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As thousands of features are available in many pattern recognition and machine learning

applications, feature selection remains an important task to ¯nd the most compact represen-

tation of the original data. In the literature, although a number of feature selection methods

have been developed, most of them focus on optimizing speci¯c objective functions. In this
paper, we ¯rst propose a general graph-preserving feature selection framework where graphs to

be preserved vary in speci¯c de¯nitions, and show that a number of existing ¯lter-type feature

selection algorithms can be uni¯ed within this framework. Then, based on the proposed

framework, a new ¯lter-type feature selection method called sparsity score (SS) is proposed.
This method aims to preserve the structure of a pre-de¯ned l1 graph that is proven robust to

data noise. Here, the modi¯ed sparse representation based on an l1-norm minimization problem

is used to determine the graph adjacency structure and corresponding a±nity weight matrix
simultaneously. Furthermore, a variant of SS called supervised SS (SuSS) is also proposed,

where the l1 graph to be preserved is constructed by using only data points from the same class.

Experimental results of clustering and classi¯cation tasks on a series of benchmark data sets

show that the proposed methods can achieve better performance than conventional ¯lter-type
feature selection methods.

Keywords : Feature selection; sparse representation; l1 graph; clustering; classi¯cation.

1. Introduction

In many pattern recognition and machine learning applications, the number of

features (or variables) is becoming much higher, and is even higher than that of the

observations.15,22,48 For example, there are usually tens of thousands of features in

neuroimaging data, while the number of subjects is very limited.57 In this case, a
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learning model will face several challenges, which are as follows12,15,34:

(i) Noisy features: It is common to obtain noisy features in the process of feature

extraction, especially for high-dimensional data. The noisy components in

features may a®ect the right representation of data and then lead to the over-

¯tting problem, especially when there is only small number of data points for

each class.

(ii) Small sample size and high dimensionality. It is a well-known challenge to

train a model for small sample sized and high-dimensional data in statistics

and pattern recognition areas. Without feature selection, directly performing

classi¯cation or clustering in original high-dimensional data space is both

di±cult and time-consuming. Moreover, irrelevant features may degrade the

performance of learners.

Thus, to perform classi¯cation or clustering in original data space is both di±cult

and time-consuming.32,34,48 In the literature, feature selection (or variable selection)

has been shown e®ective in solving the small sample size problem by reducing feature

dimension to eliminate noisy or redundant features, and thus help improve learning

performances and facilitate data understanding.20,24,25,28,46,49 Recently, several

studies have shown that graphs constructed in original feature space re°ect some

intrinsic properties of data, and thus can be used for dimension reduction.36,52 In-

tuitively, features that can best preserve such graph structures are informative,

because the graph structures reveal inherent characteristics of original data. How-

ever, most of the current feature selection studies do not evaluate features through

their graph-preserving abilities.

Accordingly, in this paper, we ¯rst propose a general graph-preserving feature

selection framework, to preserve the structure of a pre-de¯ned graph in original

feature space. More speci¯cally, the better a feature respect the prede¯ned graph

structure, the more important it would be. As we will show in the rest of this paper,

many popular ¯lter-type feature selection algorithms, such as variance (Var),6 Fisher

score (FS),6 Laplacian score (LS),21 and constraint score (CS)56 can be reformulated

within this framework. In other words, the proposed graph-preserving framework

provides a uni¯ed view to reconsider many existing feature selection methods. In

addition, based on the proposed framework, one can develop new feature selection

algorithms e±ciently.

Second, we propose two new ¯lter-type feature selection methods named sparsity

score (SS) and supervised sparsity score (SuSS), based on l1 graph constructed by all

training samples and only within-class ones, respectively. Here, the modi¯ed sparse

representation (MSR) based on l1-norm minimization problem is used to determine

the graph adjacency structure and corresponding graph weights simultaneously.

That is, the proposed feature selection methods aim to select features that can best

preserve the l1 graph structure that is proven robust to data noise.13 Hence, the

advantage of the proposed methods is that it is very likely to eliminate noisy features
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and to ¯nd the most compact representation of data, comparing to those preserving

other kinds of graph structures. To the best of our knowledge, no previous feature

selection research has tried to devise a general graph-preserving feature selection

framework and to propose l1 graph-preserving feature selection methods.

The rest of this paper is organized as follows. Section 2 introduces the background

by brie°y reviewing several ¯lter-type feature selection algorithms. In Sec. 3, we

present the proposed general graph-preserving feature selection framework and in-

dicate its relationship with existing feature selection methods. Section 4 introduces

the proposed l1 graph-preserving SS and SuSS methods in detail. In Sec. 5, we report

the experimental results on a number of data sets, by comparing the proposed

methods with several established feature selection methods. Conclusion is given

in Sec. 6.

2. Backgrounds

Typically, there are two main categories for feature selection, i.e. ¯lter-type

methods and wrapper-type methods.19 Wrapper-type methods require one pre-

de¯ned learning algorithm, and its performance is evaluated on each candidate

feature subset to determine the optimal feature subset.38,40,42,54 As they choose

features that are better suited to the pre-de¯ned learning algorithm, wrapper-type

feature selection methods tend to give superior performance in terms of accuracy

comparing to ¯lter-type methods, but are usually computationally more expen-

sive.7 Unlike wrapper-type methods, ¯lter-type methods select features according

to mutual information, correlation, or other criteria,12,27,29,55 and involve no

learning algorithm. Hence, ¯lter-type methods are usually adopted in practice due

to their simplicity and computational e±ciency, especially in the case with huge

number of features.44

Within ¯lter-type feature selection methods, di®erent algorithms can be further

categorized into two groups,19 i.e. (i) feature ranking methods and (ii) subset search

methods. The subset search methods evaluate the \goodness" of each candidate

feature subset and select the optimal one according to speci¯c evaluation measures,

such as consistency, correlation and information measure, coupled with various

search strategies.38,54 However, subset selection methods are usually time-consuming

because they consider feature selection as a combinatorial problem. In contrast,

feature ranking methods consider features individually and achieve a ranked list of

selected features ordered by their importance.2,31,35,58 Thus, feature ranking methods

are usually computationally more e±cient and are very scalable to data sets with

huge number of samples and high dimensionality.15,55 In this study, we focus on

feature ranking methods.

Among a huge literature on feature ranking methods, variance,6 LS,21 FS6 and

CS56 are typical examples. Recently, several new methods are proposed based on

these popular ones, such as constrained LS5 and CS-4.26 We now brie°y introduce

some of typical ones as follows.
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Given a set of data samples X ¼ ½x1; . . . ;xN �;xi 2 Rd, where N is the number of

data points and d is the feature dimension. Let fri denote the rth feature of the ith

sample xi. Denote the mean of the rth feature as �r ¼ 1
N

PN
i¼1 fri. For supervised

learning problems, class labels of the data points are given in f1; 2; . . . ;Pg, where P is

the number of classes. Let Np denote the number of data points belonging to the pth

class. Moreover, for semi-supervised feature selection methods, a part of prior

knowledge such as class labels or pair-wise constraints is provided in speci¯c ways.

