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Abstract

A new method to generate coarse meshes for overlapping unstructured multigrid

algorithm based on self-organizing map (SOM) neural network is presented in this paper.

The application of SOM neural network can overcome some limitations of conventional

methods and which is designed to pursuit the best structure relation between fine and

coarse unstructured meshes with the object to ensure robust convergence for overlapping

unstructured multigrid algorithm. Besides, this method can automate the generation of

unstructured meshes and is suitable for both two and three dimensions conditions.
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1. Introduction

As known, in the research field of numerical simulation in fluid dynamics,

multigrid algorithms are popular methods to accelerate the convergence of

numerical simulation. In order to simplify the mesh generation for complex

configurations, completely unstructured meshes are often employed. So over-

lapping unstructured multigrid algorithm [1] is a ideal method for numerical

simulation in fluid dynamics.
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For this application, firstly, a sequence of fine and coarse meshes should be

generated . One suggestion is to generate fine meshes by repeatedly subdividing
cells of a coarse unstructured mesh in some manner. However, generally poor

topological control of the fine mesh results from such a procedure. Another

widely adopted method is to generate independently all the fine and coarse

meshes respectively. That is to say, a sequence of completely unrelated coarse

and fine meshes are employed because the underlying theory of multigrid does

not assume any relation between the various meshes, merely that variables can

be transferred back and forth between them. But under some special condi-

tions, for example, if adaptive fine mesh is needed to enhance the accuracy of
result, there will be considerable difference between the structures of fine

and coarse meshes generated with the method mentioned above. In the present

work, a new method to generate coarse meshes based on self-organizing map

(SOM) [2,4] network has been developed to ensure the structure similarity

between fine and coarse meshes. So the error generated by transferring data

between fine and coarse meshes will be decreased.

2. The incremental-learning SOM algorithm

The SOM consists of neurons located on a regular low-dimensional grid

(usually two-dimensional (2D)), which is illustrated in Fig. 1. Each neuron i is

represented by an n-dimensional prototype vector mi ¼ ½mi0;mi1; . . . ;min�1�,
where n is the dimension of the observation vector x ¼ ½x0; x1; . . . ; xn�1� which is
a data sample.

On each training step, a data sample is input and the nearest unit mc (the
best matching unit) is found in the map. The prototype vectors of the best

matching unit and its neighbors on the grid move towards the current sample

vector:

mtþ1
i ¼ mt

i þ hcðxÞ;iðx� mt
iÞ ð1Þ

Fig. 1. The structure of SOM network.

354 H. Lu et al. / Appl. Math. Comput. 140 (2003) 353–360



Note t the sample index of the regression step, then index c (‘‘winner’’) is de-

fined by the following condition:

kx� mt
ck6 kx� mt

ik 8i ð2Þ

Here hcðxÞ;i is called the neighborhood function. A simple definition of hcðxÞ;i is
the following: hcðxÞ;i ¼ aðtÞ if kri � rck is smaller than a given radius around
node c (whereby this radius is also a monotonically decreasing function of t),

otherwise hcðxÞ;i ¼ 0. ri 2 R2 and rc 2 R2 are the vector locations in the display

grid.

After some training steps, the SOM will arrange high-dimensional input

data along its two-dimensional output space such that similar inputs are
mapped onto neighboring regions of the map which means that the similarity

of the input data is preserved within the representation space of the SOM.

3. The method to generate coarse meshes based on SOM

3.1. Necessity of using SOM

The traditional overlapping unstructured multigrid algorithm transfers

variables between some completely unrelated meshes which are generated in-

dependently. So no measure is adopted to optimize the structure relation be-

tween fine and coarse meshes. What is important is that poor structure

relations can affect the accuracy of variables transfer. Fig. 2 provides two se-
quences of overlapping meshes where the fine meshes of (a) and (b) are iden-

tical and the coarse meshes are different.

Fig. 2. Comparison between different overlapping 2D meshes.
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If nodal scheme is employed, the flow variables are stored at the vertices of

the triangles. When variables are transferred from the fine grid to the coarse
grid, we must firstly determine in which triangle of the fine grid the expected

point of the coarse grid is located, then general weighting transfer rule is used

to evaluate the variables at the expected point using the variables stored at the

vertices of the determined triangle of fine grid. We take an example to explain

this rule. As shown in Fig. 2(a), all triangles of the fine grid with vertices lo-

cated closely around or inner the triangle of the coarse grid makes a contri-

bution to the vertices of the coarse triangle when transferring data from the fine

grid to the coarse grid. In Fig. 2(b), obviously, the triangle of the fine grid with
three circled point will never be considered to transfer data from the fine grid to

the coarse grid. This rule results that the transfer efficiency strongly depends on

the structure topology between the fine grid and the coarse grid. Dissimilarity

between the points distribution of the fine grid and the coarse grid can lead to

the consequence that a lot of points of the fine grid make no contributions

when transferring data from the fine grid to the coarse grid. So the accuracy of

data transfer will be decreased. In other words, the variables at the points of

the coarse grid cannot characterize the variables at the points of the fine grid
because some information of the fine grid is omitted. In this case, SOM is

adopted to enhance the similarity of the points distribution of the fine grid and

the coarse grid in order to ensure the accuracy of data transfer.

