
676 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

Two-Stage Cost-Sensitive Learning for Software
Defect Prediction

Mingxia Liu, Linsong Miao, and Daoqiang Zhang

Abstract—Software defect prediction (SDP), which classi-
fies software modules into defect-prone and not-defect-prone
categories, provides an effective way to maintain high quality
software systems. Most existing SDP models attempt to attain
lower classification error rates other than lower misclassification
costs. However, in many real-world applications, misclassifying
defect-prone modules as not-defect-prone ones usually leads to
higher costs than misclassifying not-defect-prone modules as
defect-prone ones. In this paper, we first propose a new two-stage
cost-sensitive learning (TSCS) method for SDP, by utilizing cost in-
formation not only in the classification stage but also in the feature
selection stage. Then, specifically for the feature selection stage,
we develop three novel cost-sensitive feature selection algorithms,
namely, Cost-Sensitive Variance Score (CSVS), Cost-Sensitive
Laplacian Score (CSLS), and Cost-Sensitive Constraint Score
(CSCS), by incorporating cost information into traditional feature
selection algorithms. The proposed methods are evaluated on
seven real data sets from NASA projects. Experimental results
suggest that our TSCS method achieves better performance
in software defect prediction compared to existing single-stage
cost-sensitive classifiers. Also, our experiments show that the
proposed cost-sensitive feature selection methods outperform
traditional cost-blind feature selection methods, validating the
efficacy of using cost information in the feature selection stage.

Index Terms—Cost-sensitive learning, feature selection, soft-
ware defect prediction.

ACRONYMS AND ABBREVIATIONS

SDP Software Defect Prediction

TSCS Two-Stage Cost-Sensitive learning

VS/LS/CS Variance/Laplacian/Constraint Score

Manuscript received June 02, 2013; revised October 31, 2013; accepted
November 12, 2013. Date of publication April 21, 2014; date of current
version May 29, 2014. This work was supported in part by the Jiangsu Natural
Science Foundation for Distinguished Young Scholar (Grant BK20130034),
the Specialized Research Fund for the Doctoral Program of Higher Education
(Grant 20123218110009), the NUAA Fundamental Research Funds (Grants
NE2013105, NZ2013306), the Jiangsu Qinglan Project, the Funding of Jiangsu
Innovation Program for Graduate Education (Grant CXZZ13_0173), and the
National Natural Science Foundation of China (Grant 61379015). Associate
Editor: J.-C. Lu.
M. Liu is with the School of Computer Science and Technology, Nanjing

University of Aeronautics and Astronautics, Nanjing 210016, China. She is also
with the School of Information Science and Technology, Taishan University,
Taian 271021, China (e-mail: mingxialiu@nuaa.edu.cn).
L. Miao and D. Zhang are with the School of Computer Science and Tech-

nology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China (e-mail: dqzhang@nuaa.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TR.2014.2316951

CSVS Cost-Sensitive Variance Score

CSLS Cost-Sensitive Laplacian Score

CSCS Cost-Sensitive Constraint Score

NN Neural Network

CSNN Cost-Sensitive Neural Network

NOTATIONS

N Number of samples

Number of samples for the th class

Number of features

Number of classes

The th sample

The th feature of sample

The mean of the th feature

Pair-wise must-link constraint set

Pair-wise cannot-link constraint set

The importance value of the th class

Cost of classifying a sample from class as
class

I. INTRODUCTION

S OFTWARE DEFECT PREDICTION (SDP) plays an im-
portant role in reducing the costs of software development

and maintaining the high quality of software systems [1]–[3]. It
allows software project managers to allocate limited time and
manpower resources to defect-prone modules through early de-
fect detection. Existing SDP work can be categorized into three
types [1]: 1) estimating the number of defects existing in a soft-
ware system, 2) mining defect associations, and 3) classifying
software modules into defect-prone and not-defect-prone cate-
gories.
The first type of work attempts to estimate the number of

defects existing in a software system based on code metrics,
inspection data, and process quality data. Various methods
have been applied, such as statistical approaches [2]–[5],
detection profile methods [6], and capture-recapture models
[7]–[10]. The second type of work is usually based on data
mining technologies (e.g., association mining algorithms [11],
[12]) to capture software defect associations, and to discover

0018-9529 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIU et al.: TWO-STAGE COST-SENSITIVE LEARNING FOR SOFTWARE DEFECT PREDICTION 677

rule sets that may cause a larger number of defects. The third
type of work classifies the software modules into defect-prone
and not-defect-prone categories by using machine learning
techniques, such as ensemble learning [13], tree-based methods
[14], neural networks [15]–[17], and analogy-based methods
[18]. These methods predict the defect-proneness of new soft-
ware modules by building a binary classifier with historical
data represented by software metrics [19]–[21].
Unfortunately, software defect prediction still remains a dif-

ficult problem to be solved, and is faced with two challenges
[22]–[24]: high dimensionality, and class imbalance. As modern
software systems grow in both size and complexity, the number
of features (i.e., software metrics) extracted from software mod-
ules becomes much larger than ever before, and these features
may be redundant or irrelevant [23]. It is a great challenge for
classification algorithms to deal with such superabundant fea-
tures. As an important pre-processing procedure, feature selec-
tion is beneficial to facilitate data understanding, to reduce the
storage requirements, and to overcome the curse of dimension-
ality for improved prediction performance [25], [26]. As shown
in previous studies [23], [24], [27], [28], feature selection is ef-
fective to deal with the high dimensionality problem in SDP.
The second challenge for SDP is the class-imbalanced data,

