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Abstract

In this paper, we present an enhanced Pictorial Struc-

ture (PS) model for precise eye localization, a fundamen-

tal problem involved in many face processing tasks. PS is

a computationally efficient framework for part-based ob-

ject modelling. For face images taken under uncontrolled

conditions, however, the traditional PS model is not flexi-

ble enough for handling the complicated appearance and

structural variations. To extend PS, we 1) propose a dis-

criminative PS model for a more accurate part localization

when appearance changes seriously, 2) introduce a series of

global constraints to improve the robustness against scale,

rotation and translation, and 3) adopt a heuristic predic-

tion method to address the difficulty of eye localization with

partial occlusion. Experimental results on the challenging

LFW (Labeled Face in the Wild) database show that our

model can locate eyes accurately and efficiently under a

broad range of uncontrolled variations involving poses, ex-

pressions, lightings, camera qualities, occlusions, etc.

1. Introduction

The task of detecting and localizing eye positions in a

given image which contains a face is crucial for the initial-

ization of many face processing applications such as face

tracking, face recognition, face expression analysis, eye be-

havior analysis, etc. There is a subtle difference between

eye detection and eye localization; that is, the latter gen-

erally requires a much more accurate prediction of the eye

positions (usually only a few pixels of errors are allowed)

than the former. Recent research has disclosed that an inac-

curate eye localization will cause serious problems for au-

tomatic face recognition systems [19], especially for those

based on techniques heavily relying on the quality of the ge-

Figure 1. Illustration of the complicated appearances of eyes (im-

ages from the LFW database [10]).

ometrically normalized face images, such as eigenface and

fisherface.

Similar to other general object detection tasks such as

face detection [22], people detection [3] and animal detec-

tion [12], the major challenge of eye localization comes

from the fact that, as illustrated in Figure 1, the appearances

of eyes are complicated due to various factors, from normal

behaviors of eyes (e.g., opening, closing, etc.) to environ-

mental changes (e.g., outdoor lighting, pose, scale, reflec-

tion of glasses, partial occlusion by hairs, etc.). To address

the problem, various approaches have been proposed. These

approaches can be roughly classified into three categories

[23,26], i.e., template-based approaches, appearance-based

approaches and feature-based approaches.

Most of the early methods, such as the deformable tem-

plates methods [24], belong to the template-based category,

where a generic eye model is designed based on eye shapes

and then used to search eyes in the images. These meth-

ods usually have good accuracy, however, generally they are

computationally expensive and require good image contrast

which is not always available in practice.

Appearance-based approaches aim to localize eyes based

on their photometric appearance using various statistical

classification techniques, such as principal component anal-

ysis (e.g., eigeneyes [16]), support vector machines [9],

neural networks [5], Boosting [14], etc. Everingham et al.

[2] compared several kinds of appearance-based approaches

and found that the simple Bayesian model outperforms the

other methods including a regression-based and a Boosting-

based method. In general, appearance-based eye localiza-



tion methods are more robust against complicated appear-

ance changes than template-based ones due to the capabil-

ity of learning from examples, yet the problem of reliably

separating true small eye regions from other regions with a

low false positive rate remains unsolved.

Feature-based approaches attempt to exploit special

characteristics of the eyes such as the dark pupil and white

sclera to distinguish the eyes from other objects [25]. Such

eye-specific features can be regarded as the context in which

the true eye lies. However, when the input image is with low

contrast or with closed or occluded eyes, the eye-specific

features are difficult to be detected.

Overall, most of the existing methods are only feasible

under rather constrained conditions, and few work studies

the problem of precise eye localization under uncontrolled

conditions such as situations with extreme lighting changes,

large expression variations and partial occlusions, although

addressing these issues is important for real applications,

e.g., uncontrolled face recognition [6,7].

In this paper, we present a new approach for precise and

robust eye localization. Previous studies [1,3] disclosed

that the accuracy as well as the false positive rate of fea-

ture localization can be improved effectively by exploiting

the context information of the object of interest. Here, by

context information of eyes, we mean any facial features

that are helpful for identifying the eye positions, such as

the places of nose, mouth, etc. Compared with mouth, nose

can be detected more reliably due to the fact that its appear-

ance is less sensitive to expression changes and occlusions

(say, by beard), hence being used in this work. Actually,

the nose position may also be useful in face normalization

algorithms.