3.2. Application of SOM

The applications of SOM comprise two aspects, visualization and abstrac-

tion. Here, its capability of abstracting complex, nonlinear statistical rela-
tionships between high-dimensional data items is employed to optimize the

distribution of the points of the coarse grid. The procedure of 2D coarse mesh

generation is the following:

(1) Ensure that each layer of the meshes has the same boundary, half represen-

tative boundary points of the fine grid need to be selected to form the solid

boundary and the outer boundary of the expected coarse mesh.

(2) Select randomly a quarter of the inner points of the fine mesh which will be
considered as the inner points of the expected coarse mesh. The random

distribution of the selected inner points will be adjusted with SOM.

(3) Applying SOM in generating the coarse mesh. The prototype vector mi ¼
½mi0;mi1� is determined with respect to the 2D coordinate vector of the ith

inner point of the coarse mesh and the observation vector xj ¼ ½xj0; xj1� is
determined with respect to the 2D coordinate vector of the jth inner

point of the fine mesh. With Eq. (1), the observation vector xj is in-

put one by one. Then the prototype vector mi is adjusted towards the
observation vector. This step shows that the distribution of the inner
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points of the coarse mesh is adjusted to be similar with that of the fine

mesh.
(4) Connect all the points of the coarse mesh using Delaunay triangulation to

form the final coarse mesh after the training procedure.

3.3. Improvements for robustness and speed

Because of the random selection of the original inner coarse mesh points

(step 2 shown in 3.2), the probability density of these points will be much

different with that of the fine mesh. In order to enhance the robustness of the

method mentioned above to generate coarse meshes and to accelerate the
training procedure, a supervising method is developed in this section and de-

scribed as the following:

During the training procedure, the observation vectors are inputted at

random according to the probability density function. In other words, the

probability density function of the fine mesh points acts as the supervising

condition. For doing this, the probability density function of the fine mesh

points is defined using Parzen window function [3] which is like the following:

p̂pN ðxÞ ¼
1

N

XN
i¼1

1

VN
/

x� xi
hN

� �
ð3Þ

In the present work, /ððx� x1Þ=hN Þ is normal window function which is cal-
culated as

/ðuÞ ¼ 1ffiffiffiffiffiffi
2p

p exp

�
� 1
2
u2
�

ð4Þ

This supervising method is more valuable when p̂pN ðxÞ varies violently with the
variation of x.

4. Results

In order to show the efficiency of the new method developed in this paper, a

layer of coarse mesh around a three-element airfoil is presented here. The

adopted fine mesh is depicted in Fig. 3 where the density of the points varies

obviously with the position in the field. According to the discussions in Section

3.1, the optimum coarse mesh should inherit the structure characteristic of the

fine mesh.
Fig. 4 illustrates the original distribution of the inner coarse mesh points.

Some of them are near the outer boundary and the others are near the solid

boundary. Obviously, a fast convergence of overlapping multigrid algorithm
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will not be realized if the distribution of the coarse mesh points is not to be

adjusted.
The similarity between the distributions of the fine mesh points and the

coarse mesh points is embodied in Fig. 5 where (a) displays the distribution of

the fine mesh points and (b) displays the final distribution of the coarse mesh

points whose original positions are depicted in Fig. 4. From the comparison

between the original and the final distributions of the coarse mesh points, the

robustness of SOM is proved.

After the training procedure, Delaunay triangulation is employed to gen-

erate the final coarse mesh which is presented in Fig. 6. From this example, the
coarse mesh generated using SOM has a similar structure with the fine mesh

which will enhance the transfer accuracy, thereby the convergence for multigrid

algorithm will be accelerated.

If some coarser meshes are needed for multigrid algorithm, we can generate

them in the same way. Besides, in three-dimensional (3D) space, this new

method is suitable too. The only difference is that the prototype vector and the

observation vector of SOM are both 3D.

The following experiment further exhibits the robustness of the method
developed in present work, which is displayed in Fig. 7.

Fig. 3. The fine mesh.

Fig. 4. The original distribution of the inner points of the coarse mesh.
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Fig. 5. Comparison between the points of the fine mesh and the coarse mesh.

Fig. 6. The final coarse mesh.

Fig. 7. Comparison between the (a) fine mesh points, (b) original coarse mesh points, and (c) final

coarse mesh points.
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5. Conclusions

In the present study, a new coarse mesh generation method is developed for

overlapping multigrid algorithm. It is our aim to decrease the transfer error in

multigrid algorithm. SOM network is employed to optimize the structure of

coarse mesh with respect to the structure of a given fine mesh. The example of

the mesh generation for a three-element airfoil proves that SOM could ensure

that the generated coarse meshes inherit the characteristic abstracted from the

fine mesh, and hence the transfer accuracy will be enhanced.

What should be emphasized particularly is that the complexity of the fine
mesh will not affect the robustness of SOM because of the strong self-adaptive

ability of SOM which is embodied in the example. In fact, for SOM, different

fine meshes only mean different data samples, the training procedure will not be

changed. Besides, although a 2D example presented, the new method devel-

oped in this paper can be easily extended to 3D space.
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