where the majority of defects in a software system are only
found in a small portion of its modules [29]. In such cases, stan-
dard machine learning based SDP models may be inaccurate
for (or never predict) the minority class (i.e., the defect-prone
module), because they do not explicitly consider different error
costs or class distributions. There are two approaches drawn
from machine learning for addressing that problem [22], i.e.,
stratification and cost-sensitive learning. Stratification has been
investigated in several studies of SDP [30]–[32], by creating a
balanced data set through adding more samples to the minority
class (over-sampling) or reducing the sample number of the ma-
jority class (under-sampling). Recently, cost-sensitive learning
has attracted increasing attention in the SDP domain [17], [33],
[34], which explicitly considers those different error costs, and
aims to minimize the total expected costs rather than the classi-
fication error rates. In general, there are two types of errors in
software defect prediction [34]. Type I is defined as misclassi-
fying a not-defect-prone module as defect-prone, while Type II
misclassification is when a defect-prone module is predicted as
not-defect-prone. The cost incurred by Type II misclassification
is much higher than that of Type I misclassification [34].
However, in most cost-sensitive learning based SDP studies,

cost information is used in the classification stage instead of in
the feature selection stage. But considering the valuable cost in-
formation in the feature selection stage may further boost the
performances of SDP models because features associated with
the minority class (i.e., defect-prone modules) are more likely
to be selected. The goal of this paper is to develop a two-stage
cost-sensitive (TSCS) learning method for SDP by using cost
information in both the classification and the feature selection
stages. Work has been done on cost-sensitive feature selection;
we also develop three novel cost-sensitive feature selection al-
gorithms by emphasizing samples with higher misclassification
costs, and de-emphasizing those with lower misclassification
costs in the feature selection stage. The experimental results on

the public NASAMetrics Data Program repository [19] validate
the efficacy of our proposed methods.
The remainder of this paper is organized as follows. We first

review related work of software defect prediction, cost-sensi-
tive learning, and feature selection for SDP in Section II. Then,
the proposed two-stage cost-sensitive learning method for
SDP and three cost-sensitive feature selection algorithms are
described in Section III. Section IV presents the experiments
on real SDP benchmark data sets. Finally, we conclude this
paper in Section V.

II. RELATED WORK

A. Software Defect Prediction

SDP can be formulated as a binary classification problem,
where software modules are classified as defect-prone or
not-defect-prone, using a set of software metrics. There are
many kinds of software metrics collected from previously
developed systems by standard tools [35]. The first suite of
software metrics, known as CK metrics, was developed by
Chidamber and Kemerer [20]. Lorenz and Kidd [21] proposed
additional object-oriented metrics dealing with message and
inheritance passing in a class. Many other software metrics
such as code metrics [35]–[37], process metrics [38]–[40], and
previous defaults [41], [42] were subsequently developed.
In the literature, many machine learning techniques, in-

cluding parametric and nonparametric methods, have been
applied for constructing SDP models [22], [43]. Parametric
methods utilize the relationship between software complexity
metrics and the occurrence of faults in program modules to
construct SDP models, including case-based reasoning [37],
[44], regression trees [45], and multiple linear regression
[46]. Because the relationships between software metrics and
defect-proneness of software modules are often complicated,
traditional parametric models cannot predict defect occur-
rence or rates accurately [16], [22], [47]. To overcome the
shortcoming of parametric methods, various nonparametric
methods are used to build SDP models. Some examples in-
clude ensemble learning [13], [48], tree-based methods [14],
[45], [49], neural networks [15]–[17], analogy-based methods
[18], genetic programming [50], [51], clustering [52], [53],
kernel-based methods [54]–[56], cost-sensitive learning [17],
[34], and transfer learning [57].

B. Cost-Sensitive Learning for Software Defect Prediction

The class imbalance problem corresponds to the problem
encountered by a learning system where the sample size of one
class is significantly larger than those of other classes [58].
This problem is prevalent in many real-world applications (e.g.
software defect detection [34], face recognition [59], [60], and
credit card fraud detection [61]), and remains a significant
bottleneck in the performance of standard learning methods as
they tend to be overwhelmed by the majority classes, and thus
ignore the minority categories [62], [63].
For addressing the class imbalance problem, a kind of

learning algorithm called cost-sensitive learning has been
studied in the machine learning and data mining community
[59], [64]–[71]. In cost-sensitive learning, cost information



678 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

is used to evaluate the misclassification costs from different
types of errors. Other than focusing on lower classification
error rates, cost-sensitive learning methods aim to minimize
the total expected costs by utilizing the cost information [49],
[60], [63]–[65], [72]. The misclassification cost can be further
categorized into two classes [66], i.e., class-dependent cost
[60], [64], [66], and example-dependent cost [67]. The former
assumes that misclassifying any example of class as class
will lead to the same loss, while the latter assume that different
examples have different costs even if they share the same type
of errors. Comparatively, class-dependent cost is often used
because it is easier to obtain than example-dependent cost.
In the SDP domain, many cost-sensitive classification

methods have been applied and shown effective to deal with the
class imbalance problem [4], [17], [33], [34], [73]. Khoshgo-
taar et al. first introduced cost-sensitive learning into software
defect prediction [4], and used a boosting method to build
software quality models [34]. Ling et al. [33] developed a
system to mine the historic defect report data, and to predict the
escalation risk of current defect reports for maximum Return
On Investment (ROI), where the maximum ROI problem is
converted to a cost-sensitive learning problem. Zheng [17] de-
veloped three cost-sensitive boosting algorithms to boost neural
networks for SDP. The first algorithm using a threshold-moving
strategy tries to move the classification threshold towards the
not-defect-prone modules. The other two weight-updating
based algorithms incorporate the misclassification costs into
the weight-update rule of the boosting procedure.

