
Kernel-based fuzzy and possibilistic c-means clustering 
Dao-Qiang Zhang and Song-Can Chen 

Department of Computer Science 
 Nanjing University of Aeronautics and Astronautics 

Nanjing, 210016, People’s Republic of China 
E-Mail: daoqz@mail.com 

 
Abstract: The 'kernel method' has attracted great attention 
with the development of support vector machine (SVM) 
and has been studied in a general way. In this paper, this 
'method' is extended to the well-known fuzzy c-means 
(FCM) and possibilistic c-means (PCM) algorithms. It is 
realized by substitution of a kernel-induced distance 
metric for the original Euclidean distance, and the 
corresponding algorithms are called kernel fuzzy c-means 
(KFCM) and kernel possibilistic c-means (KPCM) 
algorithms. And some test results are given to illustrate the 
advantages of the proposed algorithms over the FCM and 
PCM algorithms. 
 

1.  Introduction 
Clustering has long been a popular approach to 

unsupervised pattern recognition. The fuzzy c-means 
(FCM) algorithm [1], as a typical clustering algorithm, has 
been utilized in a wide variety of engineering and 
scientific disciplines such as medicine imaging, 
bioinformatics, pattern recognition, and data mining. Since 
the original FCM uses the squared-norm to measure 
similarity between prototypes and data points, it can only 
be effective in clustering 'spherical' clusters. And many 
algorithms are derived from the FCM in order to cluster 
more general dataset. Most of those algorithms are 
realized by replacing the squared-norm in the object 
function of FCM with other similarity measures (metric) 
[1] [2]. In this paper, a kernel-based fuzzy c-means 
algorithm (KFCM) is proposed. KFCM adopts a new 
kernel-induced metric in the data space to replace the 
original Euclidean norm metric in FCM. By replacing the 
inner product with an appropriate ‘kernel’ function, one 
can implicitly perform a nonlinear mapping to a high 
dimensional feature space without increasing the number 
of parameters. This 'kernel method' has been successfully 
applied into many learning systems, such as Support 
Vector Machines (SVMs), kernel principal component 

analysis and kernel fisher discriminant analysis [3]. 
On the other hand, the FCM uses the probabilistic 

constraint that the memberships of a data point across 
classes sum to one. While this is useful in creating 
partitions, the memberships resulting from FCM and its 
derivatives, however, do not always correspond to the 
intuitive concept of degree of belongingness or 
compatibility. Moreover, the FCM is sensitive to noise. To 
mitigate such an effect, Krishnapuram and Keller throw 
away the constraint of memberships in FCM and propose 
the possibilistic c-means (PCM) algorithm [4]. The 
advantages of PCM are that it overcomes the need to 
specify the number of clusters and is highly robust in a 
noisy environment. However, there still exist some 
weaknesses in the PCM, i.e., it depends highly on a good 
initialization and has the undesirable tendency to produce 
coincident clusters [5] [6]. Usually, the FCM can provide a 
reasonable initialization and an estimate for the scale 
parameter which determines the relative degree to which 
the second term in the objective function is important 
compared with the first. But when the data is heavily noisy, 
the situation is quite different because the FCM is severely 
sensitive to outliers. In this paper, we propose a kernel 
possibilistic c-means (KPCM) algorithm. The KPCM uses 
the KFCM to initialize the memberships. In this way, the 
afore-mentioned weaknesses of the PCM can be avoided. 

The rest of this paper is organized as following: In 
Section 2, we introduce the KFCM algorithm, and Section 
3 presents the KPCM algorithm. Some test results and 
conclusions are given in Section 4.  

