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Abstract

Existing classifier designs generally base on vector pattern, hence, when a non-vector pattern such as a face image as the input to the
classifier, it has to be first concatenated to a vector. In this paper, we, instead, explore using a set of given matrix patterns to design a
classifier. For this, first we represent a pattern in matrix form and recast existing vector-based classifiers to their corresponding matrixized
versions and then optimize their parameters. Concretely, considering its similar principle to the support vector machines of maximizing the
separation margin and superior generalization performance, the modified HK algorithm (MHKS) is chosen and then a matrix-based MHKS
classifier (MatMHKS) is developed. Experimental results on ORL, Letters and UCI data sets show that MatMHKS is more powerful in
generalization than MHKS. This paper focuses on: (1) purely exploring the classification performance discrepancy between matrix- and
vector-pattern representations; more importantly, (2) developing a new classifier design directly for matrix pattern.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Classifier design plays an important role in pattern recog-
nition. There are many classifiers reported, including statis-
tical [1], linear discrimination [2], k-nearest neighbor [2],
neural network [2], kernel method [3] and so on. However,
linear classifiers are still of special interest due to their sim-
plicity, ease of analysis and implementation, and easy ex-
pansibility to nonlinear classifiers [2,4].

In tradition, the classifier design almost based on vector
pattern, i.e., before applying them, any non-vector pattern
such as an image should be firstly vectorized into a vector
pattern by some technique like concatenation. But there is
neither research to explore how classification performance
is changed after such a vectorization, nor a classifier is de-
signed directly based on non-vector (e.g., matrix) pattern.
And Ugly Duckling Theorem [2] indicated that it cannot
be said that one pattern representation is always better than
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another, so it is not always right that we design classifier
based on vector pattern.

On the other hand, there is indeed a novel two-dimensional
(2D) method, which can directly operate on non-vector pat-
tern such as an image. Especially in CVPR’2005, there are
several papers [5–9] about such 2D method. The 2D method
mainly focuses on feature extraction and there are two typ-
ical categories of extracting features directly from original
2D image matrix: one belongs to the transforming feature
methods such as 2D fast Fourier or discrete cosine transfor-
mations (FFT or DCT), 2D wavelet transformation and so
on. They extract so-needed features via transforming original
domains (such as spatial domain) to another domain (such
as frequency domain). The other is an algebraic method
typically including two-dimensional principal component
analysis (2DPCA) [10] and 2D linear discriminant analysis
(2DLDA) [11,12]. Yang et al. [10] proposed 2DPCA as an
extension to PCA to extract features directly from the two-
dimension face images and then so-obtained features are in
turn concatenated to a vector pattern for classifier design.
Their experiments on several well-known benchmark face
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data sets showed that this classification method designed on
top of the reshaped vector from 2D feature extractor is better
than the counterpart based on the features extracted by clas-
sical PCA in favor of both image classification and reduc-
tion of computational complexity in feature extraction step.
Ye et al. [11] and Li et al. [12] also, respectively, proposed
2DLDA based on images, which overcomes the singularity
of the within-class scatter matrix in one-dimensional LDA
incurred by small sample size problem and achieves com-
petitive recognition accuracy on face identification. But all
the above 2D methods are only used to deal with 2D image
patterns in themselves. Chen et al. [13] went further and de-
veloped a more general method, called MatPCA and Mat-
FLDA, to extract features directly based on matrix patterns
reshaped from an original one-dimensional, even original
2D pattern. Compared with the conventional methods such
as PCA and LDA operating on vector patterns, Chen et al.’s
method firstly matrixizes a one-dimensional or 2D original
pattern into a corresponding matrix pattern before extract-
ing features. In doing so, the information, intuitively, should
not be lost due to that such newly formed matrix pattern
still retains all its feature components, more likely, some
new implicit structural or contextual information can addi-
tionally be introduced though cannot be explicitly known or
expressed.

However, as mentioned before, these 2D methods are only
applied to feature extraction phase, and the subsequent clas-
sifier design still resorts to the traditional vector-based tech-
nique, i.e., the operating pattern of the classifier itself is still
of vector representation rather than matrix representation.
At the same time, as we have known, although the classi-
fier based on the 2D feature extractor achieves better per-
formance compared with that based on the 1D extractor, no
further investigation is made which factors, the 2D strategy
itself or just only dimension reduction, contributes to the
performance gain. In order to explore reasons behind this,
we intentionally sidestep the feature extraction phase and
directly design a classifier on top of the existent models di-
rectly operating on matrix pattern with aiming to (1) explore
whether such a design can really promote the classification
performance; (2) develop a new technique for classifier de-
sign directly operating on matrix pattern. Without loss of
generality, here we confine our investigation to linear clas-
sifiers due to their ease of mathematical tractability.