C. Feature Selection for Software Defect Prediction

Feature selection has been widely used in many pattern
recognition and machine learning applications for decades
[25], [74]. The aim of feature selection is to find the minimally
sized feature subset that is necessary and sufficient for a specific
task [74]. Typically, feature selection can be categorized into
three classes [25]: 1) wrapper-type methods, 2) embedded-type
methods, and 3) filter-type methods. Wrapper-type methods use
a learning machine of interest as a black box to evaluate each
candidate feature subset according to their predictive power,
and are usually computationally expensive [75], [76]. Em-
bedded-type methods perform feature selection in the process
of training, and are specific to given learning algorithms.
Unlike wrapper-type and embedded-type methods, filter-type
methods select features according to some criteria (e.g., mutual
information [77]), and involve no learning algorithm. Hence,
filter-type methods are usually adopted in practice due to
their simplicity and computational efficiency [78], [79]. Also,
previous studies have shown that filter-type feature selection
techniques are simple, quick, yet effective to reduce the feature
dimension for SDP [24]. Thus, in this paper, we focus on the
filter-type feature selection.
Here, we briefly introduce three popular filter-type feature se-

lection methods (including Variance [80], Laplacian Score [81],
and Constraint Score [78]), which are relevant to our proposed
methods. Variance score (VS) is a simple unsupervised evalua-
tion criterion of features. It selects features that have the max-
imum variance among all samples, with the basic idea that the
variance among a feature space reflects the representative power

of this feature. As another popular unsupervised feature selec-
tion method, Laplacian Score (LS) not only prefers features
with larger variances which have more representative power,
but also prefers features with stronger locality preserving ability
[81]. Constraint Score (CS) is a semi-supervised feature selec-
tion method, which performs feature selection according to the
constraint preserving ability of features [78]. It uses must-link
and cannot-link pair-wise constraints as supervision informa-
tion, where features that can best preserve the must-link con-
straints as well as the cannot-link constraints are assumed to be
important.
In software engineering, several feature selection methods

have been used [23], [27], [82]. Menzies et al. [82] employ ex-
haustive InfoGain subsetting to reduce the dimension, and speed
up the learning of the SDP model. Rodriguez et al. [27] apply
feature selection to software engineering data sets, and conclude
that the reduced data sets with fewer features maintain or im-
prove the prediction capability over the original data sets. Gao et
al. [23] propose a hybrid feature selection method composed of
a feature ranking and a feature subset selection stage. However,
to the best of our knowledge, existing feature selection methods
designed for SDP are cost-blind, i.e., the issue of different costs
for different errors is not considered.

III. PROPOSED METHODS

A. Cost Information

In most real-world applications, different misclassifications
are usually associated with different costs [49], [64], [65]. De-
note class labels as . Without loss of generality, we
assume that misclassifying a sample from the th class

as the th class will cause higher costs than mis-
classifying a sample of the th class as other classes. Here, we
call the class from the 1st class to the th class the in-group
class, while the th class is called the out-group class. Then,
we can categorize misclassification costs into three types: 1)
the cost of false acceptance , i.e., the cost of misclassifying
a sample from the out-group class as being from the in-group
class; 2) the cost of false rejection , i.e., the cost of mis-
classifying a sample from the in-group class as being from the
out-group class; and 3) the cost of false identification , i.e.,
the cost of misclassifying a sample from one in-group class as
being from another in-group class.
In this work, we assume , ,

and , as this will not change the final results [60],
[66]; and we denote the defect-prone module as being from the
out-group class, and the not-defect-prone module as being from
the in-group class. Then, we construct a cost matrix as shown
in Table I, where the element indi-
cates the cost value of classifying a sample from the th class as
the th class. The diagonal elements in the cost matrix are zero
because a correct classification will cause no cost.
Similar to the work in [59], we utilize the function to

describe the importance of the th class , which
is defined as

(1)



LIU et al.: TWO-STAGE COST-SENSITIVE LEARNING FOR SOFTWARE DEFECT PREDICTION 679

TABLE I
THE COST MATRIX

Fig. 1. Flowchart of the proposed TSCS method.

where is the number of classes including the in-group and
out-group classes. A larger value of means that the th class
is more important.

B. Two-Stage Cost-Sensitive Learning

To fully utilize the valuable cost information, we propose a
two-stage cost-sensitive learning (TSCS) method for software
defect prediction where the cost information is used in both the
feature selection stage and the classification stage. The cost-sen-
sitive feature selection aims to select features that are associ-
ated with the interesting class (i.e., defect-prone module), and
the cost-sensitive classification deems to make the SDP classi-
fier not dominated by the majority class (i.e., not-defect-prone
module). The above two stages are used to solve the class im-
balance problem in SDP. The flowchart in Fig. 1 illustrates a
general architecture of the proposed TSCS method.
As shown in Fig. 1, the historical data, including various soft-

ware metrics captured from software systems, are divided into
two groups: the training data set, and the test data set. These
data are pre-processed before being fed into the following fea-
ture selection and classification algorithms. In the second stage,
cost-sensitive feature selection algorithms are applied to the
training data to find the optimal features, and thus the dimen-
sion can be reduced. The next step is to train the cost-sensitive
classification models based on the training data set with selected

features. Finally, the learned model is evaluated on the test data
set.
The proposed TSCS is a general method because any type

of cost-sensitive feature selection method can be used in the
feature selection stage, and any kind of cost-sensitive classifiers
can be used in the classification stage. However, to the best of
our knowledge, few works have been done on cost-sensitive
feature selection. In the following, we develop three novel cost-
sensitive feature selection algorithms by considering different
costs for different errors in the feature selection stage.