As the simplest unsupervised evaluation of features, Var utilizes the variance

along a feature dimension to re°ect the feature's representative power for the original

data. The variance of the rth feature denoted as Varr, which should be maximized, is

computed as follows6:

Varr ¼
1

N

XN
i¼1

ðfri � �rÞ2: ð1Þ

As another unsupervised method, LS prefers features with larger variances as well

as stronger locality preserving ability. A key assumption in LS is that the data points

from the same class should be close to each other. The LS of the rth feature denoted

as LSr, which should be minimized, is computed as follows21:

LSr ¼
P

i;j ðfri � frjÞ2SijP
i ðfri � �rÞ2Dii

: ð2Þ

Here, D is a diagonal matrix and Dii ¼
P

jSij, where Sij is de¯ned by the

neighborhood relationship between samples xi and xj as follows:

Sij ¼ e�
jjxi�xj jj 2

t ; if xi and xj are neighbors

0; otherwise

(
ð3Þ

where t is a constant to be set, and the term \xi and xj are neighbors" means that

either xi is among k nearest neighbors of xj, or xj is among k nearest neighbors of xi.

FS is a supervised method using full class labels. It seeks features that can

maximize the distance of data points between di®erent classes and minimize the

distance of data points within the same class simultaneously. Let �p
r and f p

r be the

mean and the feature vector of class p corresponding to the rth feature, where

p 2 f1; . . . ;Pg. Denote Np as the sample number of the pth class. The FS of the rth

feature denoted as FSr, which should be maximized, is computed as follows6:

FSr ¼
PP

p¼1 Npð� p
r � �rÞ2PP

p¼1

PNp

i¼1 ðf p
ri � �p

rÞ2
: ð4Þ

Finally, CS performs feature selection according to the constraint preserving

ability of features. It utilizes M ¼ fðxi;xjÞjxi and xj belong to the same classg
containing pair-wise must-link constraints and C ¼ fðxi;xjÞjxi and xj belong
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to different classesg containing pair-wise cannot-link constraints as the supervision

information. Two constraint scores are developed including constraint score-1 (CS-1)

and constraint score-2 (CS-2). The CSs of the rth feature denoted as CS 1
r and CS2

r ,

which should be minimized, are computed in the following forms56:

CS1
r ¼

P
ðxi;xjÞ2M ðfri � frjÞ2P
ðxi;xjÞ2C ðfri � frjÞ2

; ð5Þ

CS2
r ¼

X
ðxi;xjÞ2M

ðfri � frjÞ2 � �
X

ðxi;xjÞ2C
ðfri � frjÞ2; ð6Þ

where � is a parameter to balance the two terms in Eq. (6).

3. General Graph-Preserving Feature Selection Framework

3.1. Graph-preserving feature selection criterion

Like many other graph-based methods, an essential step of our graph-preserving

feature selection framework is graph construction, i.e. graph adjacency determina-

tion and graph weight assignment. For graph adjacency determination, there exits

two popular ways, i.e. k-nearest neighbor method and "-ball based method.52 On the

other hand, for graph weight assignment, a number of methods have been proposed,

among which several most widely used methods are heat kernel,52 inverse Euclidean

distance14 and local linear reconstruction distance.43 In fact, various graph structures

exhibit some intrinsic properties of the original data, which can be used to ¯nd the

most useful features.

Accordingly, to preserve a speci¯c graph structure constructed from original data,

we de¯ne the graph-preserving feature selection criterion as follows:

Score 1r ¼
f Tr Af r
f Tr Bf r

; ð7Þ

Score 2r ¼ f Tr Af r � �f Tr Bf r; ð8Þ

where f r is the rth feature, A and B are matrices that respect the graph structure in

speci¯c forms, and � is a parameter to balance the two terms in Eq. (8).

In Eqs. (7) and (8), we de¯ne the importance of a feature by measuring its ability

of respecting some graph structure that exhibits some properties of original data. To

be speci¯c, features that have stronger abilities to preserve the pre-de¯ned graph

structure are considered very important.

It is worth noting that the proposed graph-preserving feature selection criterion

is quite general, bringing some additional advantages. First, as will be shown

in Sec. 3.2, it brings us a uni¯ed framework from which we can reconsider existing

feature selection methods through graphs. Second, one can easily develop new
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feature selection methods based on the proposed graph-preserving feature selection

criterion, by de¯ning appropriate graphs and corresponding weight matrices in

Eq. (7) or Eq. (8).

3.2. Relationship with existing feature ranking methods

According to di®erent graph structures, several popular feature ranking methods can

be classi¯ed as the following three categories, i.e. (i) global graph-preserving meth-

ods, (ii) neighborhood graph-preserving methods, and (iii) constraint graph-pre-

serving methods.

3.2.1. Global graph-preserving feature ranking

Recall that variance seeks features with maximum variation. With simple algebraic

formulation, Eq. (1) can be rewritten as follows:

Varr ¼
1

N
f Tr I� 1

N
11T

� �
f r; ð9Þ

where I is an identity matrix, 1 2 RN is a vector of all ones. Now we discuss the

graph that variance preserves. Just like the graph constructed by PCA,52 all the data

samples in the intrinsic graph are connected with equal weight 1=N. Let A ¼ I,

B ¼ 1
N 11T , and � ¼ 1. And we ¯nd that variance follows the proposed graph-pre-

serving feature selection criterion de¯ned in Eq. (8).

In contrast to the variance, FS is supervised seeking features with best discrim-

inative ability. It can be seen that Eq. (4) can be rewritten as follows:

FSr ¼
f Tr

PP
p¼1

1
Np

epepT � 1
N eeT

� �
f r

f Tr I�PP
p¼1

1
Np

epepT

� �
f r

¼ f Tr ðSw � SbÞf r
f Tr ðI� SwÞf r

; ð10Þ

where Np is the instance number of class p, and ep is an d-dimensional vector with

epðiÞ ¼ 1, if xi belongs to this class and 0 otherwise. Note that, Sw is actually the sum

of weight matrices of P within-class graphs. In each within-class graph, all data

points in a same class are connected with equal weight 1=Np. And Sb is the weight

matrix for between-class graphs where edges connecting di®erent classes have equal

weight 1=N. The graphs that FS preserve are P within-class graphs and one be-

tween-class graph, which are constructed in globally ways. Let A ¼ Sw � Sb and

B ¼ I� Sw. Thus, FS method follows the proposed graph-preserving feature selec-

tion criterion given in Eq. (7).