In this paper we mainly concern with two-class problem;
but the proposed method is easily generalized to multi-class
problem [14]. When designing a linear classifier, first, it is
assumed that the discrimination function g(x) is a linear
function of sample x, such that

g(x) = w̃Tx + w0, (1)

where w̃ is a weight vector, w0 is a threshold weight or bias.
From the discrimination function g(x) in Eq. (1), it is eas-

ily understood that the linear algorithms above are all vector-
pattern-oriented. But, such a vectorization will bring three
potential problems at least [13]: (1) some implicit structural

or local contextual information of image may be lost after
vectorization, these information may be useful for classifi-
cation; (2) as the dimension of weight vector is equal to the
dimension of input pattern (e.g. the dimension of an image
pattern is d1 × d2, after vectorization, the dimension d of
input pattern is also equal to d1 × d2), then the higher the
dimension of input pattern, the more memory required for
the weight vector; (3) some researchers [15,16] have also
demonstrated that a classifier designed is easily overtrained
when the dimensionality of a vector pattern is very high and
the sample size is small simultaneously. Intuitively, directly
manipulating images in design of a classifier seems simpler
and also not to lose too much spatial or local contextual in-
formation of the original image. Due to the above possible
shortcomings of vector-pattern-oriented linear classifier, an-
other purpose of this paper is to mitigate these shortcomings.

The most important feature of a classifier is its general-
ization ability which measures classification performance
of the designed classifier for previously unseen data in the
training phase. In designing a classifier, one useful tool
of optimizing its generalization ability is a generalization
error bound offered by the Vapnik–Chervonenkis (VC)
theory [17]. Leski [18] proposed Ho–Kashyap (HK) clas-
sifier with generalization control (MHKS). MHKS adopts
similar principle to the support vector machine (SVM) and
maximizes the separating margin but without need to solve
the quadratic programming (QP) problem, and thus gets bet-
ter generalization performance than original HK algorithm
in their experiments [18]. In this paper, due to both simplic-
ity and ease of mathematical treatment of MHKS, we select
it as our matrixizing paradigm and attempt to fuse such a
new idea (2D) into the MHKS and consequently develop
a matrix-pattern-oriented MHKS (MatMHKS). The major
characteristic of MatMHKS is (1) that a matrix pattern with
the size of d1 × d2 replaces a d1d2 × 1 vector pattern; (2)
two weight vectors, respectively, acting on the two sides of
the matrix pattern replaces the original single weight vec-
tor w̃ in MHKS, thus, the memory required for the weight
vector is reduced from d1 × d2 in MHKS to d1 + d2 in
MatMHKS. The experiments on some real benchmark data
sets show that MatMHKS is more powerful in classification
performance or generalization ability than MHKS.

The rest of this paper is organized as follows: in Section
2, we review the original HK and MHKS algorithms. In
Section 3, we will detail our MatMHKS operating directly on
matrix patterns. In Section 4, we will analyze the relationship
between MatMHKS and MHKS. In Section 5, we present
our experimental results on some real data sets and further
discussion. Finally, conclusion and future works are drawn
in Section 6.

2. Ho–Kashyap and MHKS algorithm

For two-class (�1, �2) problem, let T r(N) = {(x1, �1),

(x2, �2) · · · (xN, �N)} be a given training data set, where N
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is the sample number and each independent pattern xi ∈ Rd

has a corresponding class label �i ∈ {+1, −1}, when xi ∈
�1, �i =+1, and when xi ∈ �2, �i =−1. Through defining
the augmented pattern vector yi =[xT

i , 1]T, a corresponding
augmented weight vector w=[w̃T, w0]T ∈ Rd+1, then, linear
discrimination function for two-class problem, g(y), can be
described as

g(yi) = wTyi

{
> 0, yi ∈ �1,

< 0, yi ∈ �2.
(2)

If we multiply class label �i by corresponding augmented
pattern yi of the training data set, then (2) can be rewritten
in the form as below

g(yi ) = �iw
Tyi > 0, (3)

where i = 1, 2, . . . , N . To express simply, let yi =�iyi ,Y =
[y1, y2 . . . yN ]T, then, (3) can be denoted in matrix form

Yw > 0. (4)

The criterion function of HK algorithm is the quadratic loss
function as follows:

Js(w, b) = ‖Yw − b‖2, (5)

where b is the margin vector, and b > 0, the gradients of Js

with respect to w and b are, respectively, given by

∇wJs = 2YT(Yw − b), (6)

∇bJs = −2(Yw − b). (7)

For any value of b, we can always take

w = Y†b. (8)

Thereby, only in one step, we get ∇wJs = 0 and minimize
Js with respect to w. Now we are not so free to modify b
due to the constraint b > 0, and we must avoid b converging
to zero in the descent procedure. The way to prevent b from
converging to zero in HK algorithm is to start with b > 0
and to refuse reducing any of its components. The detail
is that, we firstly set all positive components of ∇bJs to
zero, and then try to follow the negative gradient. Thus,
we obtain the HK rule for minimizing Js(w, b) from (7)
and (8){

b(1) > 0,

b(k + 1) = b(k) + �(e(k) + |e(k)|), (9)

where e(k) = Yw(k) − b(k), k denotes the iteration index,
learning rate � > 0, HK algorithm can find separable vector
in linearly separable case and provide evidence in insepa-
rable case. But this algorithm is sensitive to outliers [18]
and cannot guarantee good recognition accuracies. Leski
[18] proposed a modified HK algorithm with MHKS to
remedy this shortcoming and defined canonical hyperplane
as below

Yw�1N×1. (10)