C. Cost-Sensitive Feature Selection

Assume we have a set of samples
, where is the number of samples, and is

the feature dimension. Let denote the th feature of
sample . Denote as the mean
of the th feature among all samples, and as the
number of samples belonging to the th class. Denote

as the must-link constraints set, and
as the

cannot-link constraints set.
1) CSVS: Similar to Variance score, we assume that the vari-

ance of a good feature in the out-group class should be larger
than that of the in-group classes. Thus, the Cost-Sensitive Vari-
ance Score (CSVS) of the th feature denoted as , which
should be maximized, is defined as

(2)

where is the sample number of the th class, and is the
importance value of the th class that can be obtained from (1).
2) CSLS: To facilitate balancing the variance and locality

preserving ability of features, we define the Cost-Sensitive
Laplacian Score (CSLS) of the th feature, denoted as ,
as

(3)

where is a diagonal matrix with element , and
is defined by the neighborhood relationship between two

samples and as

(4)

where is a constant that is set to be the average distance be-
tween training samples in this paper. And the term ’ and
are neighbors’ means that is among the nearest neighbors
of , or is among the nearest neighbors of .
In (3), , and are class labels for sam-

ples , and , respectively. The term denotes the
cost of classifying a sample from the th class to the th classs,
which can be obtained from the cost matrix given in Table I. The



680 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

TABLE II
DETAILED INFORMATION OF MDP DATA SETS AFTER PRE-PROCESSING

term denotes the importance value of class defined in
(1). The regularization coefficient is used to trade off the con-
tribution of the two terms in (3). As is usually larger than

, we set in this work. In (3), we assume im-
portant features have smaller values.
3) CSCS: Taking the cost information into consideration, we

formulate the Cost-Sensitive Constraint Score (CSCS) of the th
feature denoted as , which should be minimized, as

(5)

where is a set of pair-wise must-link constraints, is a set of
pair-wise cannot-link constraints, and is a regularization coef-
ficient to trade-off the two terms in (5). Because is usually
larger than , and the distance between samples in the
same class is typically smaller than that in different classes, we
set in this work.

IV. EXPERIMENTS

A. Data Sets

The data sets used in this study come from the public NASA
Metrics Data Program (MDP) repository [19], making our pro-
posed methods repeatable and verifiable. These data sets, in-
cluding CM1, KC2, MW1, PC1, PC2, PC3, and PC4, belong
to several NASA projects, which are also used in [82]. Similar
to [56], we pre-process the data from each data set. The char-
acteristics of these data sets after pre-processing are shown in
Table II.

B. Performance Measurements

For better evaluating the performances in the cost-sensitive
learning scenarios, the Total-cost of misclassification, which is a
general measurement for cost-sensitive learning [49], [63]–[67],
is used as one primary evaluation criterion in our experiments.
On the other hand, as shown in Table III, the classification re-
sults can be represented by the confusion matrix with two rows
and two columns reporting the number of true positives (TP),
false positives (FP), false negatives (FN), and true negatives
(TN).

TABLE III
DEFECT PREDICTION CONFUSION MATRIX

From the confusion matrix, and can
be defined as

(6)

(7)

where measures the proportion of defect-prone
modules correctly classified, and measures the
proportion of samples correctly classified among the whole
population. In addition to the Total-cost, we also adopt the

and of the classification results as
evaluation measures.

C. Experiment Design

In the first group of experiments, we compare the two-stage
cost-sensitive learning method, i.e., the proposed TSCS, with
existing single-stage cost-sensitive classifiers onMDP data sets.
Among various existing cost-sensitive classifiers, the cost-sen-
sitive back propagation neural network (CSNN) method with
the threshold moving technique has been shown effective to
build cost-sensitive SDP models [17]. Thus, we use CSNN with
the threshold-moving strategy as the single-stage cost-sensitive
classifier in this work. In the proposed TSCS, three cost-sen-
sitive feature selection algorithms (CSVS, CSLS, and CSCS)
are used in the feature selection stage, and CSNN is used in the
classification stage. Also, the back propagation neural network
(NN) [80] is used as a cost-blind classifier in the experiments.
In the second group of experiments, we evaluate the proposed
TSCS method, and the proposed cost-sensitive feature selection
methods (i.e., CSVS, CSLS, and CSCS) in SDP, with compar-
ison to conventional methods.
A 10-fold cross-validation strategy is used to compute the

Total-cost, , and on the test set. To be



LIU et al.: TWO-STAGE COST-SENSITIVE LEARNING FOR SOFTWARE DEFECT PREDICTION 681

TABLE IV
RESULTS OF TWO-STAGE AND SINGLE-STAGE COST-SENSITIVE LEARNING METHODS ON MDP DATA SETS

specific, the whole data set is first randomly partitioned into
ten equally sized subsets. Each time, one of these subsets is re-
tained as the test data while the other nine subsets are used as the
training data. To ensure a low bias of random partitioning, the
cross-validation process is repeated ten times. For each perfor-
mance measure, the mean is computed from the results of these
ten runs.
For the proposed CSLS and CSCS methods, the parameters
and are both set to be 0.5. Following the work in [79], we

use equal numbers of must-link and cannot-link constraints in
the experiments. To be specific, for each data set, a total of 100
pair-wise constraints including 50 must-link and 50 cannot-link
constraints are used. For fair comparison, the conventional CS
method and the proposed CSCS method share the same pool of
pair-wise constraints. The fixed costs, i.e. and
, are used in the experiments. We also discuss the influence

of different cost ratios on the experimental results, with more
details given in Section IV-F.

D. Two-Stage vs. Single-Stage Cost-Sensitive Learning

In this subsection, we perform classification experiments
by comparing the proposed two-stage cost-sensitive learning
(i.e., TSCS) method to the existing single-stage cost-sensitive
learning (i.e., CSNN) method. The experimental results are re-
ported in Table IV, where numbers in the bracket represent the
optimal features determined by the lowest Total-cost achieved
by a specific feature selection method. In addition, Fig. 2 plots
the results vs. different numbers of selected features achieved
by the proposed TSCS method and the CSNN method on CM1
and KC2 data sets.
From Table IV, one can see that the proposed TSCS

methods (including , , and
) consistently achieve lower Total-cost than

CSNN on seven data sets. At the same time, the proposed
method usually performs better than the

proposed and methods in



682 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

Fig. 2. Classification results vs. different number of selected features on CM1 and KC2 data sets achieved by the proposed TSCS (i.e. ,
, and ) methods, and the CSNN method.