The Pictorial Structure (PS) model [3,4] is well suited

for our purpose. It is a computationally efficient frame-

work for part-based modelling and recognition of objects,

and has been successfully applied to face identification [3],

people finding [3] and other object recognition and detec-

tion tasks [12]. The essence of the PS model is to consider

the components (or parts) of an object in the context of its

overall interior configurations, aiming to finding out the lo-

cation of each component as well as its spatial configuration

through encoding them into a global object function. In

contrast to pure appearance-based approaches where each

object is handled by a single appearance model, the PS

method provides a powerful framework for modelling an

object in terms of its components and the geometrical rela-

tionship between components.

The main contribution of this paper is to enhance the tra-

ditional PS model such that it can be used to handle the

complicated appearance and structural changes of eyes un-

der uncontrolled conditions. Extensive experiments on the

challenging LFW (Labeled Face in the Wild) database show

that the proposed model can localize eyes accurately and ef-

ficiently under uncontrolled conditions.

The rest of this paper is organized as follows. Section 2

briefly introduces the Pictorial Structure model. Section 3

proposes our enhanced PS model. Section 4 presents meth-

ods for fitting the learned PS model to test images and han-

dling partial occlusion. Section 5 reports on our experi-

ments. Finally, Section 6 concludes.

2. Background

In this section, we briefly introduce the statistical frame-

work of Pictorial Structure following the denotations in [3].

In PS an object is first decomposed into parts and then the

best part candidates are searched subject to some spatial

constraints such that the likelihood of generating the con-

cerned image is maximized. Hence a PS model can also

be viewed as a specific Markov Random Field (MRF) with

parts as its sites.

The PS model [3,4] can be expressed naturally in terms

of an undirected graph G = (V, E), where the vertices

V = {v1, · · · , vNp
} correspond to Np parts, and the edge

set E = {(vi, vj), i 6= j} characterizes the local pairwise

spatial relationship between different parts. An instance

of an object is given by a configuration L = (l1, · · · , li),
where each li = (xi, yi) specifies the location of the com-

ponent vi on the image plane. For example, a face can be

represented by four parts (i.e., two eyes, one nose and one

mouth) and the spatial relationship between these four parts.

Hence the appearance and structural information are com-

bined into a unified framework.

Specifically, given an image I containing a face, the like-

lihood of generating this image by the facial parts at some

locations is p(I|L, θ), where θ is the model parameter. As-

sume that we are working on the region output by a face

detector, and therefore we need not model the background.

To infer the locations of the facial parts from this model, we

can look for the maximum a posterior p(L|I, θ), i.e., the

probability that a face configuration is L given the model θ
and an image I . According to Bayes rule, the posterior can

be written as

p(L|I, θ) ∝ p(I|L, θ)p(L|θ), (1)

where p(I|L, θ) is the generative model of appearance and

p(L|θ) measures the prior probability that a face appears

at the location L. Here the model parameter is denoted by

θ = (u, c), where u = (u1, · · · , uNp
) expresses the appear-

ance while c = {cij |(vi, vj) ∈ E} expresses structural con-

straints on edges. Felzenszwalb and Huttenlocher [3] also

included the set of edges E as model parameter in order to

simplify the underlying graphical structure (e.g., letting it

be a tree), but this is not necessary for our purpose of eye

localization.

Assuming that the parts are statistically independent, we



have

p(I|L, θ) = p(I|L, u) ∝

Np
∏

i=1

p(I|li, ui), (2)

where the appearance of each component can be mod-

elled by unimodal Gaussian distribution p(I|li, ui) ∝

N (α(li), µi, Σi).
With a similar independent assumption on the spatial re-

lationship between pairs of parts, we have the structural

model

p(L|θ) = p(L|c) =
∏

(vi,vj)∈E

p(li, lj|cij), (3)

where the edge constrains between the components can also

be modelled by Gaussian distribution

p(li, lj |cij) = p(xli , xlj |cij)p(yli , ylj |cij)

= N (xli − xlj , sij , Σij)N (yli − ylj ), s
′
ij , Σ

′
ij).