So, for each class, there is at least one closest point to the
corresponding canonical hyperplane, we have wT yi =1. The
margin of separation is defined as the perpendicular distance
between the two hyperplanes of both sides, and is equal
to � = 2/‖w̃‖ due to the normal vector to the separation
hyperplane is w̃/‖w̃‖. This is similar to SVM. The principle
of SVM is to find the hyperplane with largest margin, the
larger the margin is, the better the classifier designed is.
In this case, we can control the Vapnik–Cervonenkis (VC-
dimension) [17]: hvc �(G2/�2)+1, where G is the radius of
the smallest ball around the training data. From (10), linear
separability is redefined as: if condition (10) is satisfied, then
the data are said to be linearly separable. Then, we should
seek the weight vector w to satisfy condition (10). To obtain
a solution, the above inequality is replaced by the following
equality Yw − 1N×1 = b, b = [b1, b2, . . . , bN ]T. To find the
optimal weight vector w, Leski [18] defined a criterion with
regularization term as follows:

min
w∈Rd+1,b>0

I (w, b)�(Yw − 1N×1 − b)T(Yw − 1N×1 − b)

+ cw̃Tw̃, (11)

where the second term of the right-hand side of (11) is a
regularization one, the regularization parameter c�0, by
minimizing criterion (11), we can get the optimal weight
vector w by the gradient descent technique:{

w = (YTY + c̃I)−1YT(b + 1N×1),

e = (Yw − b − 1N×1) = 0,
(12)

where Ĩ is the identity matrix with the last element on the
main diagonal set to zero.

3. Matrix-pattern-oriented HK classifier with
regularization learning (MatMHKS)

As mentioned above, original linear algorithms are all
vector-pattern-oriented and may have several shortcom-
ings for 2D image patterns in themselves. For exploring
the performance of a classifier oriented to patterns with
different representation forms including 1D and 2D, and
expecting to mitigate the shortcomings, in this paper, we
develop a matrix-pattern-oriented, two-sided linear classi-
fier based on HK algorithm with the regularization learning.
We call it MatMHKS as an extension to MHKS whose dis-
crimination function g(A)(A ∈ Rd1×d2) has the following
form

g(A) = uTÃv + v0, (13)

where u, ṽ are the two weight vectors, respectively, applied
on left and right side of the matrix pattern A so as to make
g(A) linear, respectively, in u and ṽ, and thus here is called
two-sided linear (discrimination) function, v0 is a threshold
or bias. Naturally, in such a matrix-pattern-oriented case, the
dimensions of the weight vectors, u and ṽ, are d1 and d2,
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Table 1
Memory required and relative reduced rate for the weight vectors of MatMHKS and MHKS (suppose that a vector component takes up one unit space here)

Image size d1 + d2 (Matrix) d1 × d2 (Vector) (d1 + d2)/(d1 × d2)

28 × 23 51 644 1:12.6
112 × 92 204 10304 1:50.5
512 × 512 1024 262144 1:256

respectively. In original vector-pattern-oriented counterpart,
the dimension of the weight vector w̃ is d1 × d2, the ratio of
memory required for the weight vectors in the two versions
is (d1 + d2)/(d1 × d2). Table 1 shows that the higher the
dimensionality of a pattern is, the more the memory required
in the matrix-pattern-oriented case is reduced. For example,
for an image with dimension 512 × 512, the reduced rate
achieves 256, very considerable.

From the discrimination function (13), we can convert
a classifier design problem based on matrix pattern to the
problem of searching two-sided optimal weight vectors u
and ṽ. Now for two-class (�1, �2) problem in the matrix-
pattern-oriented case, let T r2D(N) denotes training data set,
T r2D(N) = {(A1, �1), (A2, �2), . . . , (AN, �N)}, where N

is the sample number and each independent pattern Ai ∈
Rd1×d2 has a corresponding class label �i ∈ {+1, −1} which
indicates the assignment to one of the two class �1 or �2.
Two-sided linear discrimination function for two-class prob-
lem can be given in terms of

g(Ai) = uTAĩv + v0

{
> 0, Ai ∈ �1,

< 0, Ai ∈ �2.
(14)

Similarly, through multiplying �i by corresponding matrix
pattern Ai of the training data set, then (14) can be reformu-
lated into

g(Ai) = �i (u
TAĩv + v0) > 0 (15)

where i = 1, 2, . . . , N . Thus, we can also define a canonical
hyperplane in present case as below

g(Ai) = �i (u
TAĩv + v0) > 1, (16)

where i = 1, 2, . . . , N . Now, we seek the optimal weight
vectors to satisfy condition (16) and replace the above in-
equalities with the following equalities �i (u

TAĩv + v0) −
1=bi (i =1, 2, . . . , N). Let b=[b1, b2, . . . , bN ]T be an ar-
bitrary positive vector, b�0N×1, and e = [e1, e2, . . . , eN ]T,
an error vector with components ei = �i (u