Fig. 3. Comparison of performances of different feature selection methods using NN classifier on CM1 and KC2 data sets.

reducing the Total-cost. In terms of , the three
proposed TSCS methods usually outperform CSNN, especially
on the CM1, KC2, and PC3 data sets. As for , the
proposed TSCS methods achieve competitive results compared
to CSNN. It is worth noting that, on the PC2 data set which
is extremely class imbalanced, the proposed
method achieves lower Total-cost as well as higher
than other methods. These results indicate that, compared to
single-stage cost-sensitive classifiers, the proposed TSCS
methods considering cost information in both feature selection
and classification stages provide better solutions to deal with
the class imbalance problem in SDP.
From Fig. 2(a) and (d), one can see that the proposed

TSCS methods (i.e., , , and
) using less than one third of the features can

achieve a lower Total-cost than CSNN on two data sets. For
example, on the CM1 data set, the proposed
using only two selected features perform better than CSNN.

From Fig. 2(b) and (e), it can be seen that, on both CM1 and
KC2 data sets, the achieved by the proposed TSCS
using less than three features are significantly higher than that
of CSNN. From Fig. 2(c) and (f), one can see that, in terms of

, the proposed TSCS and the CSNN methods achieve
comparable results in most cases, even if the former uses a
reduced number of features than the latter. These results again
validate the advantages of our proposed TSCS methods over a
conventional single-stage cost-sensitive classifier.

E. Cost-Sensitive vs. Cost-Blind Learning

In this subsection, we evaluate the proposed TSCS, and three
cost-sensitive feature selection methods in SDP, with compar-
ison to conventional methods including , ,

, , , and . The
classification results achieved by cost-sensitive and cost-blind
feature selection methods on CM1 and KC2 data sets, using a
cost-blind classifier (i.e., NN), are shown in Fig. 3.



LIU et al.: TWO-STAGE COST-SENSITIVE LEARNING FOR SOFTWARE DEFECT PREDICTION 683

Fig. 4. Comparison of performances of different feature selection methods using CSNN classifier on CM1 and KC2 data sets.

Fig. 5. Total-cost vs. different cost ratios for different methods on CM1 and KC2 data sets.

As can be seen from Fig. 3, compared to NN, both the cost-
sensitive and cost-blind feature selection methods can signifi-
cantly reduce the Total-cost and improve the on
two data sets, demonstrating that feature selection is an impor-
tant step for the SDP problem. On the other hand, one can see
that the proposed , , and
methods usually outperform , , and ,
respectively.
The experimental results achieved by different feature selec-

tion methods using a cost-sensitive classifier (i.e., CSNN) are
given in Fig. 4. From Fig. 4, one can find a similar trend as in
Fig. 3. Specifically, feature selection can help improve the per-
formance of SDP, compared to CSNN without any feature se-
lection stage. Also, the proposed cost-sensitive feature selection
methods usually perform better than cost-blind feature selection
methods in Total-cost and on the two data sets we
used. These results further validate the efficacy of using cost
information in both the feature selection and the classification
stages.

F. Discussion

1) Influence of Cost Ratio: In the above experiments, the cost
ratios (i.e., ) are given by users, which reflect the users’
intention on the trade-off between different types of errors. Now,
we investigate the influence of different cost ratios on the perfor-
mances of different methods. To be specific, the proposed TSCS
(i.e., , and )
methods are compared to conventional single-stage cost-sen-
sitive learning methods (i.e., , , and

) by using different cost ratios.We first set ,
and then select the cost ratio from {5, 10, 15, 20, 25, 30}. In
Fig. 5, we plot the Total-cost achieved by different methods with
different cost ratios.
As can be seen from Fig. 5, the Total-cost achieved by our

proposed cost-sensitive feature selection algorithms (including
CSVS, CSLS, and CSCS) rises slowly with the increase of the
cost ratios on both CM1 and KC2 data sets. In most cases, the
proposed TSCS perform better than single-stage cost-sensitive
methods in reducing the overall cost of misclassification.



684 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

2) Threats to Validity: The proposed TSCS learning method
is a general method, where any other kinds of cost-sensitive fea-
ture selection algorithms, and cost-sensitive classifiers can be
used in the feature selection stage, and the classification stage,
respectively. In the current study, we adopt CSNN as the cost-
sensitive classifier, because it has been recently shown effec-
tive for addressing the class-imbalance problem in SDP [17].
In addition, to the best of our knowledge, no previous studies
have addressed using cost information in the feature selection
stage. Accordingly, we proposed three filter-type cost-sensitive
feature selection methods, i.e., CSVS, CSLS, and CSCS, which
are more suitable for large-scale software systems than other
(e.g., wrapper-type) feature selection methods.
In the current experiments, we used public software defect

prediction data sets from NASA projects. However, due to dif-
ferent pre-processing methods, there might be different results
between our current study and others. In addition, as the NASA
MDP data sets have been questioned byGray et al. [83] recently,
other software defect data could be used to further validate our
proposed methods.

V. CONCLUSION

To address the class-imbalance and high-dimensional data
problems of software defect prediction, we propose a two-stage
cost-sensitive learning (TSCS) method, where the cost infor-
mation is utilized not only in the classification stage but also
in the feature selection stage. We also develop three cost-sensi-
tive feature selection methods, called CSVS, CSLS, and CSCS,
by incorporating the cost information into conventional fea-
ture selection algorithms. Experimental results demonstrate that
the proposed TSCS methods outperform single-stage cost-sen-
sitive learning methods, while the proposed cost-sensitive fea-
ture selection methods perform better than conventional cost-
blind feature selection methods.