In summary, both variance and FS seek to preserve global graph structures.

Naturally, we can incorporate them within the global graph-preserving methods in

our proposed framework.
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3.2.2. Neighborhood graph-preserving feature ranking

The mean of rth feature �r can be rewritten as

�r ¼
X
i

f r
DiiP
i Dii

� �
¼ 1P

i Dii

X
i

friDii

 !
¼ f Tr D1

1TD1
: ð11Þ

To remove the mean from the samples, we de¯ne

~f r ¼ f r �
f Tr D1

1TD1
1; ð12Þ

where D ¼ diagðS1Þ and 1 ¼ ½1; . . . ; 1�T . After simple algebraic steps, we get the

following:

X
i

ðfri � �rÞ2Dii ¼
X
i

fri �
f Tr D1

1TD1

� �2

Dii ¼ ~f
T
r D ~f r; ð13Þ

X
i;j

ðfri � frjÞ2Sij ¼
X
i;j

ðf 2
ri þ f 2

rj � 2frifrjÞSij ¼ 2f Tr ðD� SÞf r ¼ 2f Tr Lf r; ð14Þ

where L ¼ D� S is called Laplacian matrix.

It is easy to show that ~f
T
r L ~f r ¼ f Tr Lf r (with more details in Ref. 17). Thus, the

objective function of LS can be rewritten as follows:

LSr ¼
~f
T
r L ~f r

~f
T
r D ~f r

: ð15Þ

By minimizing ~f
T
r L ~f r and maximizing ~f

T
r D ~f r simultaneously, LS prefers fea-

tures which respect the pre-de¯ned graph and those with large variance. Let A ¼ L

and B ¼ D. Then, it can be seen that the LS follows the proposed graph-preserving

feature selection criterion de¯ned in Eq. (7). Note that, the graph that LS preserves is

constructed by connecting data samples in a pre-de¯ned neighborhood. So LS can be

categorized as a neighborhood graph-preserving method.

3.2.3. Constraint graph-preserving feature ranking

The CS can also be explained from the proposed graph-preserving feature selec-

tion criterion. First, using the pair-wise constraints in M and C, we construct two

graphs GM and GC respectively, both of which have N nodes and ith node refers

to the sample xi. It is worth noting that, an edge will be set if there is a must-link

or a cannot-link constraint in these two graphs. Then, the CS seeks features on

which two data points are close in GM and far away in GC . Once the graphs

are constructed, their weight matrices denoted by SM and SC respectively, are

de¯ned as
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SM
ij ¼ e�

jjxi�xj jj 2
t ; if ðxi;xjÞ 2 M or ðxj;xiÞ 2 M

0; otherwise

(
ð16Þ

SC
ij ¼ e�

jjxi�xj jj 2
t ; if ðxi;xjÞ 2 C or ðxj;xiÞ 2 C

0; otherwise

(
ð17Þ

where t is a constant to be set. Then, Eqs. (5) and (6) can be written as follows:

CS1
r ¼

f Tr LM f r
f Tr LCf r

; ð18Þ

CS2
r ¼ f Tr L

M f r � �f Tr L
Cf r; ð19Þ

where LM and LC are the Laplacian matrices for the must-link graph and the

cannot-link graph, respectively. Let A ¼ LM and B ¼ LC , and one can see that

the CS-1 and CS-2 follow the proposed graph-preserving criterion de¯ned in

Eqs. (7) and (8), respectively. Hence, the CS can be categorized as a constraint

graph-preserving method.

So far, we ¯nd that the above-mentioned feature selection methods can be uni¯ed

in the proposed graph-preserving feature selection framework, despite of di®erent

proposing motivations. Table 1 lists the graph-preserving matrices for di®erent

methods, with corresponding characteristics of di®erent graphs. It is worth noting

that, di®erent graph construction rules and weight assignment methods will lead to

di®erent feature ranking methods, which motivates us to develop new feature selec-

tion methods based on the proposed graph-preserving feature selection framework.

4. Proposed L1 Graph-preserving Feature Selection Methods

In recent years, much attention has been focused on sparse linear representation with

respect to an over-complete dictionary of base elements,23,30,41,50,53 where an l1 graph

and its a±nity weight matrix can be constructed automatically. Although, there is no

clear evidence that any of graph structure and its a±nity weight matrix are always

superior to others based on the celebrated \No Free Lunch" theorem,17 the l1 graph

owns a special characteristic that is sparsity.9 Note that, sparsity provides us an

important way to improve the robustness of a model to data noise. Inspired by this,

we present two novel ¯lter-type feature selection methods that preserve l1 graph.
13,50

Table 1. Graph-preserving view for several ¯lter-type feature selection
methods.

Algorithm A and B De¯nition Characteristics

Variance A ¼ I; B ¼ 1
N 11T Unsupervised; global

Fisher score A ¼ Sw � Sb; B ¼ I� Sw Supervised; global

Laplacian score A ¼ L; B ¼ D Unsupervised; neighborhood

Constraint score A ¼ LM ; B ¼ LC Semi-supervised; Constraint
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For completeness, we will ¯rst brie°y review sparse representation theory, and then

go into the details of our proposed feature selection methods.

4.1. Sparse representation

As an extension to traditional signal representation such as Wavelet and Fourier

representation, sparse representation has been applied extensively in pattern rec-

ognition and signal processing recently.8,22,45,51 Given a signal x 2 Rd, and a matrix

X ¼ ½x1;x2 . . . ;xN � 2 Rd�N which contains the elements of an over-complete dic-

tionary in its columns, sparse representation aims to represent each x using as fewer

entries of X as possible. It can be expressed formally as follows11,50:

min
s
jjsjj0; s:t: x ¼ Xs; ð20Þ

where s 2 RN is the coe±cient vector, and jjsjj0 is the pseudo-l0 norm denoting the

number of nonzero components in s. However, to ¯nd the sparsest solution of

Eq. (20) is NP-hard, and it can be approximately solved by the following50:

min
s
jjsjj1; s:t: x ¼ Xs; ð21Þ

where jjsjj1 is the l1 norm of s. It has been proven that the solution of l1 norm

minimization problem is equal to that of l0 norm minimization problem, provided

that the solution s is sparse enough.4,16 The problem de¯ned in Eq. (21) can be solved

by standard linear programming.11

In practice, the constraint x ¼ Xs in Eq. (21) does not always hold because there

are often some noises existing in x and the sample size is generally less than that of

features. In Ref. 39, two robust extensions are proposed to handle these problems: (i)

Relaxing the constraint to be jjx�Xsjj < �, where � can be regarded as an error

tolerance. (ii) Replacing X with [X I], where I is a d-order identity matrix.

