the training dataset and then
compute the reject threshold h for the classification of the
test dataset

h ¼ ðy max� y minÞ � d ð24Þ

If the margin between the first maximal and the second
maximal class memberships of a test sample is lower than
the reject threshold h, then a reject decision is made. In or-
der to obtain the relatively reasonable reject decision, the
reject level ds are all set to the same (relatively small) value
of 0.05 in our experiment.

In RFRC, the scale factor k of RBF kernel is determined
by searching in {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15} with trial-
and-error approach and in the same way the k in the soft
class labels is also selected in {5, 7, 9, 11, 13, 15}. In addi-
tion, the weighting exponent m is set to 2 in both FCM and
KFCM.

4.2.3. Comparison among FRC, RFRC and RBFNN

In this section, we compare FRC, RFRC and RBFNN
under the condition of the value of c determined by the
Xie–Beni index. Table 5 lists the parameters including
the scale factor k, the parameter k and the number c of
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Fig. 6. Classification results of FRC, RFRC and RBFNN on artificial dataset2 respectively.

Table 4
Overview of the characteristics of the datasets used in experiment

Name of dataset Number of
samples

Number of
classes

Number of
features

Water 116 2 38
Wisconsin Diagnostic Breast

Cancer (WDBC)
569 2 30

Ionosphere 351 2 34
Wisconsin Breast Cancer

Database (WBCD)
683 2 9

Twonorm 7400 2 20
Thyroid 215 3 5
Iris 150 3 4
Wine 178 3 13
Ecoli 336 8 7
Glass 214 6 9
Balance scale (Balance) 625 3 4
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the clusters, and the experimental results of three classifiers
including the average accuracy, the corresponding stan-
dard deviation, average reject rate and the corresponding
standard deviation.

First, we compare the classification results yielded by
FRC and RFRC. It can be seen from Table 5 that the accu-
racies and the reject rates of RFRC are consistently better
than those of FRC on all the datasets, and the averaged
standard deviations of the accuracies and reject rates
obtained by RFRC are respectively lower than those
obtained by FRC except for Ionosphere, meaning that
RFRC is relatively more stable than FRC. Such a perfor-
mance promotion of RFRC can attribute to both KFCM
and the soft class labels, which corporately construct a
more real relation matrix R to uncover the underlying rela-
tionship between the clusters and classes.

Now let us take the dataset Balance as an example to
compare the relation matrices Rs in both FRC and RFRC.
When the c is set to 6, the transpose of the 6 · 3 (where 6
and 3 correspond to the numbers of the clusters and classes
respectively) relation matrix RFRC in FRC is shown below

RT
FRC ¼

0:58 0:36 0:51 0:56 0:34 0:25

0:51 0:46 0:46 0:80 0:81 0:25

0:59 0:55 0:62 0:56 0:34 0:80

2
64

3
75

We can observe that there is no dominant element in the
first four row of the RFRC, meaning that the corresponding
four clusters (v3, v4, v5 and v6) are impure, thus FRC does
not more likely find the true relation between those clusters
and the classes and results in the high reject rate of 59.6%
and the low accuracy of 35.7%. Next let us examine RFRC
whose RRFRC is given as follows:

RT
RFRC ¼

0:02 0:13 0:24 0:18 0:28 0:12

0:84 0:79 0:76 0:18 0:32 0:16

0:02 0:21 0:27 0:84 0:82 0:75

2
64

3
75

From which we can find that only one dominant element
appears in each row, thus the clusters v1, v2 and v3 are
prone to pure and the samples falling into these clusters
possibly belong to class 2. A similar analysis can also be
made for the other clusters. Compared with FRC, the

RRFRC is relatively more real and thus makes RFRC
achieve the higher accuracy of 63.1% and lower reject rate
of 19.8%.

In addition, for the same setting of c, some heuristic
knowledge about this dataset Balance can be obtained from
the RRFRC: (1) the classes of this dataset are all composed
of multi-groups, for example, class 2 is composed of 3 clus-
ters (v1, v2 and v3) under our KFCM; (2) there is no cluster
corresponding to class 1 due to the absence of dominant
element in the first column under c = 6 setting, conse-
quently, such a setting fails to adequately describe the
structure of this dataset, leading RFRC to working unwell
on this dataset. On the other hand, such a failure also gives
us a valuable heuristic to guide the selection of the value c.
Such a property of the relation matrix makes the analyses
for the cluster structure and classifier prone to be
transparent.

