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a b s t r a c t

Noises are inevitably introduced in digital image acquisition processes, and thus image denoising is still a
hot research problem. Different from local methods operating on local regions of images, the non-local
methods utilize non-local information (even the whole image) to accomplish image denoising. Due to
their superior performance, the non-local methods have recently drawn more and more attention in the
image denoising community. However, these methods generally do not work well in handling
complicated noises with different levels and types. Inspired by the fact in machine learning field that
multi-kernel methods are more robust and effective in tackling complex problems than single-kernel
ones, we establish a general non-local denoising model based on multi-kernel-induced measures
(GNLMKIM for short), which provides us a platform to analyze some existing and design new filters.
With the help of GNLMKIM, we reinterpret two well-known non-local filters in the united view and
extend them to their novel multi-kernel counterparts. The comprehensive experiments indicate that
these novel filters achieve encouraging denoising results in both visual effect and PSNR index.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Denoising is still a very active area of research in image
processing, which goal is to reduce noise artifacts while retaining
good details (such as edges) of observed images as much as
possible [1]. Towards the end, many denoising methods, such as
the mean filter, the total variation filter [2], the bilateral filter [3]
and so on, were sequentially proposed and have obtained their
popularity. Their common and effective characteristic is that they
were all realized by locally averaging [4] which is an operation on
a set of image values limited to a local targeted region in image.
Though able to preserve image details to different degrees, the
aforementioned local methods have two weaknesses: (1) the
weights involved in the averaging only depend on the single
pixels, thus sensitive to the polluted pixels; (2) artificial shocks
(unpredictable artificial stripes or textures) usually appear in the
denoised results [4].

To mitigate the weaknesses of local methods, Buades et al.
proposed a non-local means filter (NLM) recently [4]. Unlike the
local filters which typically operate on a local neighborhood, NLM
operates on a non-local area (even the whole image) by using a
dissimilarity measure between patches. Despite its simplicity and
intuition in idea, NLM has been empirically validated to clearly

outperform other classic filters including the aforementioned ones
[5]. Inspired by such a patch-based and non-local viewpoint, many
state-of-the-art non-local filters, including block-matching and
three-dimensional filter (BM3D) [6], K-SVD [7], have been pro-
posed in the recent years (refer to [5,8] for surveys in this topic).

In practice, the noise in an image is generally complicated,
which can belong to different levels (strength) and different types
(single or mixed) [9,10]. Although non-local methods have shown
excellent performances in denoising, when faced with such
complicated noises, they cannot necessarily be guaranteed to yield
desirable denoising effects [11]. Take NLM as an example, it cannot
keep high effectiveness in removing Gaussian noises with high
levels, as shown in our experiment sections later. Also, as pointed
out in [10], the NLM fails to remove the common mixed noise
either. Therefore, the denoising ability of NLM still needs to be
improved.

In terms of Huber robust statistics [12], robust filters are
insensitive to outliers and can preserve image details well.
Inspired by [12], Tan et al. developed a set of robust measures
with the kernel-induced distances and then invented a more
general filtering model (KIM for short) in [13], which not only
motivates new robust filters to born but also accommodates the
typical filters including the mean filter and the median filter as its
special cases. Meanwhile, as a powerful learning paradigm in the
machine learning community, it has been proved that multi-kernel
methods are more flexible in handling complicated learning tasks
than single-kernel ones [14]. For our current image denoising
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problem, the noises in images often have different levels and
different types. Thus we conjecture that a filter designed by
replacing single-kernel with multi-kernels can be more powerful
in removing such complicated noises.

Motivated by such successful factors in NLM, KIM and multi-
kernel methods, we develop a novel denoising model in this paper,
which is general, non-local, based on multi-kernel-induced mea-
sures and thus named as GNLMKIM for short.

The main contributions of this paper are listed as follows:

(1) We propose a new denoising model (GNLMKIM), which
provides a general platform for analyzing and designing filters.
Besides the multi-kernel strategies, the novel model combines
several favorable properties, such as robustness and non-
locality of current effective filters. For such a proposal, we
are not aware of similar works in literature.

(2) To illustrate the generality and effectiveness of GNLMKIM, we
focus on two popular non-local filters including the NLM [4]
and MNF (mixed noise filter) [10] as the starting point of our
work and show that these two filters are both special cases of
GNLMKIM.

(3) Based on GNLMKIM, we further extend both NLM and MNF to
their multi-kernel counterparts with encouraging experimen-
tal results in removing wide-level (no matter low or high)
Gaussian noises and mixed noises respectively.

The rest of this paper is structured as follows: In Section 2, we
briefly review related works. Section 3 describes and solves
GNLMKIM in detail. In Sections 4 and 5, we first reinterpret NLM
and MNF as special cases of GNLMKIM, and then extend them to
their multi-kernel counterparts followed with encouraging experi-
mental results. Finally, we conclude this paper in Section 6.

2. Related works

Some related works including noise models, NLM, MNF, KIM
and kernel strategy will be briefly introduced in turn in this
section.

2.1. Introduction to noise models

Here we concern three main noise models corresponding to
Gaussian noise, impulse noise and their mixture respectively. The
Gaussian noise model is mathematically defined as

Y ¼ XþN ð1Þ

where Y is the observed (noisy) image, X is the noise-free (original)
one to be recovered, N is the zero-mean Gaussian white noise with
the standard deviation (STD) s. A bounded domain on which X, Y,
N are defined is denoted as Ω¼ ½1;…;m� � ½1;…;n�.