4.2. Sparse reconstructive weight

Based on a MSR framework, researchers in Ref. 42 construct a sparse reconstructive

weight matrix, and show such matrix helps to ¯nd the most compact representation

of original data. For a classi¯cation problem, we assume that the training data are

given as X ¼ ½x1;x2 . . . ;xN � 2 Rd�N where xi 2 Rd. A sparse reconstructive weight

vector si for each xi can be obtained by solving the following modi¯ed l1 minimi-

zation problem41:

min
si

jjsi jj1; s:t: xi ¼ Xsi; 1 ¼ 1T si; ð22Þ

where si ¼ ½si;1; . . . ; si;i�1; 0; si;iþ1; . . . si;N �T is an N-dimensional vector in which the

ith element is equal to zero implying that xi is removed from X. The element

si;jðj 6¼ iÞ denotes the contribution of each xj to reconstruct xi, and 1 2 RN is a

vector of all ones.
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For each sample xi, we can compute the reconstructive weight vector ŝi, and then

get the sparse reconstructive weight matrix S ¼ ðŝi;jÞN�N :

S ¼ ½ŝ1; ŝ2; . . . ; ŝN �T ; ð23Þ
where ŝi is the optimal solution of Eq. (22). Note that, the discriminative information

can be naturally preserved in the matrix S, even if no class label information is used.

The reason is that the nonzero entries in ŝi usually correspond to the samples from

the same class, which implies that ŝi may help to distinguish that class from the

others. After obtaining the reconstruction weight matrix S through Eq. (23), the l1
graph including both graph adjacency structure and a±nity weights matrix can be

simultaneously determined by S.

In many real-world problems, the constraint xi ¼ Xsi does not always hold. To

overcome this problem, two modi¯ed objective functions are proposed.41 The ¯rst

one is as follows:

min
si

jjsi jj1; s:t: jjxi �Xsijj < �; 1 ¼ 1T si; ð24Þ

where � is the error tolerance. It can be seen that the optimal solution of Eq. (24)

re°ect some intrinsic geometric properties, e.g. invariant to translation and rotation.

The second extension is expressed as follows:

min
½s T

i t
T
i �T

½sTi tTi �T
�����

�����1; s:t:
xi

1

� �
¼ X I

1T 0T

� �
si
ti

� �
; ð25Þ

where ti is a d-dimensional vector incorporated as a reconstructive compensation

term. The optimal solution of Eq. (25) is also invariant to translations, but the

invariance to rotation and rescaling does not rigorously hold.

4.3. Proposed sparsity score

We are now in the position to derive our l1 graph-preserving feature selection

method, called SS, by using our proposed general framework in Sec. 3 as a platform.

The ¯rst step is to compute the sparse reconstruction weight matrix de¯ned in

Eq. (23), through which we can obtain the l1 graph adjacency structure.

Following the notations in previous sections, we de¯ne the SS (denoted as SS-1) of

the rth feature ðSS1
rÞ, which should be minimized, as follows:

SS1
r ¼

Xm
i¼1

fri �
Xm
j¼1

ŝi;jfrj

 !
2

¼ f Tr ðI� S� ST þ SST Þf r; ð26Þ

where ŝi;j is the entry of the sparse reconstruction weight matrix S constructed using

all data points. By minimizing SS1
r , we prefer features that can best respect the pre-

de¯ned l1 graph structure.

In order to further improve the proposed SS, we take the variance into con-

sideration. Accordingly, another SS (denoted as SS-2) of the rth feature (SS2
r) is
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de¯ned as

SS2
r ¼

Pm
i¼1 ðfri �

Pm
j¼1 ŝi;jfrjÞ2

1
m

Pm
i¼1 ðfri � �rÞ2

¼ f Tr ðI� S� ST þ SST Þf r
f Tr I� 1

N 11T
� 	

f r
: ð27Þ

In Eqs. (26) and (27), we prefer features that can best preserve the l1 graph

structure and those with large variance that have stronger representative ability.

That is, with smaller reconstruction error (i.e. to preserve the l1 graph structure), as

well as larger variance for rth feature, SSs tend to be small that means the feature

would be more important. The detailed procedures of our proposed two SS methods

are shown in Algorithm 1.

With A ¼ I� S� ST þ SST and � ¼ 0. Then the proposed SS-1 method can be

uni¯ed into the graph-preserving feature selection framework through Eq. (8). Let

A ¼ I� S� ST þ SST ;B ¼ I� 1
N 11T , and we ¯nd that the proposed SS-2 method

can be uni¯ed into the graph-preserving feature selection framework through

Eq. (7).

4.4. Proposed supervised sparsity score

The SS developed in the previous section are unsupervised, i.e. no class label infor-

mation is used. In this section, we extend them to supervised versions, i.e. SuSS, to

make full use of the valuable class label information. Accordingly, we de¯ne two

SuSS functions (i.e. SuSS-1 and SuSS-2) as follows:

SuSS1
r ¼

XP
p¼1

XNp

i¼1

f p
ri �

XNp

j¼1

ŝpijf
p
rij

 !2

¼ f Tr I�
XP
p¼1

1

Np

epepT

 !
f r; ð28Þ
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SuSS2
r ¼

PP
p¼1

PNp

i¼1 f p
ri �

PNp

j¼1 ŝ
p
ijf

p
rij

� �
2

PP
p¼1

PNp

i¼1 ðf p
ri � �p

rÞ2

¼
PP

p¼1 f
pT

r ðI� Sp � ST
p þ SpS

T
p Þf pr

f Tr I�PP
p¼1

1
Np

epepT

� �
f r

; ð29Þ

where Nc is the number of samples of the pth class, ŝpij is the entry of pth sparse

reconstructionweightmatrixSp constructed using only the data points of the pth class.

Similar to SS, we prefer features that can best respect a pre-de¯ned l1 graph

structure in SuSS. Note that, l1 graphs to be preserved in SuSS are P within-class

graphs constructed using only within-class data points. In principle, features that can

best respect such within-class graphs are more important. The detailed procedures of

SuSS are summarized in Algorithm 2.

Let A ¼ I� Sp � ST
p þ SpS

T
p and � ¼ 0. Then the proposed SuSS-1 method can

be uni¯ed into the graph-preserving feature selection framework through Eq. (8).

Denote A ¼ I� Sp � ST
p þ SpS

T
p ;B ¼ I�PP

p¼1
1
Np

epepT
, and the proposed SuSS-2

method can be uni¯ed into the proposed graph-preserving feature selection frame-

work through Eq. (7). Hence, the proposed supervised Sparisity Score can be derived

from the proposed graph-preserving feature selection criterion.

Note that, both the proposed SS (including SS-1 and SS-2) and SuSS (including

SuSS-1 and SuSS-2) feature ranking methods are l1 graph-preserving methods. The

sparse reconstruction weight matrix of l1 graph is constructed globally. Hence, the

proposed SS method is global and unsupervised, while the proposed SuSS method is
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global and supervised within our proposed graph-preserving feature selection

framework.