Next, let us make a comparison between the perfor-
mance of RFRC and RBFNN. From the results in Table
5, RFRC produces the better or comparable classification
performance on the datasets Water, WDBC, Ionosphere,
WBCD, Thyroid and Twonorm, but worse performance
on the other 5 datasets. It is worth noting that the compar-
ison here is in fact not quite favorable for our algorithm,
because the parameters in RBFNN are the optimized
results based on the MSE criterion, in contrast the param-
eters in RFRC are directly from the operator-based specific
construction rather than optimization. Therefore, the rela-
tively inferior classification performance yielded by RFRC
is comprehensible. However, we still need to point out that
even so, on 6 out of all the 11 datasets, our classifier still
achieves better or comparable classification performance
compared with RBFNN. Our next work is to optimize
the relation matrix R to further promote its performance.

It is worth emphasizing that it is such a direct construc-
tive approach that makes RFRC possess the following
advantages: (1) it requires short training time; (2) it always
learns given training dataset without overtraining (Setnes
and Babuška, 1999); (3) from the obtained relation matrix
R, it can acquire some insightful information about the
structure of given data and the relation between the struc-
ture and their classes; (4) according to the yielded class

Table 5
Performance Comparison among FRC, RFRC and RBFNN on the Benchmark UCI datasets

Dataset Parameter FRC RFRC RBFNN

k k c Accuracy Rej rate Accuracy Rej rate Accuracy Rej rate

Water 1 5 2 91.4 ± 5.4 6.8 ± 5.9 97.2 ± 2.1 1.1 ± 1.3 96.5 ± 1.9 2.4 ± 1.5
WDBC 5 13 2 49.6 ± 11.4 49.9 ± 12.0 92.3 ± 1.3 1.9 ± 1.7 91.4 ± 1.2 2.9 ± 0.8
Ionosphere 15 5 2 25.7 ± 4.9 73.2 ± 5.3 60.4 ± 15.4 6.0 ± 2.7 54.1 ± 4.7 11.3 ± 4.9
WBCD 0.5 5 2 72.7 ± 7.7 26.8 ± 8.1 96.5 ± 0.8 0.5 ± 0.4 96.2 ± 0.8 1.1 ± 0.4
Twonorm 1 5 2 54.4 ± 18.3 45.5 ± 18.3 96.2 ± 1.1 2.3 ± 1.2 96.1 ± 0.1 2.5 ± 0.1
Thyroid 0.05 7 3 60.6 ± 19.7 38.5 ± 19.9 83.6 ± 8.2 7.0 ± 6.7 83.8 ± 6.8 4.5 ± 3.1
Iris 0.5 9 3 69.4 ± 12.1 28.2 ± 13.0 83.1 ± 11.5 7.7 ± 11.9 84.2 ± 6.3 6.9 ± 7.4
Wine 5 5 3 85.3 ± 6.3 12.7 ± 7.2 93.0 ± 2.5 2.8 ± 1.7 94.7 ± 2.2 3.0 ± 1.7
Ecoli 15 9 12 46.9 ± 10.3 48.0 ± 12.4 78.5 ± 4.7 12.1 ± 4.8 81.0 ± 2.0 5.8 ± 2.5
Glass 0.01 19 8 16.4 ± 5.6 80.3 ± 5.3 32.7 ± 5.3 42.8 ± 8.8 49.7 ± 4.7 18.0 ± 4.6
Balance 0.1 13 6 35.7 ± 12.3 59.6 ± 13.1 63.1 ± 9.1 19.8 ± 8.1 80.3 ± 3.6 8.8 ± 1.3
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memberships, the reasonable reject decision for a test sam-
ple can be made or not. In conclusion, RFRC is a transpar-
ent alternative to conventional black-box learning
classifiers such as RBFNN here.

4.2.4. Influence of the number c of the prototypes on the

performance of FRC, RFRC and RBFNN

In the above experiment, both RFRC and RBFNN work
well on the 5 datasets (Water, WDBC, WBCD, Twonorm
and Wine) and achieve accuracy of 92% above, indicating
that the value c determined by the Xie–Beni index is rela-
tively suitable for the five datasets. However, this index
works not well enough on the other 6 datasets, for example,
the value 6 of c determined by this index is not large enough
to fit the dataset Balance. Though we also adopt other clus-
ter validity indexes in the literature, none of the indexes
have been claimed to be good for all datasets. Up to now,
finding an appropriate number c of clusters is still an impor-
tant and open issue for partitional clustering (Xu, 1996).
Due to such a characteristic of the existing validity indexes,
in this subsection, we instead utilize the slightly awkward
trial-and-error approach to seek the optimal c. Of course,
such optimal value of c is gained at the cost of time.