(4)

Plugging (3) and (2) into (1), we get the global objective

function

p(L|I, θ) ∝

{

Np
∏

i=1

p(I|li, ui)
∏

(vi,vj)∈E

p(li, lj |cij)

}

. (5)

The first term at the right hand of (5) is the appearance

model, while the second term expresses the spatial con-

straints. Taking the negative logarithm of (5), we get the en-

ergy function of the PS model. For tree-structured models,

Felzenszwalb and Huttenlocher [3] have developed com-

putationally efficient algorithms for learning from training

data and fitting test images.

3. Enhanced Pictorial Structure

Possible criticisms to the PS model include that the uni-

modal generative appearance model may not be capable to

provide a good approximation to multimodal distributions

of eye appearance under uncontrolled conditions, and the

local pairwise prior may impose overly strong constraints

on the spatial relationship between the parts. We will ad-

dress these issues in this section.

3.1. Discriminative Pictorial Structure

One important observation from our work is that in a

complicated setting, the distribution of eye patterns are mul-

timodal in nature, which could not be approximated well

with a unimodal Gaussian model. 1 More importantly, our

goal is to localize the eyes precisely rather than describe the

whole face object using facial features. So, a discriminative

1One option is to replace the simple unimodal Gaussian generative

model with a more complex one like Gaussian mixture model (GMM), at

the cost of higher model complexity and hence lower detection efficiency.

model which focuses more on the points that count is more

appropriate.

For this purpose, we introduce a class label z ∈
{1, · · · , Np} for each part, denoting one of Np possible se-

mantic labels (e.g., Right-eye, Left-eye, Nose, etc.) for that

part. The appearance model of (2) can then be rewritten as

p(I|L, θ) = p(I|L, u) ∝

Np
∏

i=1

p(I|li, ui)

=

Np
∏

i=1

∑

z

p(I, z|li, ui) =

Np
∏

i=1

∑

z

p(I|z)p(z|li, ui).

(6)

Note that p(I|z) gives the probability of generating an

image given its part labels. This can be useful if we detect

eyes directly in general background (i.e., without face con-

text). In our setting, however, the localizer takes the image

region output by a face detector as input, where the part la-

bels of interest are assumed to be known. Hence we need

not model any preference over the labels in image I; this

implies that p(I|z) is a constant and we can omit it for sim-

plicity. This simply reduces (6) to

p(I|L, θ) ∝

Np
∏

i=1

∑

z

p(I|z)p(z|li, ui) =

Np
∏

i=1

∑

z

p(z|li, ui).

(7)

Furthermore, we restrict the region for searching each

kind of part (e.g., right eye, left eye, nose, etc.) by col-

lecting statistics about their true positions with respect to

the corresponding output window of our face detector. This

allows us to model only the parts from certain predefined re-

gion with known labels, thus not only reducing the number

of candidate locations for each part significantly, but also

simplifying our model significantly to

p(I|L, θ) ∝

Np
∏

i=1

∑

z

p(z|li, ui) =

Np
∏

i=1

p(zi|li, ui), (8)

where the posterior distribution, p(zi|li, ui), characterizes

the probability that the label of the part vi is a certain label

value zi given its appearance ui and position li. To this end

we derive a discriminative model completely within the PS

framework. There were many work [1,12] which use a dis-

criminative appearance model, yet none has been designed

for eye localization.

There are many ways to approximate p(zi|li, ui) [8],

among which the energy-based methods (e.g., conditional

random fields and logistic regression) are very popular due

to the convenience of incorporating arbitrary functions of

training examples and the nonparametric nature in the sense

of no need to assume any particular distribution. Here, for

simplicity we choose to model the decision boundary with



a hyperplane in some feature space, and then fit it with a lo-

gistic sigmoid function to give an approximation probability

of interest [18].