TAĩv + v0) − 1 −
bi (i = 1, 2, . . . , N). The pth component, ep, of the e is a
measure of the distance of the pth pattern to the separa-
tion hyper-plane (the distance is called margin) and ep �0
if its margin is positive, in this case, the pattern Ap is cor-
rectly classified and thus ep can be set to zero by increas-
ing the corresponding bp. On the other hand, ep < 0 if the
margin of the pth pattern is negative, but due to the con-
straint bp > 0, it is impossible to prevent condition bp < 0
by decreasing bp to set ep to zero. Thus, the number of

ei �0 (i=1, 2, . . . , N) in the error vector e denotes the num-
ber of the correctly classified samples, and conversely the
number of ei < 0 (i = 1, 2, . . . , N) may reflect the number
of the incorrectly classified samples. Through multiplying
ei by −1, the misclassification error canbe characterized in
the form

I(u, ṽ, v0, b) =
N∑

i=1

h̄(−ei ), (17)

where h̄(ei)=1 for ei > 0, and h̄(ei)=0 for ei �0. Now we
can seek the optimal weight vectors by minimizing criterion
(17), but this optimization problem is NP-complete due to
the criterion is not a convex function, like criterion (11), we
define the criterion below instead of (17),

min
u∈Rd1 ,̃v∈Rd2 ,b>0

I(u, ṽ, v0, b)

�
N∑

i=1

[�i (u
TAĩv + v0) − 1 − bi]2

+ c(uTS1u + ṽTS2̃v), (18)

where S1 = d1Id1×d1 S2 = d2Id2×d2 are two regularization
matrices, respectively, corresponding to the u and ṽ, the
regularization parameter c�0 controls the generalization
ability of the classifier designed by making a tradeoff be-
tween the complexity of the classifier and the training er-
rors. To express simply, we set Y = [y1, y2, . . . , yN ]T, yi =
�i[uTAi , 1]T (i =1, 2, . . . , N), v= [̃vT, v0]T, thus, (18) can
be simplified in matrix form as follows:

min
u∈Rd1 ,v∈Rd2+1,b>0

I (u, v, b)�(Yv − 1N×1 − b)T(Yv − 1N×1

− b) + c(uTS1u + vTS̃2v),

(19)

where S̃2 is a matrix with dimensionality of (d2+1)×(d2+1)

and S̃2 =
[

S2
0

0
0

]
. From (18) or (19), we cannot directly

find closed-form optimal weights, instead, use the gradient
descent technique to iteratively seek them. The gradients of
the objective function (18) and (19) with respect to u, v and
b are

∇Iu = 2
N∑

i=1

�iAĩv[�i (u
TAĩv + v0) − 1 − bi] + 2cS1u,

(20)

∇Ib = −2(Yv − 1N×1 − b), (21)
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∇Iv = 2YT(Yv − 1N×1 − b) + 2cS̃2v. (22)

By setting ∇Iu = 0 and ∇Iv = 0, we can get

v = (YTY + cS̃2)
−1YT(1N×1 + b), (23)

u =
(

N∑
i=1

Aĩv ṽTAT
i +cS1

)−1 ( N∑
i=1

�i (1+bi−�iv0)Aĩv

)
.

(24)

From Eqs. (23) and (24), it can be seen that the weight
vectors u and v are all determined by the margin vector b
whose components determine the distance of the correspond-
ing sample to the separation hyperplane. Moreover, because
u and v are also mutually dependent, hence, we seek the u
and v by initializing b and the previous iteration.

The design procedure for MatMHKS can be summarized
in the following steps:

(1) Fix c�0, 0 < � < 1 Initialize b(1)�0 and u(1), set the
iteration index k = 1,

(2) Y = [y1, y2, . . . , yN ]T, where yi = �i[u(k)TAi , 1]T,

(3) v(k) = (YTY + cS̃2)
−1YT(1N×1 + b(k)),

(4) e = Yv − 1N×1 − b,
(5) b(k + 1) = b(k) + �(e(k) + |e(k)|),
(6) if ‖b(k + 1)− b(k)‖ > �, then k = k + 1, go to Step (7),

else stop,
(7)

u(k + 1)

=
(

N∑
i=1

Aĩv(k)̃v(k)TAT
i + cS1

)−1

×
(

N∑
i=1

�i (1+bi(k)−�iv0)Aĩv(k)

)
Go to Step (2),

where k denotes iteration step, � > 0, and b(k + 1) =
b(k)+�(e(k) + |e(k)|) prevents the reduction of all the com-
ponents of b, � is a preset parameter. When d1 =1, u=1 and
omitting step (7), this procedure is degenerated to MHKS
[18], and at the same time, when c is set to 0, this pro-
cedure is degenerated to original Ho–Kashyap algorithm.
So Ho–Kashyap and MHKS algorithm are two special
instances of MatMHKS.

Now, we can represent the decision function of the clas-
sifier for input pattern A

d(A) = uTÃv + v0

{
�0, A ∈ �1,

< 0, A ∈ �2,
(25)

where the two-sided weight vectors u and ṽ, threshold or
bias v0 are obtained in the process of training.

4. Relationship among MatMHKS and MHKS

In this section, we will further reveal the relationship
between MatMHKS and MHKS. Before pointing out their

essence, let us first introduce the following theorem:

Theorem 1. Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cp×q ,
then

vec(ABC) = (CT ⊗ A)vec(B), (26)

where vec(X) denotes an operator that vectorizes a matrix X
to corresponding a vector, for example, let X=(xij ) ∈ Cp×q

and xi = (x1i , x2i , . . . , xpi)
T is the ith column of X, thus

vec(X) = (xT
1 , xT

2 , . . . , xT
q )T is a vector with p × q dimen-

sionality. And “⊗” denotes Kronecker product operation.