4.5. Computational complexity analysis

Now we analyze the computational complexity of Algorithm 1 and Algorithm 2.

There are three main steps in Algorithm 1: (i) Step 1 constructs the l1 graph by

computing the sparse reconstruction weight matrix using Eq. (24) or Eq. (25), re-

quiring OðN 2Þ operation given N data points. (ii) Step 2 evaluates d features

based on the l1 graph requiring OðdN 2Þ operations. (iii) Step 3 ranks d features which

needs Oðd log dÞ operations. Hence, the overall time complexity of Algorithm 1 is

OðdmaxðN 2; log dÞÞ.
Similarly, the Algorithm 2 contains three parts: (i) Step 1 constructs the within-

class l1 graphs for P classes, requiring OðN 2
maxÞ operations given Nmax data points for

the pth class, and Nmax ¼ maxfN1;N2; . . . ;NPg. (ii) Step 2 evaluates d features

based on the l1 graph requiring OðdN 2
maxÞ operations. (iii) Step 3 ranks d features

which needs Oðd log dÞ operations. Hence, the overall time complexity of Algorithm 2

is OðdmaxðN 2
max; log dÞÞ.

5. Experiments

To evaluate e±ciency of our proposed methods, we perform both clustering and

classi¯cation experiments on a number of data sets, by comparing our proposed

methods with several popular feature selection methods.

5.1. Clustering experiments

In this subsection, we apply two proposed SS methods (i.e. SS-1 and SS-2) for

clustering, comparing to Var and LS methods. Note that, we do not compare

supervised methods because class labels are not available in clustering tasks.

5.1.1. Data sets

The clustering experiments are performed on several data sets from UCI machine

learning repository3 including wine, ionosphere, sonar, spectf heart disease, digits,

and steel plate faults. These data sets have small or middle size of feature numbers,

with class numbers ranging from two to seven. In addition, we also use two gene

expression data sets, which are colon cancer1 and prostate cancer12 with small

sample size and high-dimensional features. Characteristics of these data sets are

summarized in Table 2.

5.1.2. Experimental design for clustering

For clustering experiments, we ¯rst obtain a feature ranking list by performing a

speci¯c feature selection method on a data set. Second, we choose the ¯rstm features
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from the ranking list to form a feature subset, where m ¼ f1; 2; . . . ; dg and d is the

feature dimension of original data. Then, a clustering process is performed based on

data with such feature subset. By varying m from 1 to d, we obtain d di®erent

clustering results. Finally, we report the best clustering result, as well as corre-

sponding feature size that is the optimal number of selected features. In our

experiments, we use K-means algorithm to perform clustering. Speci¯cally, the

clustering process is repeated for 10 times with di®erent initializations and the best

result is recorded. Note that, the initialization is the same for di®erent algorithms for

fair comparison. Finally, we report the best clustering results as well the optimal

number of selected features. In addition, we also report the results of baseline (i.e.

results without any feature selection procedure).

By comparing the obtained label of each data points of K-means algorithm with

that provided by the data corpus, the clustering result can be evaluated. We use

F-Score metric39 to measure the clustering performance. Given a clustering result,

F-Score is de¯ned as follows:

F-Score ¼ 2� Precision� Recall

Precisionþ Recall
; ð30Þ

where Precision and Recall are two measure criteria, which are de¯ned as follows:

Precision ¼ N1

N1 þN2

; ð31Þ

Recall ¼ N1

N1 þN3

; ð32Þ

where N1 is the number of sample pairs which are clustered correctly, N2 is the

number of sample pairs that belong to the di®erent classes but are clustered into the

same class, and N3 is the number of sample pairs that belong to the same class but

are clustered into di®erent classes.

5.1.3. Clustering results

Experimental results of clustering are reported in Table 3 and Fig. 1. In Table 3, the

values in the brackets are optimal numbers of selected features, the underlined terms

Table 2. UCI and gene expression data sets used in our experiments.

Data Set #Dimension #Class #Sample Description

Wine 13 3 178 classical , small feature size, multi-class
Ionosphere 33 2 351 classical, middle feature size

Sonar 60 2 208 classical, middle feature size

Spectf heart disease 44 2 267 classical, middle feature size

Digits 246 60 3 539 classical, middle feature size, multi-class
Steel plate faults 27 7 1941 classical, middle feature size, multi-class

Colon cancer 2000 2 62 high-dimensional, small sample size

Prostate cancer 12600 2 136 high-dimensional, small sample size
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are the best results among di®erent methods, and the baseline is achieved by using

all features. Note that, the cluster number in this set of experiments is set as the

true class number of a speci¯c data set, if without extra explanations.

From Table 3, one can see that the clustering performances of SS-1 and SS-2 are

usually better than that of the other two methods, especially on the wine, ionosphere

and steel plate faults data sets. On the other hand, it is obvious to see that, in most

cases, the numbers of optimal features selected by the proposed SS-1 and SS-2 are

less than those of Var and LS.

Figure 1 plots the clustering results versus di®erent numbers of selected features

on several data sets, from which one can see that most methods achieve better

performance than baselines when less than half features are selected. Meanwhile, one

can see from Fig. 1 that, the proposed SS-1 and SS-2 methods usually achieve better

performances than the other two methods. For example, on the prostate cancer data

set that is high-dimensional with small sample size, the proposed SS-1 and SS-2

methods using only one feature can achieve better performances than the other

methods. It illustrates that the proposed l1 graph-preserving feature selection

methods can solve the small sample size problem e±ciently.

Furthermore, we investigate the in°uence of cluster numbers on the clustering

performance. Table 4 and Fig. 2 report the results on the steel plate faults data set

with di®erent cluster numbers. From Table 4 and Fig. 2, we can ¯nd that the

performances of the proposed SS-1 and SS-2 are quite stable with the increase of

cluster numbers, and are always better than those of Var, LS and baseline. The

reason may be that feature selection methods preserving l1-graph can ¯nd more

discriminative features than methods preserving other kinds of graphs, due to the

fact that the l1 graph is robust to data noise.13,50

5.2. Classi¯cation experiments

5.2.1. Data sets

Besides UCI and gene expression data sets used in Sec. 5.1, we also use a broad

collection of texture images corresponding to two well-known real-world texture data

Table 3. Clustering performance of di®erent feature selection methods (%).