In particular, we use a support vector machine (SVM)

to calculate the optimal separating hyperplane in the fea-

ture space, which corresponds to a nonlinear boundary in

the complicated input space. Other options such as Rele-

vance Vector Machine (RVM [21]) and Adaboost can also

be considered. The SVM solver outputs an optimal hyper-

plane in the general form of f̂(u) = β̂ +
∑N

i=1 α̂iK(u, ui),
where N is the number of training examples and K is a

predefined kernel function (Gaussian kernel is used in this

paper). Then, the estimate of posterior probability is fitted

by p(z = 1|u) = 1/{1 + e−Af̂(u)−B} using the binomial

log-likelihood as loss function [18]. 2

In practice, the learned support vectors are usually not

sufficiently sparse to meet the requirement of real-time de-

tection. One way to address this issue is to use a reduced set

method to reduce the number of support vectors and hence

the computational complexity. In this work we adopt the

method in [15] for this purpose and find that typically 10 to

20 support vectors are enough for each part.

To speed up the detection further, in implementation we

train two hierarchical SVM classifiers. The first-level SVM

works on the simple gray-intensity feature of each part in

order to reject quickly a large number of negatives. The

second-level SVM uses the Gabor features as input, which

are known to be robust against scale, illumination and other

appearance changes. The cascaded SVMs are trained in a

way similar to the Viola-Jones face detector [22], where a

threshold is learned for each level of SVM on the training

set according to the given performance criterion (i.e., true

positive rate & false positive rate). Through this process,

we reduce the number of candidate positions for each parts

from about 400 to 20 efficiently and effectively.

3.2. Global and Local Constraints

As introduced before, the traditional PS models the spa-

tial configuration between a pair of parts with a separate

Gaussian distribution, yet we find that such local pairwise

constraints may be overly strong and only work well un-

der normal conditions (i.e., the spatial relationship does not

change too much), while in practice the configuration be-

tween facial parts may be deformed largely due to variation

such as scale, rotation and expression changes.

To illustrate such limitation, in Figure 2 we give an ex-

ample of the fitted Gaussian distribution of relative location

of the left eye with respect to the location of the right eye

(c.f . Eq.(3)) along the vertical axis. This can be understood

as some confidence score indicating to what extent a given

2Here we abuse the notation of z to indicate whether or not a particular

facial feature (e.g., left eye) with appearance parameter u is detected.

Figure 2. The fitted Gaussian distribution of relative location of the

left eye with respect to the location of the right eye (c.f . Eq.(3))

along the vertical axis.

Figure 3. Illustration of some commonly encountered structural

changes between eyes. From left to right: the original, scaled and

rotated images.

configuration follows a prior spatial regularity. The confi-

dence score reaches its peak at the position of mean value

and decreases otherwise. In the example of Figure 2, the

mean value of the distribution is very close to zero, which

implies that the best vertical positions of two eyes should

be on the same horizon line, thus imposing a very strong

constraint on the spatial relationship between two eyes, eas-

ily being violated in the case of rotation, e.g., the rightmost

image in Figure 3. Similarly, the constraint on relative loca-

tions in the horizontal axis is problematic since face images

may be taken under different scales, e.g., the middle image

in Figure 3.

To address the above-mentioned deficiency, we intro-

duce an improved structural description method which is

more robust to rotation, scale and translation. The idea is

to incorporate global structural constraints with local ones.

By global structure we mean the spatial relationship among

more than two parts. In our case, this is simply the triangle

formed by the two eyes and the nose (c.f . the leftmost im-

age in Figure 3); if more facial features need to be detected,

more triangles like this can be added. Moreover, instead

of modelling the relative location between parts in previ-

ous studies, we adopt relative distances to encode the local

constraints.

In particular, we model three pieces of structural infor-

mation based on the facial feature triangle, that is, 1) the

length of each edge, 2) the length ratio between a pair of

edges, and 3) the inner angle between any two edges. The

first one is local constraint and the latter two are global con-

straints. They have nice affine-invariant properties. First,



the edge lengths are invariant to 2D rotation and transla-

tion; Second, both the length ratio and inner angle between

two edges are invariant to scale, 2D rotation and 2D trans-

lation. As the consequence, these three structural mea-

surements make our model more robust against structural

changes caused by expression and pose variations which are

commonly encountered in real applications.