Accordingly, in terms of Theorem 1, the discrimination
function of MatMHKS (13) can be transformed into

g(A) = vec(uTÃv) + v0 = (̃vT ⊗ uT)vec(A) + v0

= (̃v ⊗ u)Tvec(A) + v0. (27)

Comparing to the discrimination function of MHKS (1),
we find that the discrimination functions of MatMHKS and
MHKS have the same form now, and ṽ ⊗ u in MatMHKS
plays the same role as the weight vector w̃ in MHKS. It is
easy to prove that the solution space for ṽ ⊗ u is contained
in that for w̃, because usually, the weight vector w̃ of MHKS
does not always satisfy decomposability of the Kronecker
product.

We can also see this point by comparing the criterion
functions of MatMHKS and MHKS. First let t̃=̃v⊗u, t0=v0,
t=[̃tT, t0]T, Y=[y1, y2, . . . , yN ]T, yi =�i[vec(Ai ), 1]T (i =
1, 2, . . . , N), then criterion function (18) of MatMHKS can
be reformulated as below

min
t∈Rd+1,b>0

t=̃v⊗u

I (t, b)�(Yt − 1N×1 − b)T(Yt − 1N×1 − b)

+ c(uTS1u + ṽTS2̃v). (28)

Comparing to the criterion function of MHKS (11), the first
terms of their right-handed sides are the same, and the sec-
ond parts are regularization terms. The important difference
of them is that t in (28) must satisfy a decomposability con-
straint of the Kronecker product, but w in (11) does not.

Until now, we get that MatMHKS is a MHKS imposed
with Kronecker product decomposability constraint, in other
words, in searching for its optimal weight vectors on the
surface of the objective function (28), MatMHKS is guided
by some prior information such as the structural or local
contextual information which is reflected in the representa-
tion of Kronecker production of the u and v, it is a point
that makes it different from and may outperform in classifi-
cation performance MHKS. More importantly, it can avoid
overtraining due to (1) the aforementioned introduction of
structural information such as in ORL and Letter data sets
below; and (2) reduction of dimensionality for patterns, i.e.,
from pattern A with dimension of d1 ×d2 to Av or uTA with
corresponding dimension of d1 or d2. In next section, we
will present several methods of how to use local contextual
information.
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5. Experiments and discussion

In this section, we will examine the feasibility and practi-
cality of MatMHKS through the experiments on the classifi-
cation of real-world high-dimensional data. To evaluate the
performance of MatMHKS, it was compared, respectively,
with MHKS [18] and SVM [17].

5.1. Description of experimental data sets

These experiments are conducted on the benchmark data
sets including both those in a matrix representation, includ-
ing the ORL face1 database and the Letter text-base,2 and
those in a vector representation from UCI data sets [19]. The
details of the data sets are listed in Table 2.

5.2. Initialization and selection of parameters

In all experiments, the parameters involved include the
margin b, �, �, u and the regularization parameter c. We set
all components of b(1) = 10−6, � = 10−4, � = 0.99, which
are initialized by the same setup as in Ref. [18]. Commonly,
u can be initialized with an arbitrary vector, but for sim-
plicity and fairness of comparison among the different algo-
rithms, we definitely initialize u(1) = 1d1×1, and the regu-
larization parameter c could be selected by cross-validation
(CV), but when the dimensionality of a sample is very high
and the size of the data set is too small simultaneously, the
CV is not so practicable [20]. And there are several methods
[16,21,22] for selecting the regularization parameter, those
methods are based on the fixed margin vector. But during
the iteration of MatMHKS, the margin is variable, so they
can straightforwardly not be used here. We set the regular-
ization parameter c in the range from 0 to 20 (step 1) and
carry out MatMHKS on Letter with pattern of 4 × 108 and
water-treatment with pattern of 2 × 19. The classification
accuracies are shown in Fig. 1 from which it is clearly ob-
served that for different data sets, the range of parameter c

with best recognition accuracy is different, whereas for the
c value in a specified range dependent on single data set
such as water-treatment, the classification accuracy is almost
unchanged.

In order to select such an appropriate regularization pa-
rameter, in this paper, we propose in turn another selection
criterion defined as follows:

nC(u(c), ṽ(c)) = eTe + (uTS1u + ṽTS2ṽ), (29)

where u(c) and ṽ(c) denote dependence on the c to be
sought. Eq. (29) contains two terms: the first term is training
error and the second is the regularization term. The criterion
tries to make a trade-off between the training error and gen-

1 Available at http://www.cam-orl.co.uk.
2 Available at http://sun16.cecs.missouri.edu/pgader/CECS477/NNdigits.zip.

Fig. 1. Classification accuracies with the change of c for MatMHKS on
Letter and water data sets.

eralization. The selection algorithm for the c is summarized
below:

(1) Initialize iteration index i = 1, c(i) = 0, total itera-
tion number m, and selected classifier index k = 0, err
(0) = 108,

(2) train a MatMHKS classifier, calculate its modified train-
ing error err(i) defined by (29),

(3) if err(i) < err(k), then k = i,
(4) if c(i) = 0, let c(i + 1) = 2−6, else c(i + 1) = c(i) × 2,
(5) i = i + 1, if i�m, go to (2),
(6) The final classifier is the kth classifier trained.