 
2.  Kernel fuzzy c-means clustering 

Given a dataset, p
n RxxX ⊂= },...,{ 1 , the original 

FCM algorithm partitions X  into c  fuzzy subsets by 
minimizing the following objective function 
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where c  is the number of clusters and selected as a 
specified value in this paper, n the number of data points, 

iku the membership of kx  in class i , satisfying 

1
1
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i iku , m the quantity controlling clustering 

fuzziness, and V the set of cluster centers or prototypes 

( p
i Rv ∈ ). The function mJ  is minimized by a famous 

alternate iterative algorithm. 
Now consider the proposed kernel fuzzy c-means 

(KFCM) algorithm. Define a nonlinear map as 
,)(: Fxx ∈Φ→Φ where Xx∈ . X  denotes the data 

space, and F the transformed feature space with higher 
even infinite dimension. KFCM minimizes the following 
objective function 
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Where 

),(2),(),(||)()(|| 2
ikiikkik vxKvvKxxKvx −+=Φ−Φ . (3) 

Where )()(),( yxyxK T ΦΦ=  is an inner product kernel 

function. If we adopt the Gaussian function as a kernel 

function, i.e., )/||||exp(),( 22 σyxyxK −−= , then 

1),( =xxK , according to Eqs. (3), Eqs. (2) can be 
rewritten as 
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Minimizing Eqs. (4) under the constraint of iku , we have 
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Here we just use the Gaussian kernel function for 
simplicity. If we use other kernel functions, there will be 
corresponding modifications in Eqs. (5) and (6).  

In fact, Equ.(3) can be viewed as kernel-induced new 
metric in the data space, which is defined as the following 

)),(1(2||)()(||),( yxKyxyxd −=Φ−Φ=
∆

    (7) 

And it can be proven that ),( yxd  defined in Eqs. (7) is a 

metric in the original space in case that K(x,y) takes as the 
Gaussian kernel function. According to Eqs. (6), the data 
point kx  is endowed with an additional weight 

),( ik vxK , which measures the similarity between kx  
and iv , and when kx  is an outlier, i.e., kx  is far from the 
other data points, then ),( ik vxK will be very small, so the 

weighted sum of data points shall be more robust.  
The full description of KFCM algorithm is as follows: 

KFCM Algorithm 

Step 1: Fix c , maxt , 1>m and 0>ε  for some 

positive constant;  

Step 2: Initialize the memberships 0
iku ; 

Step 3: For t =1,2,…, maxt , do:  

(a) Update all prototypes t
iv  with Eqs. (6);  

(b) Update all memberships t
iku with Eqs. (5); 

(c) Compute ||max 1
,

−−= t
ik

t
ikki

t uuE , if tE ≤ ε , 

stop; else t=t+1. 
 

3.  Kernel possibilistic c-means clustering 
 
The original FCM uses the probabilistic constraint 

that the memberships of a data point across classes sum to 
one. While this is useful in creating partitions, the 
memberships resulting from FCM and its derivatives, 
however, do not always correspond to the intuitive concept 
of degree of belonging or compatibility. Krishnapuram 
and Keller relax this constraint and propose a possibilistic 
approach to clustering (PCM) by minimizing the 
following object function 
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where iη  are suitable positive numbers. The first 

term demands that the distances from data points to the 
prototypes be as low as possible, whereas the second term 

 



 Table 1 Clustering result for Fig. 1 (c) and (d) 
 FCM PCM KFCM KPCM 

 C1 C2 C1 C2 C1 C2 C1 C2 

1 0.995 0.005 0.958 0.082 0.996 0.004 0.866 0.032

2 0.968 0.032 0.818 0.066 0.983 0.017 0.632 0.027

3 0.978 0.022 0.937 0.073 0.995 0.005 0.875 0.029

4 0.984 0.014 0.998 0.082 1.000 0.000 1.000 0.032

5 0.982 0.018 0.974 0.093 0.996 0.004 0.867 0.036

6 0.970 0.030 0.876 0.105 0.979 0.021 0.624 0.041

7 0.965 0.035 0.952 0.082 0.995 0.005 0.876 0.032

8 0.005 0.995 0.082 0.958 0.004 0.996 0.029 0.872

9 0.030 0.970 0.105 0.876 0.015 0.985 0.037 0.694

10 0.018 0.982 0.092 0.974 0.002 0.998 0.033 0.920

11 0.016 0.984 0.082 0.998 0.001 0.999 0.029 0.995

12 0.022 0.978 0.073 0.937 0.008 0.992 0.027 0.836

13 0.032 0.968 0.066 0.818 0.021 0.979 0.024 0.603

14 0.035 0.965 0.082 0.952 0.007 0.993 0.029 0.879

15 0.500 0.500 0.207 0.207 0.483 0.517 0.073 0.082

16 0.500 0.500 0.009 0.009 0.500 0.500 0.008 0.009

(62.8, 159.6) (61.1,150.2) (60.5,150.4) (59.9,149.9)  