In implementation, the length of edge Lij is defined by

the Euclidean distance between parts vi and vj on the image

plane, i.e.,

Lij =
√

(xli − xlj )
2 + (yli − ylj )

2

∀i, j ∈ {1, 2, 3}, i 6= j,
(9)

and the length ratio rij and the cosine angle cos(αij) be-

tween edges are defined respectively as

rij = Lik/Ljk (10)

and

cos(αij) =
L2

ij + L2
jk − L2

jk

2LijLik

. (11)

All of the above definitions can be expressed as a func-

tion of edge length e. Here, we define e1 , L12, e2 , L13

and e3 , L23, and thus the energy function E(e1, e2, e3) of

our structural model is

E(e1, e2, e3) = −
3

∑

i=1

ϕ1(ei) −
3

∑

i,j=1,i6=j

ϕ2(ei, ej)

−
3
∑

i,j,k=1,i6=j 6=k

ϕ3(ei, ej, ek), (12)

where ϕ1, ϕ2 and ϕ3 are the potentials corresponding to the

aforementioned three structural constraints, respectively,

modelled by Gaussians. Considering that different subjects

have different configurational biases, we weight these Gaus-

sian potentials with their variances respectively before com-

bining them; the weights can be considered as a prior for

different constraints. The values of the above structural pa-

rameters can be learned from independent training data us-

ing the maximum likelihood method.

4. Matching Algorithm

4.1. Fitting the Model

The best fit of the enhanced PS model in an unseen test

image is

L∗ = argmin
L





Np
∑

i=1

(− log p (zi|li, ui)) + E (e1, e2, e3)



 .

(13)

An exact inference for the non-tree-structured model is

difficult and so we adopt an approximation method. We first

Figure 4. Illustration of three typical eye occlusion conditions.

From left to right: one or two eyes are weakly occluded; only one

eye is occluded and almost undetectable; both eyes are completely

occluded.

run the appearance model to filter the noise candidates out,

then find the best configuration which minimizes the struc-

tural model. The major computational cost comes from the

first stage where (Nleye + Nreye + Nnose) positions need

to be examined. The cascaded-SVM classifier described

in Section 3.1 effectively reduces the cost involved in this

stage. The second stage is proven to be very efficient due to

that it works on the 2D image plane and that the first stage

helps reduce considerable number of candidate positions.

Our current implementation has not been optimized, but it

takes about only 0.1 seconds to fit a 100 × 100 image on a

2.8GHz P4 machine; we believe it is acceptable for many

real applications.

4.2. Predicting with Partial Occlusion

In many real-world images such as those collected from

the web, the eyes may be partially occluded by hand, hair,

glasses, etc. This will impose difficulty for our appearance

model. Here, we adopt a heuristic method to handle the

following typical partial occlusions, as illustrated in Fig-

ure 4. 1) One or two eyes are weakly occluded but can still

be detected by our discriminative model (i.e., its posterior

exceeds some threshold). This situation does not need any

special treatment and we simply use the learned model to

fit it as if they were not occluded. 2) Only one eye is oc-

cluded and could not be detected reliably but the other eye

and the nose have good response values. In this situation,

we can use the positions of the two reliable features to pre-

dict that of the difficult one, i.e., only the structural model is

used to predict the position of the occluded eye. A similar

method has been used by Leung et al. [13] in finding faces

in cluttered scenes. 3) Both eyes are occluded and unde-

tectable. This is the worst case, however, if the nose can be

detected, we can still use it as the starting point to trigger

the structural model fitting; otherwise we have to include

more context facial features or rely on the prior positions of

eyes output by the face detector.

5. Experiments

We evaluate the proposed method on databases including

LFW (Labeled Faces in the Wild) [10], FERET [17], etc.,

and achieve encouraging results on all databases. Due to the



page limit, considering that LFW is the most challenging

database, we only present the results on LFW in this section.

5.1. Data

LFW [10] is a large WWW database in which all faces

were collected from real-life featuring variations on pose,

lighting, expression, background, camera quality, occlusion

and image noise. The appearance of eye region in an im-

age is largely changed by these variations, hence posing

great challenge to eye localization techniques. From the

total 13,233 target face images, we randomly select 2,000

images and split them into two data sets with 1,000 im-

ages each, using one for training and the other for testing.