Consequently, this strategy makes the selected parame-
ter able to minimize the criterion nC(u(c), ṽ(c)) and has an
obvious advantage: when designing a classifier for M-class
problem (M > 2), we adopt usually one-against-one or one-
against-the rest classification strategy. Such a strategy gives
rise to M(M−1)/2 or M2-class sub-classifiers in total. Leski
[18] used the same regularization parameter for all the two-
class sub-classifiers, and searched the best parameter in the
range of 0 and 15 (step 0.2) by CV technique to achieve the
best performance on the test set. Although restricting the reg-
ularization parameters for all the two-class sub-classifiers to
be identical is simple for selection, in fact, (1) the same reg-
ularization parameter cannot guarantee that all the designed
two-class sub-classifiers achieve their separate best perfor-
mances; (2) even if different best parameters can be selected
for sub-classifiers via his method, but due to (a) exhaus-
tive searching in the specified range and (b) dependence of
selected parameters on all sub-classifiers, it turns out more
time-consuming and grows exponentially with the size of
the specified range. Instead in this paper, we select a sepa-
rate appropriate regularization parameter for each two-class
classifier (sub-classifier) by the above selection algorithm
to improve the generalization ability of each sub-classifier,
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Table 2
Detail of the data sets

Data set Attributes Classes Sample number Remark

ORL 28 × 23 40 400 10 Faces/class
Letter 24 × 18 10 500 50 Letters/class
Wine 12 3 178 59, 71 and 48 data, respectively, in class 1, 2, and 3.
Water-treatment 38 2 116 65 and 51 data, respectively, in class 1 and 2.
Sonar 60 2 208 111 and 97 data, respectively, in class 1 and 2.
Musk clean2 (166D) 166 2 6598 1017 and 5581 data, respectively, in class 1 and 2.
Musk clean2 (160D) 160 2 6598 The same data set in Musk clean2 (166D) with the last

six dimensions of each pattern being omitted (by us)
mainly for generating more matrix patterns.

Table 3
Classification performance (%) comparison on ORL and Letter by the different selecting-regularization-parameter methods

Data sets Classifiers

Selection method in Ref. [18] Our selection method

MHKS MatMHKS MHKS MatMHKS

ORL 90.35 (c = 0.8) 90.50 (c = 11) 95.50 93.60
Letter 90.44 (c = 0.1) 86.39 (c = 0.62) 88.88 86.96

Table 4
Classification performance (%) comparison among MHKS, MatMHKS and SVM on UCI data sets

Data sets Classifiers

MHKS MatMHKS SVM

Water-treatment 96.97 98.03 (2 × 19) 97.12
Wine 92.453 90.85 (2 × 6) 91.89

93.962 (3 × 4)

Sonar 69.93 77.41 (6 × 10) 76.30
71.76 (5 × 12)

72.685 (4 × 15)

74.352 (3 × 20)

75.09 (2 × 30)

Musk-clean 2 (160D) 88.576 84.321 (4 × 40) 82.76
87.873 (2 × 80)

Musk-clean 2 (166D) 88.476 87.763 (2 × 83) 82.73

The best result for each data set is denoted in bold.

thus, the generalization ability of the final classifier. And the
parameter selection for each sub-classifier is unrelated so
that its time complexity is linear growth only with the size of
the specified range. To evaluate the availability of our selec-
tion strategy, we compare the parameter selection method in
[18] with ours. Both MatMHKS and MHKS algorithms are,
respectively, carried out with the two selection methods, and
their corresponding classification accuracies on ORL and
Letter are listed in Table 3. From the table, we can see that
MatMHKS using our selection method can produce better or
comparable classification accuracies on both data sets com-
pared with MatMHKS using the selection method in Ref.
[18], especially distinct on ORL (achieving 3.1%); while the
same phenomenon can be observed for MHKS, its accuracy
on ORL is increased by 5.15% but on Letter is slightly de-
creased. Here, it must point out that due to the different reg-

ularization parameters resulted from the different pair-wise
sub-classifiers in our selection method, it is difficult for us
to give a common best parameter for these sub-classifiers
and thus we do not enumerate them in Table 3.

5.3. Experimental results of MHKS and MatMHKS

For multi-class problems, if the samples among classes
are too unbalanced, we will use the appropriate strategies.
For both Letter and ORL data sets, we take one-against-one
classification strategy. For UCI data sets here, one-against-
the-rest strategy is used. Each experiment on each data set
is independently repeated for 10 times and the final classi-
fication result is the average accuracy of the 10 runs.