Data Set Baseline Var LS SS-1 SS-2

Wine 59.42 (13) 60.84 (1) 61.09 (1) 61.89 (12) 81.71 (2)
Ionosphere 63.58 (33) 63.82 (31) 65.24 (33) 70.20 (2) 69.38 (4)

Sonar 50.59 (60) 56.85 (2) 52.91 (9) 52.15 (1) 59.22 (2)

Spectf heart disease 66.18 (44) 66.18 (37) 66.34 (3) 69.81 (23) 70.14 (16)

Digits 246 97.79 (60) 97.79 (33) 97.79 (30) 97.79 (55) 97.79 (50)
Steel plate faults 27.41 (24) 27.92 (19) 27.81 (20) 28.85 (9) 38.78 (2)

Colon cancer 61.33 (2000) 69.69 (78) 69.69 (368) 77.13 (283) 69.8167 (167)

Prostate cancer 56.39 (12600) 56.7652 (1) 61.93 (174) 62.57 (1) 62.58 (1)
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sets:MeasTex,54 and VisTex,37 which are typical multi-class classi¯cation problems.

Figure 3 shows example textures chosen from these data sets.

To obtain texture features, the wavelet package transform (WPT)33 is used,

which is a classical method for texture feature extraction. Speci¯cally, we ¯rst per-

form a 4-level decomposition structure for WPT, and then compute the mean and
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Fig. 1. Clustering results versus di®erent numbers of selected features. (a) Wine, (b) ionosphere, (c)

sonar, (d) spectf heart disease, (e) steel plate faults and (f ) prostate cancer.
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the variance of each coe±cients matrix in the 4th level to construct the feature

vector. Hence, features of texture images here is 128-dimensional. Characteristics of

two texture data sets are shown in Table 5.

5.2.2. Experimental design for classi¯cation

We compare our proposed SS and SuSS methods with the following feature selection

methods: (i) Var, (ii) LS, (iii) FS and (iv) Fisher–Markov selector with polynomial

kernel (LFS)12 that aims to ¯nd an global optimum of an objective function;

(v) SVM-RFE (RFE)18 that is a wrapper-type feature selection method. The code of

LFS can be obtained from the authors (http://www2.cs.siu.edu/�qcheng/feature-

selection/mrf.html), and the standard RFE algorithm is provided by the Spider

package (http://people.kyb.tuebingen.mpg.de/spider/main.html). Because the CS

method needs constraint information provided by hand, we do not compare our

proposed methods with CS in the experiments. It is worth noting that, both variance

and LS learn the feature scores without any class labels of training data, while Fisher

Score, RFE and LFS need full class labels of the training data.

For fair comparison, we compare the proposed methods with other methods in the

following way: (i) Sparsity Score-1 (SS-1) and Sparsity Score-2 (SS-2) are compared

with variance and LS, which are in unsupervised manner. (ii) Supervised Sparsity

Score-1 (SuSS-1) and Supervised Sparsity Score-2 (SuSS-2) are compared with

Fisher Score, RFE and LFS, which are in supervised manner. In this set of experi-

ments, the LIBSVM10 using RBF kernel with default parameters is employed to

perform classi¯cation.

In general, a 10-fold cross-validation strategy is adopted to compute the classi-

¯cation accuracy on the test set. To be speci¯c, we ¯rst equally partition the whole

data set into 10 subsets, and each time one of these subsets is utilized as the test set

while the other nine subsets are combined together to be the training set. To con¯rm

the optimal number of selected features in each fold, we further select 10% data from

the training set to be the validate set, and use the remaining training data to perform

feature ranking according to di®erent feature selection methods. Second, we choose

the ¯rst mðm ¼ f1; 2; . . . ; dgÞ features from the ranking list generated by a speci¯c

feature selection method on the training data. Based on the training set with such

feature subset, we construct a classi¯cation model. By varying m from 1 to d, we

Table 4. Clustering performance on steel plate faults with di®erent cluster numbers (%).

Cluster Number Baseline Var LS SS-1 SS-2

2 34.85 (24) 35.13 (21) 34.84 (1) 35.98 (23) 36.83 (7)
3 32.48 (24) 32.96 (13) 32.95 (12) 36.49 (3) 41.06 (15)

4 31.24 (24) 31.48 (3) 31.48 (9) 34.67 (2) 40.76 (7)

5 32.48 (24) 31.60 (11) 31.60 (15) 32.27 (4) 40.47 (9)

6 32.48 (24) 31.60 (11) 31.60 (15) 32.27 (4) 40.47 (9)
7 27.41 (24) 27.92 (19) 27.81 (20) 28.85 (9) 38.78 (2)
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obtain d di®erent classi¯cation models. Then, we apply these models to classify

samples in the validate set, and get multiple classi¯cation results. The number

corresponding to the model that achieves the best classi¯cation result is set to be the

optimal number of selected features. Note that, such validate set is only used to
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Fig. 2. Clustering results with di®erent cluster numbers on steel plate faults. (a) Cluster number¼ 2, (b)

cluster number¼ 3, (c) cluster number¼ 4, (d) cluster number¼ 5, (e) cluster number¼ 6 and (f ) cluster

number¼ 7.
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determine the optimal feature subset, and is not used for the training of classi¯cation

model. Finally, the classi¯cation model, which achieves the best result on validate

set, is used to classify samples in the test set, and the mean and the standard

deviation of classi¯cation accuracies are recorded. Meanwhile, classi¯cation accuracy

on the test set without any feature selection (i.e. using original data) is used as

baseline. Moreover, as the optimal number of selected features in 10 folds may be

di®erent, we also report the mean and the standard deviation of such numbers. Note

that, if there are a relatively small number of samples for speci¯c classes (e.g. the

colon cancer data set), a ¯ve-fold cross-validation strategy is adopted.

5.2.3. Classi¯cation results of unsupervised methods

First, we perform a series of experiments using four unsupervised ¯lter-type feature

selection methods (including Var, LS, SS-1 and SS-2) on UCI and gene expression

data sets. Figure 4 plots the curves of classi¯cation accuracy versus di®erent numbers

of selected features on validate sets. The mean and the standard deviation of the

optimal number of selected features are reported in Table 6, where \a" in the term \a

(�b)" is the mean result and \b" is the standard deviation of results.

From Fig. 4, one can see that the proposed SS-1 and SS-2 usually outperform Var

and LS, especially when less than half of features are selected. On the high-dimen-

sional gene expression data set (i.e. prostate cancer), our proposed SS-1 and SS-2

methods are nearly always superior to the LS and Var. It validates the e±cacy of the

proposed methods in dealing with small sample size problem.

(a)

(b)

Fig. 3. Example texture images of (a) MeasTex and (b) VisTex data sets used in our experiments.

Table 5. Texture data sets used in the experiments.