Various transformations such as rotation, blurring, contrast

modification and addition of Gaussian white noise are then

applied to the initial set of training images, yielding about

17,000 new images in total. The final training set contains

3,000 images, among which 500 images are randomly se-

lected from the initial set and 2,500 from the generated im-

ages. Some example test images are shown in Figure 1. The

LFW database does not provide the ground-truth eye posi-

tions, so we invite two human volunteers to manually label

the eye positions and take the average as the ground-truth.

We define the ground-truth as the pupil of eyes by default,

and when the eyes are completely occluded (say, by sun-

glasses), we define it as the center of eyeball. The extensive

labor work is the reason why we have used a subset of 2,000

images instead of the total 13,233 images in LFW.

5.2. Settings

All images undergo the same preprocessing pipeline

prior to analysis, as illustrated in Figure 5. For face de-

tection, we use the publicly available implementation of the

Viola-Jones face detector [22] from the OpenCV library; it

outputs a bounding box indicating the predicated center of

the face and its scale. After verifying with a SVM classi-

fier, we scale the detected face images to a standard size of

100 × 100 pixels (i.e., the maximum likelihood estimation

of the scale of face detector windows), which helps reduce

the amount of translation and scale variation in the image.

The geometrically normalized images then undergo illumi-

nation normalization which compensates for low-frequency

lighting variations and suppresses noise with a Difference

of Gaussians filter. This technique has recently been shown

to lead to state-of-the-art performance on face recognition

[20] and we find it is also useful in eye localization. Finally,

using statistics about the eye/nose positions relative to face

detector window, the search regions for two eyes and the

nose are separately estimated [2].

The training patches consist of both positive and nega-

tive samples. They are collected according to the ground-

truth, while the negative set undergoes an additional boot-

strap procedure to filter out samples with low utility value.

Figure 5. Illustration of the overall preprocessing pipeline (the

bounding box in the rightmost image is the search region).

The size of each patch is determined by cross-validation on

the training set.

To evaluate the precision of eye localization, we adopt

the measure proposed by Jesorskey et al. [11]. The localiza-

tion criterion is defined in terms of the eye center positions

according to

deye =
max(dl, dr)

‖Cl − Cr‖
, (14)

where Cl and Cr are the ground-truth positions and dl

and dr are the Euclidean distances between the detected

eye centers and the ground-truths. For eye detection, usu-

ally deye < 0.25 is required [25], but for eye localization,

deye < 0.05 or deye < 0.1 is more desired.

We compare our method with the traditional PS method

[3] and the Bayesian method [2]. The simple Bayesian

method has recently been shown to perform better on

eye localization than several classical appearance-based

approaches such as regression method, Boosting-based

method and SVM-based method [2].

5.3. Results

Figure 6 plots the cumulative error distribution curves

of the compared methods, where the horizontal axis is nor-

malized Euclidean distance (i.e., deye) between the pre-

dicted eye position and ground-truth position, while the

vertical axis is the cumulative localization score, showing

the percentage of images that have been successfully pro-

cessed corresponding to a certain localization error. As ex-

pected, the PS method outperforms the Bayesian method,

partially due to the fact that the PS method has stronger ca-

pability of structural validation while many images in the

database exhibit different extent of rotation either in the

plane or out of plane. By replacing the generative appear-

ance model with a discriminative model, and by incorporat-

ing the global shape constraints, our enhanced PS method

performs the best among the compared methods. To make

this clear, we tabulate the percentage of successful local-

ization subject to deye < 0.05 and deye < 0.1 in Table 1.

It can be found that our method promotes the performance

of the traditional PS method from 53.4% to 80.2% when

deye < 0.05, and achieves the best correct localization rate

of 98.4% at deye < 0.1, about 5% higher than the other

two methods. Figure 5.3 presents some example images
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Figure 6. Comparing the cumulative error distribution curves.

in which our method correctly localizes the eyes while the

other two methods failed; most of the incorrect localizations

by the other two methods are caused by the complicated ap-

pearance or structural changes due to lighting, pose, expres-

sion and partial occlusions.