Table 4 demonstrates all classification accuracies on UCI
[19] data sets used here. UCI data sets consist of all vector
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Table 5
Classification performance (%) comparison among MHKS, MatMHKS with different reshaping and SVM

Data sets Classifier

MHKS MatMHKS SVM

Strategy1 Strategy2 Random

ORL 95.5 93.6 (28 × 23) 93.85 (28 × 23) 77.40 (28 × 23) 94.80
94.7 (7 × 92) 96.05 (4 × 161) 93.90 (4 × 161)

96.7 (4 × 161)

Letter 88.88 86.96 (24 × 18) 90.52 (24 × 18) 79.68 (24 × 18) 91.72
89.44 (16 × 27) 90.88 (16 × 27) 80.72 (16 × 27)

92.56 (4 × 108) 93.24 (4 × 108) 88.52 (4 × 108)

The best result for each data set is denoted in bold.

patterns, thus in order to tailor them to MatMHKS, we must
first transform these vector patterns to corresponding ma-
trix patterns, for example, the 38 dimension vector pattern
in water-treatment is transformed to the corresponding ma-
trix pattern with dimension of 2 × 19 (alternatively 19 × 2).
For these vector data set, generally there are many ways
of matrixizing or reshaping them and thus the matrix pat-
terns with different sizes can be formed for the same vector
pattern. However, in this paper, our purpose to mainly val-
idate the availability of the proposed MatMHKS, and thus
we do not intend to enumerate all the possible matrices re-
shaped by the original vector. Therefore, for each vector
data set, the dimension of the transformed matrices mainly
used here are all listed in Table 4. From Tables 3 and 4,
we can observe that compared with MHK, (1) for the vec-
tor patterns (UCI data sets), MatMHKS improves classifica-
tion performance on three data sets (water-treatment, Wine,
Sonar), especially distinct on Sonar (achieving 7.48%), but
produces slightly degenerate performance on Musk-clean 2
(160D)(0.703%) and Musk-clean 2 (166D) (0.613%); (2) for
the ORL and Letter image data sets, MatMHKS produces
degeneration in classification performance to some degree
(1.9% and 1.92%, respectively, on ORL and Letter), which
seems counter-intuitive and uneasy to be understood and
explained.

5.4. Further experiments on images with different reshaping

In last subsection, although getting better or comparable
performance compared with MHKS, MatMHKS is found
that the case cannot be hold for image patterns such as in
ORL and Letter, inspired by MatMHKS’ success on vector-
to-matrix transform, in this subsection, we try to reorganize
or reshape image patterns themselves into another new ma-
trix patterns to examine the classification performance of
MatMHKS. We still focus on ORL and Letter data sets. In
reshaping them, without loss of generality we use three dif-
ferent strategies: (1) the first one is to first split each col-
umn of a given image (viewed as a matrix) into several
equally-sized sub-columns, for example, three sub-columns

each column, and then each sub-column becomes one col-
umn of a new matrix pattern in some order, for example,
from top to bottom and from left to right; (2) the second one
is to first partition a given image into several equally sized
sub-blocks, such as 2×2, 2×3 or 3×3, then vectorize each
such sub-block into a column vector by some technique like
concatenation as one column of the new matrix pattern; (3)
the third one is to randomly resample the elements of the
original image to form a new matrix pattern.

Experimental results of MatMHKS and MHKS on these
newly formed patterns of ORL and Letter data sets are listed
in Table 5. First of all, we focus on the three different re-
shaping strategies in MatMHKS. Clearly, it can be found
that for MatMHKS, the random strategy yields inferior per-
formance to that with the first and second strategies, while
the first strategy leads to the comparable performance to the
second one. That this case occurs can attribute to that the
random resampling breaks down more likely the spatial re-
lation among elements of the original image than the first
and second strategies. In other words, the first and second
strategies emphasize the local information of the original
image to greater extent. Therefore hereafter, we will mainly
discuss MatMHKS using the first and second reshaping
strategies.

Further, we find from Table 5 that through reshaping
using the first or second strategy, MatMHKS improves clas-
sification accuracy distinctly on the two data sets. In such
two reshaping strategies, for the same 4 × 161 reshaped
pattern of ORL, the classification accuracies are, respec-
tively, increased by 3.1% and 2.2% compared with non-
reshaped case, and similarly, for 4 × 108 reshaped pattern
of Letter, the classification accuracies are respectively
increased by 5.6% and 2.72%. Moreover, compared with
MHKS, MatMHKS gets better classification performance on
both ORL (1.2%) and Letter (4.36%). Therefore, through the
matrixization (from vector to matrix) and reshaping (from
matrix to matrix) together, MatMHKS can obtain more sig-
nificant performance gain than MHKS on both original vec-
tor patterns and image patterns. It is worthwhile pointing out
that different reshaping for given images results in different
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classification performance of MatMHKS, thus final perfor-
mance is reshaping-dependent.

5.5. Performance comparison among MatMHKS and SVM

In our experiment, we also compare our MatMHKS with
support vector machine (SVM), which is one of the-state-of-
the-art classifiers. Due to that both MatMHKS and MHKS
both belong to linear classifier, we here also confine SVM
to the linear type using the linear kernel for comparison
fairness. From Tables 4 and 5, it can be found that MatMHKS
with the optimally reshaped matrix pattern has the superior
classification performance to SVM on all the data sets used
here.