(137.2,159.6) (138.9,150.2) (137.9,150.9) (139.0,149.9) 

 
forces the iku  to be as large as possible, thus avoiding the 
trivial solution. It is recommended to select iη  as 
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Typically, K is chosen to be 1. The updating of 
prototypes is the same as that in FCM, but the 
memberships of PCM are updated as follows 
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By following similar steps in KFCM, we construct the 
kernel possibilistic c-means (KPCM) algorithm by 
minimizing the following object function  
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As in KFCM, we adopt the Gaussian kernel function. 
Then the updating of memberships is 
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Fig. 1 Clustering result of Example 1 (Diamonds represent 
fuzzy prototypes, Squares the possibilistic one) 

 
Here we use the Gaussian function as the kernel function, 
and iη  are estimated using  
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Typically, K is chosen to be 1, and the updating of 
prototypes is the same as Eqs. (6). We now summarize the 
KPCM algorithm as follows: 
KPCM Algorithm 

Step 1: Fix c , maxt , 1>m and 0>ε  for some 

positive constant;  

Step 2: Initialize 0
iku  using KFCM algorithm; 

Step 3: Estimate iη  using Eqs. (13); 

Step 4: For t =1,2,…, maxt , do:  

(a) Update all prototypes t
iv with Eqs. (6);  

(b) Update all memberships t
iku with Eqs. (12); 

(c) Compute ||max 1
,

−−= t
ik

t
ikki

t uuE , if tE ≤ ε , 

stop; else t=t+1. 



 
Fig. 2 Clustering result of Example 2 (Diamonds represent 

fuzzy prototypes, Squares the possibilistic one) 
 

4.  Simulation results and conclusion 
In this section, we show several examples to illustrate 

the ideas presented in the previous sections. The first 
example involves two well-separated clusters. We number 
the data point according to the order in which they would 
be encountered from left to right and top to down in each 
clusters. Two outliers are added. One lies in (100,175), 
and the other is variable. Clustering results using FCM, 
PCM, KFCM, and KPCM algorithms are shown in Fig. 1. 
We add the other outlier (100,225) in Fig. 1(a) and (b), 
outlier (100,400) in Fig. 1(c) and (d), and outlier (100,800) 
in Fig. 1(e) and (f), respectively. Fig. 1(a), (c) and (e) are 
the results of FCM and PCM, and Fig. 1(b), (d) and (f) are 
gotten by KFCM and KPCM. The parameter used in the 
Gaussian kernel function is 150=σ . Table 1 gives the 
corresponding memberships and cluster centers of Fig. 1(c) 
and (d). It can be seen from Fig. 1 and Table 1 that KFCM 
and KPCM have much better robustness than FCM and 
PCM when the data sets contains one or more very large 
outliers.  

The second example is two equal-sized clusters 
containing three outliers as shown in Fig. 2, where the 
outliers (40,0), (0,40) and (40,40) are not plotted in the 
figure. Fig. 2(a) and (b) shows the results using FCM, 
PCM and KFCM, KPCM, respectively. The FCM 
algorithm actually puts the farthest outlier points as one 
cluster, and lumps all the rest into another cluster, as 

 
Fig. 3 Clustering result of Example 3 (Diamonds represent 

fuzzy prototypes, Squares the possibilistic one) 
 

shown in Fig. 2(a). In this case, using FCM as an 
initialization in PCM leads to a bad result. However, 
KFCM and KPCM are little affected by the outliers, as 
shown in Fig. 2(b). The third example involves two 
unequal-sized clusters. Fig. 3(a) is the result of FCM and 
PCM, and Fig. 3(b) the result using KFCM and KPCM. In 
this case, FCM and KFCM both represent the inherent 
structure of the dataset, but KFCM is a little superior to 
FCM. When PCM is used, the results are quite different. 
The prototypes got by PCM are nearly identical. However, 
that case in not appear in KPCM. 
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