We also examine the relative localization performance

of each eye. Breifly, here we only report the results on the

right eye (results on the left eye are similar). Table 2 gives

an overall estimation of the performances of the compared

methods. In particular, the table discloses that in 90% of

images the eye is located within 1.90 pixels by our method,

much better than the other two methods (2.96 pixels by the

Bayesian method, 2.72 pixels by the traditional PS method).

Although it is difficult to make a quantitative comparison

with other methods in literatures due to the lack of com-

mon evaluation data set, we notice that the best reported

result in [2] is 2.04 pixels and 2.74 pixels with the same er-

ror measures on the FERET data set and a WWW data set,

respectively.

To study the localization behavior further on the right

eye in x and y axes, we report the displacements by the

compared methods in Table 3. Note that although the mean

value of the traditional PS method is slightly better than that

of the Bayesian method in x-axis, its standard deviation is

much larger than that of the Bayesian method, 3 which may

due to the use of overly strong local structural constraints.

It is clear that our method outperforms both the traditional

PS method and the Bayesian method significantly.

We also study the scalability of the proposed method

by removing the local search region for each part. In this

case, the appearance model (8) is modified as: p(I|L, θ) ∝
∏Np

i=1

∑

z p(z|li, ui) ≈
∏Np

i=1 maxzp(z|li, ui). The results

are shown in Table 4. As expected, the performance of all

the compared methods degenerates when the search region

increases. However, the efficiency of model inference of our

method is still improved since it filters out a large number

3This should not be confused with the results in Figure 6 where a dif-

ferent evaluation criterion is used.

Table 1. Percentages of successful localizations subject to deye <

0.05 and deye < 0.1, respectively.

Method deye < 0.05 deye < 0.1
Bayesian method 44.0% 91.9%

Traditional PS 53.4% 93.1%

Our method 80.2% 98.4%

Table 2. Errors of right eye localization, measured by Euclidean

distance in pixels in normalized images. In 90% images the eyes

are located within 1.90 pixels by our method.

Method 50% images 90% images

Bayesian method 1.51 pixels 2.96 pixels

Traditional PS 1.39 pixels 2.72 pixels

Our method 0.97 pixels 1.90 pixels

Table 3. Pixel coordinate error (mean ± std.) in original images

when searching in reduced space.

Method x-coordinates y-coordinates

Bayesian method 1.38 ± 5.17 1.22 ± 3.88

Traditional PS 1.33 ± 7.18 1.38 ± 8.19

Our method 0.93 ± 4.36 0.71 ± 1.84

Table 4. Pixel coordinate error (mean ± std.) in original images

when searching in whole image.

Method x-coordinates y-coordinates

Bayesian method 4.76 ± 122.62 2.00 ± 32.05

Traditional PS 1.93 ± 18.80 2.68 ± 49.78

Our method 1.06 ± 5.47 0.97 ± 11.52

of noise candidates at first.

Finally, we examine the effectiveness of our method for

handling partial occlusions, and some typical results are

shown in Figure 5.3. It can be seen that our method is more

robust against partial occlusions caused by pose, hair, sun-

glasses, and other things like baseball pole. It is interesting

to note that sometimes we human beings may be cheated

by our own eyes, that is, the eyes may not be occluded by

sunglasses as much as we may have thought and can still be

precisely located by our method (c.f . Figure 5.3).

6. Conclusion

In this paper, we present a new method for eye localiza-

tion under uncontrolled conditions. We enhance the Picto-

rial Structures (PS) model [3] by replacing the generative

model with a discriminative model, incorporating global

geometrical constraints on facial features, and adopting an

effective heuristic method to deal with occlusion. Experi-

ments on the challenging LFW database [10] show encour-

aging results on a broad range of appearance variations and

imaging conditions. The proposed method is possible to be



(a) On images without occlusions (b) On images with occlusions

Figure 7. Examples results of eye localization on LFW images (from top to bottom: Bayesian method, traditional PS method, our method).

extended to localize other facial features.
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