5.6. Further exploration

In this subsection, we will further explore the intuition
behind why MatMHKS can get superior performance. In
last subsection, we observed that MatMHKS produces bet-
ter classification performance on almost all data sets used
here than MHKS. However, we found that for image data
sets, MatMHKS does not achieve the best classification per-
formance on the original matrix pattern, e.g., on the 28×23
matrix pattern of ORL, beyond we expected. On the other
hand, the experiments in Refs. [10–13] have shown that us-
ing those features extracted by 2D methods can improve
generalization performance on ORL face data set of sub-
sequently designed classifier (such as the nearest neighbor
classifier). Therefore, we can basically conclude that the
performance gains obtained by 2D feature extraction meth-
ods can entirely not contribute to the 2D extraction strat-
egy rather than partially to dimensionality reduction for im-
age. In other words, both dimensionality reduction and 2D
methodology result in performance promotion collectively.

Contrarily, reshaping for the original image, e.g., from
28×23 to a new 4×161 matrix pattern of ORL, MatMHKS
results in better classification performance.

Before exploration, we first reformulate the discrimination
function of MatMHKS (13) and let B = ATu, then (13) can
be rewritten as g(B) = BT̃v + v0 = ṽTB + v0, formally, it is
a similar form as that of MHKS in which the B is an input
to the MHKS. We decompose B in terms of

B = ATu = [a1, a2, . . . , ad2 ]Tu = [aT
1 u, aT

2 u, . . . , aT
d2

u]T,

(30)

where A = [a1, a2, . . . , ad2 ] and ai = [ai1, ai2, . . . , aid1 ]T,
i = 1, 2, . . . , d2, B = [b1, b2, . . . , bd1 ]T, bj = aT

j u,
j = 1, 2, . . . , d1. Thus, each component of the new input B
is a linear combination of all the components of each col-
umn of original matrix A, implying that it integrates global
information in each column (coined column-global infor-
mation) and thus de-emphasizes local information in each
column (coined column-local information). If we, instead,
reshape the original pattern A with dimension d1 × d2 to a

Fig. 2. Training error changes with the iteration number of MatMHKS,
respectively, on water-treatment, Sonar, Musk-clean2 (166D) and
Musk-clean (160D).

new matrix pattern C with dimension r × c, then still let
B = CTu, similar to the above analysis, each component of
the B is a linear combination of all the components of each
column of C. Now without loss of generality, it is supposed
to use the first reshaping strategy in last subsection, in this
case, each column of the C is a sub-column of original
pattern A, and thus each component of the B is a linear
combination of all the components of a sub-column of A,
implying that it just integrates column-local information
rather than column-global information and thus emphasizes
local information in each column. Therefore, a possible rea-
son of yielding the above phenomenon in image recognition
can be intuitively attributed to such a fact that the reshaping
from matrix pattern to another matrix pattern may destroy
the whole or global structure in each column of original
pattern, but partial or local structure or column-local infor-
mation can likely be kept and emphasized contrarily, which
could be more useful for discrimination [5].

In a word, compared with MHKS, MatMHKS may get
guided by a priori knowledge of the specific problem but
in an implicit way. It is such an incorporation of both ma-
trixization and reshaping to vector and matrix patterns that
MatMHKS becomes more flexible and effective for classi-
fication.

5.7. On convergence of MatMHKS

In this subsection, we give a discussion on the conver-
gence of the proposed MatMHKS algorithm. Here, thanks to
some difficulty in theoretical proof, we adopt an empirical
means as used in [18,23] to demonstrate that MatMHKS can
converge in the limited iterations. Fig. 2 shows the training
error changes with the iteration number of MatMHKS, re-
spectively, on water-treatment, Sonar, Musk-clean2 (166D)
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and Musk-clean (160D). From the figure, it can be found
that all the training errors on the four data sets can obvi-
ously converge to a certain stable value after the limited
time iterations, concretely, 1, 30, 50, 30 iterations respec-
tively for water-treatment, Sonar, Musk-clean2 (166D) and
Musk-clean (160D). Consequently, the convergence behav-
ior of the proposed MatMHKS algorithm is demonstrated.

6. Conclusion and future work

Inspired by the idea of 2D feature extractions, in this pa-
per, we proposed a new classifier design method, matrix-
pattern-oriented two-sided linear classifier or MatMHKS,
extended and developed MHKS algorithm [18]. MatMHKS
is particularly suitable to high dimension patterns including
image pattern. Compared with MHKS, MatMHKS not only
reduces the memory required for the weight vectors but also
achieves better generalization performance. And it is worth-
while to point out that the performance gain of MatMHKS is
not resulted from popular non-linearization techniques [24]
but simply from the matrixization for vector patterns or re-
shaping for image patterns. This may be another way with
low cost to promote classification performance.

Another conclusion we can get is that the vector pattern
representation is not always optimal, for example in some
case, if the dimension of the pattern is high, the matrix pat-
tern representation may be better. This also directly provides
a necessary validation for the Ugly Duckling Theorem [2,
Chapter 9].

In addition, our experiment also illustrates that the perfor-
mance gains obtained by 2D feature extraction methods can
entirely not contribute to the 2D extraction strategy rather
than partially to dimensionality reduction for image.

In future work, we need to research several problems be-
low: (1) how to matrixize a vector pattern more appropri-
ately to tailor to the inherent but implicit representation of
pattern under study makes prior knowledge reflected in the
training; (2) extend MatMHKS to a corresponding nonlinear
counterpart by such some methods as kernel method [25]
although this work is, at present, not so easy as in vector
case.
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