ACKNOWLEDGMENT

The authors would like to thank the editor and all the referees
for their useful comments and contributions for the improve-
ment of this paper. Daoqiang Zhang is the corresponding author
for this paper.

REFERENCES

[1] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE Trans. Software Eng.,
vol. 37, pp. 356–370, 2011.

[2] B. T. Compton and C. Withrow, “Prediction and control of ADA soft-
ware defects,” J. Syst. Software, vol. 12, pp. 199–207, 1990.

[3] J. Munson and T. M. Khoshgoftaar, “Regression modelling of soft-
ware quality: Empirical investigation,” J. Electro. Mater., vol. 19, pp.
106–114, 1990.

[4] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl,
“Data mining for predictors of software quality,” Int. J. Softw. Eng.
Know., vol. 9, pp. 547–563, 1999.

[5] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, “Assessing pre-
dictors of software defects,” in Proc. Workshop on Predictive Software
Models, Chicago, IL, USA, 2004.

[6] C. Wohlin and P. Runeson, “Defect content estimations from review
data,” in Proc. 20th Int. Conf. Software Eng., Washington, DC, USA,
1998, pp. 400–409.

[7] S. V. Wiel and L. Votta, “Assessing software designs using capture-re-
capture methods,” IEEE Trans. Software Eng., vol. 19, pp. 1045–1054,
1993.

[8] P. Runeson and C. Wohlin, “An experimental evaluation of an expe-
rience-based capture-recapture method in software code inspections,”
Empir. Softw. Eng., vol. 3, pp. 381–406, 1998.

[9] L. C. Briand, K. E. Emam, and B. G. Freimut, “A comparison and inte-
gration of capture-recapture models and the detection profile method,”
in Proc. 9th Int. Symp. Softw. Reliab. Eng., Paderborn, 1998.

[10] L. C. Briand, K. E. Emam, B. G. Freimut, and O. Laitenberger, “A com-
prehensive evaluation of capture-recapture models for estimating soft-
ware defect content,” IEEE Trans. Software Eng., vol. 26, pp. 518–540,
2000.

[11] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software de-
fect association mining and defect correction effort prediction,” IEEE
Trans. Software Eng., vol. 32, pp. 69–82, 2006.

[12] C.-P. Chang, C.-P. Chu, and Y.-F. Yeh, “Integrating in-process soft-
ware defect prediction with association mining to discover defect pat-
tern,” Inf. Software Tech., vol. 51, pp. 375–384, 2009.

[13] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning
to improve software defect prediction,” IEEE Trans. Syst., Man, Cy-
bern. C, Appl. Rev., vol. 42, pp. 1806–1817, 2012.

[14] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. I. Hudepohl,
“Classification-treemodels of software-quality overmultiple releases,”
IEEE Trans. Rel., vol. 49, pp. 4–11, 2000.

[15] T. M. Khoshgoftaar, A. S. Pandya, and D. L. Lanning, “Application of
neural networks for predicting defects,” Annal. Software Eng., vol. 1,
pp. 141–154, 1995.

[16] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud, “Ap-
plication of neural networks to software quality modeling of software
quality,” Int. J. Rel. Qual. Safety Eng., vol. 6, pp. 902–909, 1997.

[17] J. Zheng, “Cost-sensitive boosting neural network for software defect
prediction,” Expert Syst. Appl., vol. 37, pp. 4537–4543, 2010.

[18] T. M. Khoshgoftaar and N. Seliya, “Analogy-based practical classifi-
cation rules for software quality estimation,” Empir. Softw. Eng., vol.
8, pp. 325–350, 2003.

[19] M. Chapman, P. Callis, and W. Jackson, 2004, Metrics Data Program
[Online]. Available: http://mdp.ivv.nasa.gov

[20] S. R. Chidamber and C. F. Kemerer, “Ametrics suite for object oriented
design,” IEEE Trans. Software Eng., vol. 20, pp. 476–493, 1994.

[21] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical
Guide. : Prentice Hall, 1994.

[22] L. Pelayo and S. Dick, “Evaluating stratification alternatives to
improve software defect prediction,” IEEE Trans. Rel., vol. 61, pp.
516–525, 2012.

[23] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: An investigation on feature selec-
tion techniques,” Software Pract. Exper., vol. 41, pp. 579–606, 2011.

[24] T. M. Khoshgoftaar, K. Gao, and A. Napolitano, “An empirical study
of feature ranking techniques for software quality prediction,” Int. J.
Softw. Eng. Know., vol. 22, pp. 161–183, 2012.

[25] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[26] A. L. Blum and P. Langley, “Selection of relevant features and exam-
ples in machine learning,” Artif. Intell., vol. 97, pp. 245–271, 1997.

[27] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz, “De-
tecting fault modules applying feature selection to classifiers,” in Proc.
8th IEEE Int. Conf. Inform. Reuse Integration, Las Vegas, NV, USA,
2007, pp. 667–672.

[28] T. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, “A compara-
tive study of iterative and non-iterative feature selection techniques for
software defect prediction,” Inf. Syst. Front., pp. 1–22, 2013.

[29] B.W. Boehm and P. N. Papaccio, “Understanding and controlling soft-
ware costs,” IEEE Trans. Software Eng., vol. 14, pp. 1462–1477, 1988.

[30] S. Dick and A. Kandel, “Data mining with resampling in software met-
rics databases,” in Artificial Intelligence Methods in Software Testing,
M. Last, A. Kandel, and H. Bunke, Eds. Singapore: World Scientific,
2004, pp. 175–208.