In this subsection, we record the performance of FRC,
RFRC and RBFNN changing as a function of the c on
the 6 datasets (Ionosphere, Thyroid, Iris, Ecoli, Glass and
Balance). No matter how many classes the dataset is com-
posed of, we find that the changing trends of classification
performance on these datasets are basically similar. Hence
for simplicity of illustration, we just present the value of c’s
effect on the performance of three algorithms on the data-
sets Balance.

Fig. 7 illustrates the changing curves (left: accuracy,
right: reject rate) of FRC, RFRC and RBFNN on the
dataset Balance with the c value incrementally varying
from the number of class to cmaxð

ffiffiffiffi
N
p
Þ, respectively. From

this figure, we can see that that the accuracy (reject rate)
of FRC increases (decreases) quickly as the c increases.
Different from this, the accuracy (reject rate) yielded by
RFRC increases (decreases) considerably as c increases

from 6 to 12 and then begins stabilizing at about 75.0%
(11.0%) when c P 12, from which we can infer that larger
c can reveal more refined, even missing, structure of this
dataset than smaller c. In order to illustrate our intuition,
we record the RRFRC when the c equals 12

RT
RFRC ¼

0:74 0:77 0:06 0:36 0:09 0:19 0:09 0:45 0:16 0:13 0:07 0:15

0:23 0:37 0:92 0:92 0:88 0:86 0:09 0:45 0:16 0:01 0:07 0:27

0:33 0:25 0:06 0:36 0:09 0:19 0:91 0:94 0:87 0:83 0:77 0:73

2
64

3
75:

From the matrix, we can observe that as the c increases, the
original missed relation between class 1 and clusters under
c = 6 setting can now be found, the class 1 corresponds to
the two new clusters v1 and v2, while the other relations also
yield some changes, concretely class 2 and class 3 corre-
spond 4 clusters and 6 clusters respectively. Such relation-
ship between clusters and classes basically accords with the
distribution of this dataset. From the above analysis, it can
be concluded that the larger c possibly makes the formed
clusters more pure so that the subsequently-constructed R
more really reflects the underlying structures of this data-
set, thus giving rise to better performance. For RBFNN,
the changing curves on the Balance are relatively smooth
when c P 5. That is because the complexity of RBFNN
is determined by the number of hidden nodes, i.e., the num-
ber c of the cluster centers, and when the value of c is large
enough for the given problem, increasing the c cannot al-
ways promote the classifier’s performance.

From the above analysis, the relatively large c value
seems able to achieve good classification performance.
However, the larger the c value is, the more space and time
is consumed. More importantly, the larger c makes the
regions formed by KFCM more complex and thus more
possibly RFRC overfit the given dataset. Therefore, the c

value should appropriately be determined to make a bal-
ance between the performance and complexity of the
algorithms.

5. Conclusion

Fuzzy relational classifier (FRC) is recently proposed
two-step nonlinear classifier, which is very different from
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Fig. 7. Performance for varying number c of clusters by FRC, RFRC and RBFNN on Balance dataset.
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the conventional learning classifier such as neural networks
and support vector machines (SVM). In this paper, a
Robust FRC algorithm (called RFRC) based on FRC is
developed for robust pattern recognition. Concretely, two
approaches are adopted to overcome the FRC’s disadvan-
tages and maintain its original advantages. Firstly, we uti-
lize our previously proposed robust KFCM to replace
FCM to realize the clustering robustness for non-spherical
groups in data. Secondly, we employ the soft rather than
hard class labels to enhance its error tolerance. Conse-
quently, a significant gain of classification performance is
obtained on most of the datasets used here.

The classification results on 2 artificial datasets demon-
strate that RFRC not only robustly classifies the dataset
including outliers, but also effectively handles the dataset
composed of non-spherical groups. On the other hand,
the experimental results on 11 real-life datasets can be sum-
marized as follows: (1) RFRC consistently outperform
FRC in classification performance on all the datasets; (2)
the prototype number c influences the performance of
FRC, RFRC and RBFNN and on 6 relatively complex
datasets, the increase of the value c can effectively promote
the classification performances; (3) the time complexities of
FRC, RFRC and RBFNN all depend on the number c,
hence, a tradeoff between the performance and complexity
of the algorithm should be considered by choosing an
appropriate c value and (4) the relation matrix can be used
to not only establish effective classifier but also acquire the
transparent heuristic information in revealing the structure
of given data and the relation between the structure and
their classes.

Our further and ongoing works include the adaptive
determination for the number c of the prototypes and the
kernel parameter in KFCM, the optimization of the rela-
tion matrix, the selective usage of the existing various com-
posite operators and their combination.
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