Data Set #Dimension #Class #Sample Resolution

MeasTex 128 5 640 128� 128
VisTex 128 14 1792 64� 64
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From Table 6, we can see that these four algorithms do not need all features in

order to achieve better performance. Especially on the colon cancer, less than 100

features are required to achieve the highest accuracy. One can also ¯nd that the

proposed SS-1 and SS-2 methods usually use much less features to achieve best

results, comparing to Var and LS.
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Fig. 4. Classi¯cation accuracy versus number of selected features achieved by unsupervised feature
selection methods on validate sets. (a) Wine, (b) ionosphere, (c) sonar, (d) spectf heart disease, (e) steel

plate faults and (f ) prostate cancer.
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Meanwhile, we report the classi¯cation results on the test set using optimal

feature subsets in Table 7. From Table 7, one can see that the performance of SS-

1 and SS-2 are superior to Var, LS and baseline in most data sets. It is worth

noting that on the colon cancer and the prostate cancer data sets, the proposed

SS-1 and SS-2 methods achieve much higher accuracies than those of Var, LS and

baseline.

In addition, from Fig. 4 and Table 7, one can see that the performances of SS-1

and SS-2 are inferior to Var and LS on the sonar data set. To uncover the underlying

reason, we re-investigate the sonar data carefully. As shown in Table 2, the sonar

data have 60-dimensional features. A further observation is that each sample has

much larger values on the 34–37th features than those on other features, and thus the

34–37th features may dominate the feature ranking result. Thus, it is important for

these features to appear in the ranking list of features. In the experiment, we ¯nd that

Var and LS always rank the 34–37th features in head positions, while SS-1 and SS-2

rank them in rear positions of ranking lists. That is, Var and LS nearly always select

the 34–37th features no matter what the desired number of selected features is, while

SS-1 and SS- select them only when the desired number of selected features is near to

the number of feature dimension of the data. This partially explains the results

shown in Fig. 4 and Table 7.

Table 6. Optimal numbers of selected features determined by unsupervised feature
selection methods.

Data Set Var LS SS-1 SS-2

Wine 12 (� 0.71) 10 (� 2.96) 11 (� 2.70) 8 (� 2.51)
Ionosphere 20 (� 8.73) 11 (� 9.74) 12 (� 7.56) 7 (� 3.71)

Sonar 44 (� 8.38) 51 (� 10.69) 46 (� 10.01) 43 (� 8.88)

Spectf heart disease 3 (� 3.93) 1 (� 0) 1 (� 0) 2 (� 2.23)

Digits 246 13 (� 3.83) 12 (� 2.07) 15 (� 5.35) 12 (� 2.96)
Steel plate faults 23 (� 1.30) 22 (� 1.48) 21 (� 2.64) 21 (� 0.83)

Colon cancer 60 (� 110.10) 100 (� 122.40) 6 (� 4.08) 28 (� 30.80)

Prostate cancer 122 (� 59.74) 66 (� 65.73) 46 (�63.91) 156 (� 56.75)

Table 7. Test classi¯cation accuracy of unsupervised feature selection methods (%).

Data Set Baseline Var LS SS-1 SS-2

Wine 94.96 (� 3.01) 95.00 (� 3.62) 94.71 (� 3.63) 92.71 (� 3.12) 95.52 (� 2.45)
Ionosphere 76.34 (� 3.92) 75.63 (� 5.62) 78.63 (� 5.62) 80.06(� 3.61) 79.77 (� 3.78)

Sonar 75.00 (� 3.57) 80.78 (� 4.01) 80.35 (� 4.94) 77.90 (� 7.13) 78.35 (� 6.53)

Spectf heart disease 79.39 (� 0.53) 79.39 (� 0.53) 79.39 (� 0.53) 79.39 (� 0.53) 79.41 (� 0.86)

Digits 246 98.88 (� 0.77) 99.07 (� 1.13) 98.32 (� 0.41) 98.39 (� 2.82) 99.21 (� 1.84)
Steel plate faults 62.71 (� 3.26) 64.06 (� 1.05) 63.12 (� 2.05) 64.16 (� 1.39) 63.03 (� 1.65)

Colon cancer 68.30 (� 7.58) 68.92 (� 11.16) 68.92 (� 8.09) 70.92 (� 6.39) 72.46 (� 6.80)

Prostate cancer 66.07 (� 10.71) 63.21 (� 5.29) 60.23 (� 3.72) 69.04 (� 3.64) 67.35 (� 3.19)
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5.2.4. Classi¯cation results of supervised methods

In this subsection, we report classi¯cation results achieved by di®erent supervised

feature selection methods including SuSS (including SuSS-1 and SuSS-2), FS and

LFS. The curves of the classi¯cation accuracy versus di®erent numbers of selected

features on validate sets are plotted in Fig. 5. The mean and the standard deviation

of the optimal feature dimension for di®erent algorithms are shown in Table 8.

From Fig. 5 and Table 8, the analogous trend for the proposed SuSS and the other

methods can be observed as in Fig. 4 and Table 6. To be speci¯c, the proposed

SuSS-1 and SuSS-2 are superior to FS, LFS and RFE in most cases, especially on two

high-dimensional data sets. Meanwhile, relatively smaller feature size is required for

the proposed SuSS methods to achieve the highest accuracy comparing to other

methods. These results further validate the e±cacy of the proposed l1 graph pre-

serving feature selection methods.

Table 9 records the mean as well as the standard deviation of classi¯cation

accuracies on test sets. From Table 9, we can see that our proposed SS-1 and SS-2

usually have better performances than the other methods on all data sets except for

colon cancer. We re-investigate this data set and ¯nd there are only 62 samples

with 2000-dimensional features. In the ¯ve-fold cross-validation process, fewer

samples are used to construct the l1 graph where the noise will reduce its quality.

Meanwhile, RFE is a wrapper-type feature selection method that is often superior

to ¯lter-type ones in terms of accuracy. This partially explains the results shown in

Table 9.

On the other hand, from Table 9, we can see that the proposed SuSS-1 and SuSS-2

methods usually perform similarly. It indicates that considering the variance will not

necessarily boost the l1 graph-preserving feature selection method. We re-investigate

the situation and ¯nd that, similar to variance, the l1 graph constructed by sparse

representation has involved natural discriminate information. The reason is that the

nonzero entries in the reconstructive weight vector usually correspond to samples

from the same class and therefore may help to distinguish that class from the

others. In addition, from Table 9, one can see that our proposed SS and SuSS

methods nearly always outperform the other ones on multi-class data sets, i.e. wine,

digits and steel plate faults. This encourages us to apply the proposed methods to

texture classi¯cation, which is a typical multi-class classi¯cation problem.