[31] L. Pelayo and S. Dick, “Applying novel resampling strategies to soft-
ware defect prediction,” in Proc. North Amer. Fuzzy Inf. Process. Soc.,
San Diego, CA, 2007, pp. 69–72.

[32] T. M. Khoshgoftaar and J. V. Hulse, “Improving software-quality pre-
dictions with data sampling and boosting,” IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 39, pp. 1283–1294, 2009.

[33] C. X. Ling, S. Sheng, T. Bruckhaus, and N. H. Madhavji, “Predicting
software escalations with maximum ROI,” in Proc. IEEE Int. Conf.
Data Mining, Houston, TX, USA, 2005, pp. 717–720.



LIU et al.: TWO-STAGE COST-SENSITIVE LEARNING FOR SOFTWARE DEFECT PREDICTION 685

[34] T. M. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard, “Cost-
sensitive boosting in software quality modeling,” in Proc. 7th IEEE
Int. Symp. High Assurance Syst. Eng., Tokyo, Japan, 2002, pp.
51–60.

[35] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Proc. 27th Int. Conf. Software Eng., St.
Louis, MO, USA, 2005, pp. 580–586.

[36] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Software
Eng., vol. 22, pp. 751–761, 1996.

[37] K. E. Emam, S. Benlarbi, N. Goel, and S. N. Rai, “Comparing case-
based reasoning classifiers for predicting high-risk software compo-
nents,” J. Syst. Software, vol. 55, pp. 301–320, 2001.

[38] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect predic-
tion,” in Proc. 30th Int. Conf. Software Eng., Leipzig, Germany, 2008,
pp. 181–190.

[39] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving defect predic-
tion using temporal features and non linear models,” in 9th Int. Work-
shop on Principles of Software Evolution, Dubrovnik, Croatia, 2007,
pp. 11–18.

[40] N. Nagappan and T. Ball, “Use of relative code churn measures to pre-
dict system defect density,” in Proc. 27th Int. Conf. Software Eng., St.
Louis, MO, USA, 2005, pp. 284–292.

[41] A. E. Hassan and R. C. Holt, “The top ten list: Dynamic fault predic-
tion,” in Proc. 21st IEEE Int. Conf. Software Maintenance, 2005, pp.
263–272.

[42] S. Kim, Z. T. J. Whitehead, and A. Zeller, “Predicting faults from
cached history,” in Proc. 29th Int. Conf. Software Eng., Washington,
DC, USA, 2007, pp. 489–498.

[43] K. Gao and T. M. Khoshgoftaar, “A comprehensive empirical study of
count models for software fault prediction,” IEEE Trans. Rel., vol. 56,
pp. 223–236, 2007.

[44] K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen, “Case-based
software quality prediction,” Int. J. Softw. Eng. Know., vol. 10, pp.
139–152, 2000.

[45] S. S. Gokhale and M. R. Lyu, “Regression tree modeling for the pre-
diction of software quality,” in Proc. 3rd Int. Conf. Reliab. and Quality
in Design, CA, USA, 1997, pp. 31–36.

[46] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D.
Richardson, “Predictive modeling techniques of software quality from
software measures,” IEEE Trans. Software Eng., vol. 18, pp. 979–987,
1992.

[47] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, “A compar-
ative study of pattern recognition techniques for quality evaluation of
telecommunications software,” IEEE J. Sele. Area. Comm., vol. 12, pp.
279–291, 1994.

[48] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of defect-
proneness by random forests,” in Proc. 15th Int. Symp. Software Rel.
Eng., 2004.

[49] P. D. Turney, “Cost-sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm,” J. Artif. Intell. Res.,
vol. 2, pp. 369–409, 1995.

[50] T. M. Khoshgoftaar, M. P. Evett, E. B. Allen, and P. D. Chien, “An
application of genetic programming to software quality prediction,”
in Comput. Intell. Software Eng., River Edge, NJ, USA, 1998, pp.
176–195.

[51] T. M. Khoshgoftaar and Y. Liu, “A multi-objective software quality
classification model using genetic programming,” IEEE Trans. Rel.,
vol. 56, pp. 237–245, 2007.

[52] S. Dick and A. Sadia, “Fuzzy clustering of open-source software
quality data: A case study of mozilla,” in Proc. Int. Joint. Conf. Neural
Networks, Vancouver, BC, Canada, 2006, pp. 4089–4096.

[53] N. Seliya and T. M. Khoshgoftaar, “Software quality analysis of unla-
beled program modules with semisupervised clustering,” IEEE Trans.
Syst., Man, Cybern. A, Syst. Humans, vol. 37, pp. 201–211, 2007.

[54] K. O. Elish andM.O. Elish, “Predicting defect-prone softwaremodules
using support vector machines,” J. Syst. Software, vol. 81, pp. 649–660,
2008.

[55] Y. Bo and L. Xiang, “A study on software reliability prediction based
on support vector machines,” in Proc. IEEE Int. Conf. Ind. Eng. Eng.
Manag., Singapore, 2007, pp. 1176–1180.

[56] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Using the
support vector machine as a classification method for software defect
prediction with static code metrics,” in Engineering Applications of
Neural Networks. Berlin, Germany: Springer-Verlag, 2009, vol. 43,
pp. 223–234.

[57] B. Turhan, “On the dataset shift problem in software engineering pre-
diction models,” Empir. Softw. Eng., vol. 17, pp. 62–74, 2012.

[58] N. Japkowicz and S. Stephen, “The class imbalance problem: A sys-
tematic study,” Intell. Data Anal., vol. 6, pp. 429–449, 2002.

[59] J. Lu and Y. P. Tan, “Cost-sensitive subspace learning for face recog-
nition,” IEEE Trans. Inf. Foren. Sec, vol. 8, pp. 510–519, 2013.

[60] Y. Zhang and Z. Zhou, “Cost-sensitive face recognition,” IEEE Trans.
Pattern Anal., vol. 32, pp. 1758–1769, 2010.

[61] T. Fawcett and F. Provost, “Adaptive fraud detection,” Data Min.
Knowl. Disc., vol. 1, pp. 291–316, 1997.

[62] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special issue on
learning from imbalanced data sets,” SIGKDD Explorations Newslett.,
vol. 6, pp. 1–6, 2004.

[63] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks
with methods addressing the class imbalance problem,” IEEE Trans.
Knowl. Data Eng., vol. 18, pp. 63–77, 2006.

[64] P. Domingos, “MetaCost: A general method for making classifiers
cost-sensitive,” in Proc. 5th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, San Diego, California, USA, 1999, pp.
155–164.

[65] C. Elkan, “The foundations of cost-sensitive learning,” in Proc. 17th
Int. Joint Conf. Artif. Intell., Seattle, WA, USA, 2001, pp. 973–978.

[66] Z.-H. Zhou and X.-Y. Liu, “On multi-class cost-sensitive learning,”
in Proc. 21st National Conf. Artificial Intelligence, 2006, pp.
567–572.

[67] N. Abe, B. Zadrozny, and J. Langford, “An iterative method for multi-
class cost-sensitive learning,” in Proc.10th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, Seattle, WA, USA, 2004, pp.
3–11.

[68] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok, “Toward cost-
sensitive modeling for intrusion detection and response,” J. Computer
Security, vol. 10, pp. 5–22, 2002.

[69] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive
boosting for classification of imbalanced data,” Pattern Recogn., vol.
40, pp. 3358–3378, 2007.

[70] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by cost-
proportionate example weighting,” in Proc. 3th IEEE Int. Conf. Data
Mining, 2003, pp. 435–442.

[71] S. Viaene and G. Dedene, “Cost-sensitive learning and decisionmaking
revisited,” Eur. J. Operational Res., vol. 166, pp. 212–220, 2005.

[72] W. Fan and S. J. Stolfo, “AdaCost: Misclassification cost-sensitive
boosting,” in Proc. 16th Int. Conf. Machine Learning, 1999, pp.
97–105.

[73] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, “A
comparative study of data sampling and cost sensitive learning,” in
Proc. IEEE Int. Conf. Data Mining Workshops, Washington, DC, USA,
2008, pp. 46–52.

[74] A. R. Webb, Statistical Pattern Recognition. : Wiley, 2002.
[75] I. Guyon, S. Gunn, M. Nikravesh, and Z. L. , Feature Extraction:

Foundations and Applications. Berlin, Germany: Springer-Verlag
New York, Inc., 2006.

[76] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artif. Intell., vol. 97, pp. 273–324, 1997.

[77] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance and min-
redundancy,” IEEE Trans. Pattern Anal., vol. 27, pp. 1226–1238,
2005.

[78] D. Zhang, S. Chen, and Z. Zhou, “Constraint Score: A new filter
method for feature selection with pairwise constraints,” Pattern
Recogn., vol. 41, pp. 1440–1451, 2008.

[79] D. Sun and D. Zhang, “Bagging constraint score for feature selection
with pairwise constraints,” Pattern Recogn., vol. 43, pp. 2106–2118,
2010.

[80] C. M. Bishop, Neural Networks for Pattern Recognition. London,
U.K.: Oxford University Press, 1995.

[81] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature se-
lection,” in Advances in Neural Information Processing Systems
(NIPS), 2005.

[82] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code at-
tributes to learn defect predictors,” IEEE Trans. Software Eng., vol. 32,
pp. 2–13, 2007.

[83] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“The misuse of the NASA metrics data program data sets for
automated software defect prediction,” in Proc. 15th Annual
Conf. Evaluation and Assessment in Software Engineering,
Durham, 2011, pp. 96–103.



686 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

Mingxia Liu received the B.S. degree, and M.S. degree from Shandong Normal
University, China, in 2003, and 2006, respectively. She joined the School of In-
formation Science and Technology in Taishan University as a Lecturer in 2006.
She is currently a Ph.D. candidate in Computer Science fromNanjingUniversity
of Aeronautics and Astronautics (NUAA), Nanjing, China. Her research inter-
ests include machine learning, pattern recognition, and software engineering.

LinsongMiao received the B.S. degree fromNanjing University of Information
Science and Technology in 2009, and M.S. degree from NUAA, China, in 2012.
His research interests include software engineering and machine learning.

Daoqiang Zhang received the B.S. degree, and Ph.D. degree in Computer Sci-
ence fromNanjing University of Aeronautics and Astronautics (NUAA), China,
in 1999, and 2004, respectively. He joined the Department of Computer Sci-
ence and Engineering of NUAA as a Lecturer in 2004, and is a professor at
present. His research interests include machine learning, pattern recognition,
data mining, and medical image analysis. In these areas, he has published over
100 scientific articles in refereed international journals such as Neuroimage,
Pattern Recognition, Artificial Intelligence in Medicine, IEEE Trans. Neural
Networks; and conference proceedings such as IJCAI, AAAI, SDM, ICDM.
He was nominated for the National Excellent Doctoral Dissertation Award of
China in 2006, won the best paper award at the 9th Pacific Rim International
Conference on Artificial Intelligence (PRICAI’06), and was the winner of the
best paper award honorable mention of Pattern Recognition Journal 2007. He
has served as a program committee member for several international and native
conferences such as IJCAI, SDM, CIKM, PAKDD, PRICAI, and ACML, etc.
He is a member of the Machine Learning Society of the Chinese Association of
Artificial Intelligence (CAAI), and the Artificial Intelligence & Pattern Recog-
nition Society of the China Computer Federation (CCF).