5.2.5. Classi¯cation results on texture

Now we apply our proposed SS and SuSS methods to reduce dimension in multi-class

texture classi¯cation tasks. The ¯rst group of experiments is to compare the pro-

posed SS (including SS-1 and SS-2) methods with Var and LS in an unsupervised

way. Table 10 reports the mean and the standard deviation of classi¯cation accu-

racies on the test set using the optimal feature subset which is con¯rmed by the

validate set. Note that, the term \a" in \a (� b)" is the average accuracy and the

term \b" is the standard deviation in the 10-fold cross-validation.
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From Table 10, one can see that SS-2 outperforms SS-1, Var and LS on two

multi-class texture data sets. On the other hand, we ¯nd that on the VisTex data set,

all algorithms achieve much better results than baseline. However, for the MeasTex

data set, the trend is not so distinct. The underlying reason may be that the
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Fig. 5. Classi¯cation accuracy versus number of selected features achieved by supervised feature selection

methods on validate sets. (a) Wine, (b) ionosphere, (c) sonar, (d) spectf heart disease, (e) steel plate faults

and (f ) prostate cancer.
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contrast of images in MeasTex data set is not strong enough as shown in Fig. 3(a). If

edges are not clear enough, features extracted by WPT which aiming to capture

the edge and orientation information will be not so discriminative. Obviously, it

will bring much challenge for feature selection methods to determine the optimal

feature subset.

Then, we perform the second group of experiments to compare the proposed SuSS

(including SuSS-1 and SuSS-2) method with FS, LFS and RFE in a supervised

manner. Experimental results are reported in Table 11. From Table 11, one can ¯nd

similar trend as in Table 10, i.e. the proposed SuSS-2 method is always superior to

SuSS-1, FS, LFS and RFE.

On the other hand, from Tables 10 and 11, one can ¯nd that the proposed SS and

SuSS methods usually outperform the other methods. It indicates that the feature

subset preserving the l1 graphs (SS and SuSS to preserve) are more compact re-

presentation of original data than that of global graphs with equal weights (Var and

FS to preserve) and neighborhood graph (LS to preserve). In fact, all existing graph-

based feature selection methods have to be faced the problem that the quality of the

graph is essential to their performance.

Table 9. Test classi¯cation accuracy of supervised feature selection methods (%).

Data Set Baseline FS LFS RFE SuSS-1 SuSS-2

Wine 94.96 (� 3.01) 92.74 (� 5.72) 91.07 (� 6.29) 90.45 (� 6.06) 96.63 (� 1.22) 94.96 (� 3.01)
Ionosphere 76.34 (� 3.92) 83.19 (� 1.85) 79.49 (� 2.67) 74.06 (� 3.30) 76.34 (� 3.92) 85.19 (� 1.54)

Sonar 75.00 (� 3.57) 74.54 (� 7.33) 79.35 (� 5.07) 72.69 (� 9.08) 80.78 (� 2.76) 82.26 (� 6.07)

Spectf

heart
disease

79.39 (� 0.53) 79.39 (� 0.53) 78.25 (� 1.88) 79.39 (� 0.53) 79.39 (� 0.53) 79.41 (� 0.97)

Digits 246 98.88 (� 0.77) 98.58 (� 0.55) 95.36 (� 7.31) 98.21 (� 2.28) 99.62 (� 0.50) 98.88 (� 0.77)

Steel plate
faults

62.71 (� 3.26) 64.21 (� 1.26) 63.03 (� 2.09) 63.42 (� 1.41) 64.04 (� 3.24) 63.71 (� 3.26)

Colon

cancer

68.30 (� 7.58) 65.84 (� 7.16) 70.46 (� 8.86) 75.53 (� 6.25) 69.84 (� 8.53) 74.30 (� 11.78)

Prostate
cancer

66.07 (� 10.71) 63.09 (� 5.12) 63.92 (� 8.41) 65.95 (� 7.92) 65.64 (� 4.07) 66.07 (� 10.71)

Table 8. Optimal numbers of selected features determined by supervised feature selection methods.

Data Set FS LFS RFE SuSS-1 SuSS-2

Wine 10 (� 4.00) 9 (� 3.20) 9 (� 3.93) 9 (� 1.51) 11 (� 2.28)
Ionosphere 6 (� 2.30) 8 (� 5.70) 8 (� 3.84) 9 (� 4.72) 5 (� 1.30)

Sonar 30 (� 13.10) 43 (� 11.46) 40 (� 13.61) 28 (� 15.93) 24 (� 12.42)

Spectf heart disease 5 (� 2.49) 5 (� 4.18) 1 (� 0) 1 (� 0) 1 (� 0)

Digits 246 12 (� 0.0) 7 (� 2.94) 17 (� 5.40) 11 (� 7.30) 11 (� 2.51)
Steel plate faults 21 (� 0.83) 21 (� 1.94) 23 (� 1.92) 19 (� 3.08) 16 (� 5.70)

Colon cancer 25 (� 32.95) 186 (� 163.46) 93 (� 145.61) 49 (� 9.67) 22 (� 13.93)

Prostate cancer 124 (� 111.46) 289 (� 36.68) 197 (� 89.86) 174 (� 92.68) 32 (� 18.67)
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6. Conclusion

In this paper, we propose a general graph-preserving feature selection framework,

and show a number of existing ¯lter-type feature selection methods can be uni¯ed

into this framework, with di®erent graphs de¯nitions. Moreover, two novel ¯lter-

type feature selection methods are proposed based on l1 graph. Results of both

clustering and classi¯cation experiments on a number of data sets have validated the

e±cacy of the proposed methods. Speci¯cally, in clustering experiments, our pro-

posed methods always achieve best performance. In the classi¯cation experiments,

the proposed methods outperform other algorithms in most cases, especially for

multi-class problems.

In the current work, based on the general graph-preserving feature selection

framework, we construct l1 graphs using sparse representation, which may be time-

consuming especially for data with large sample size. To design fast algorithms for

the construction of l1 graph can promote the computational e±ciency, which is one of

our future works. In addition, in this paper, we only adopt l1 graph for feature

selection. In fact, besides l1 graph, there are other kinds of graphs (e.g. l2 graph) that

can also be used under our general graph-based feature selection framework. It is

interesting to investigate whether using other kinds of graphs can also lead to per-

formance improvement, which is also our future work.
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Table 11. Classi¯cation accuracy of supervised feature selection methods on texture (%).

Data Set Baseline FS LFS RFE SuSS-1 SuSS-2

MeasTex 74.41 (� 4.12) 67.23 (� 3.83) 74.41 (� 4.12) 68.56 (� 6.59) 69.48 (� 5.61) 78.10 (� 2.04)

VisTex 70.65 (� 2.07) 71.61 (� 1.51) 82.87 (� 2.55) 72.52 (� 1.52) 72.52 (� 1.52) 84.34 (� 1.80)

Table 10. Classi¯cation accuracy of unsupervised feature selection methods on texture (%).

Data Set Baseline Var LS SS-1 SS-2

MeasTex 74.41 (� 4.12) 75.33 (� 3.74) 68.54 (� 4.81) 68.62 (� 8.04) 75.74 (� 4.94)
VisTex 70.65 (� 2.08) 84.52 (� 2.34) 75.73 (� 1.41) 76.19 (� 5.28) 85.26 (� 3.81)
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