There are mainly two common types of impulse noises, i.e.,
salt-and-pepper noise and random-valued noise. Let N denote
impulse noise. And suppose the gray values of an image are in the
dynamic range ½Nmin;Nmax�. For any pixel coordinatei¼ ði1; i2ÞAΩ,
the two types of the impulse noises are respectively modeled as
follows:

For the salt-and-pepper noise, we have

YðiÞ ¼
Nmin with probabilty s=2;
Nmax with probabilty s=2;
XðiÞ with probabilty 1�s:

8><
>: ð2Þ

where 0rsr1 is the salt-and-pepper noise level.

For the random-valued impulse noise,

YðiÞ ¼
NðiÞ with probabilty r;

XðiÞ with probabilty 1�r:

(
ð3Þ

where 0rrr1 is the noise level. The gray values, N(i)s, are
identically and uniformly distributed random numbers in
½Nmin;Nmax�. Throughout this paper, unless specified, the impulse
noise means the random-valued type.

Finally the mixed noise model can be formulated as

Y ¼NimpðXþNÞ ð4Þ
where Nimp denotes an operator of image degradation with
impulse noise.

2.2. Introduction to NLM

NLM is mainly designed for removing Gaussian noise. For any
pixel coordinate i¼ ði1; i2ÞAΩ, NLM computes the restored (esti-
mated) gray value X̂ðiÞ as a weighted average in terms of

X̂ðiÞ ¼ 1
CðiÞ ∑jA Si

exp �jjYi�Yjjj2
h2

 !
YðjÞ ð5Þ

where SiDΩ is a non-local search window (even the whole Ω
itself). Let Ndfig ¼ fði1þ j1; i2þ j2Þjðj1; j2ÞAZ2; jj1jrd; jj2jrdg. The
restriction (patch) of Y to the neighborhood of coordinate i is
defined as the vector Yi ¼ YðNdfigÞ ¼ ðYðjÞjjANdfigÞ. h2 acts as a
filtering parameter, which is recommended a value between 10s
and 15s (s is the noise STD) [4,5,15]. CðiÞ ¼∑jA Siexp
ðjjYi�Yjjj22;α=h2Þ is a normalized factor. jjYi�Yjjj22;α is a Gaussian
weighted dissimilarity measure (distance) between Yi and Yj and
defined as

jjYi�Yjjj22;α ¼ ∑
kAK

GαðkÞðYði�kÞ�Yðj�kÞÞ2 ð6Þ

where K ¼ fðk1; k2Þjjk1jrd; jk2jrdg is a local neighborhood cen-
tered at the origin. And

GαðkÞ ¼
1

2πα2
exp �k1

2þk2
2

2α2

 !
; k¼ ðk1; k2Þ ð7Þ

is the Gaussian kernel with standard deviation α.
Two distinct characteristics of NLM can be confirmed from the

formulation in Eq. (5):

(1) The weights are based on the dissimilarities between patches.
(2) The restored gray value of each pixel i is obtained from a non-

local search window Si. For the sake of computation, a 21� 21
window centered in pixel i is commonly recommended in
[4,5,15].

2.3. Introduction to MNF

Due to totally different image degrading mechanisms brought
out by Gaussian noise and impulse noise, up to date, just few
works focus on the removal of the mixture of the two noises,
though such a mixture is common in the real world. To make NLM
capable to remove such mixed noise, Li et al. designed a mixed
noise filter (MNF) [10] by incorporating rank-ordered absolute
difference statistic (ROAD) into NLM, where the ROAD value is
used to quantify how different in intensity the specific pixel is
from its most similar neighbors (refer to [9] for more details). As a
result, the output of MNF can be represented as

X̂ðiÞ ¼ 1
CðiÞ ∑jA Si

wIðjÞexp
jjYi�Yjjj22;M

2s2M

 !
YðjÞ ð8Þ
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where C(i) is still a normalized factor. wIðjÞ ¼ exp ð�ROADðjÞ2=2s2I Þ
is the impulse weight. And jjYi�Yjjj22;M is the impulse controlled
weighted norm of Yi and Yj, which is defined as

jjYi�Yjjj22;M ¼ ∑
kAK

JIði�k; j�kÞ ðYði�kÞ�Yðj�kÞÞ2 ð9Þ

with JIði; jÞ ¼ exp ð�ððROADðiÞþROADðjÞÞ=2Þ2=2sJ2Þ. sI, sJ and sM are
controlling parameters in MNF. The other symbols in Eq. (8) have
the same meanings as those in NLM introduced in Section 2.2. For
the details of MNF, please refer to [10].

2.4. Introduction to kernel methods and KIM

Kernel methods are popular and important in machine learning
[16] and have successfully motivated developing many learning
methods such as SVM [17], Kernel Principal Component Analysis
(KPCA) [18] and Kernel Fisher Discriminant (KFD) [19] to attack
nonlinear classification, dimensionality-reduction and regression
problems respectively. A common central idea behind these
methods is kernel trick by which a nonlinear problem in an
original low-dimensional input (data) space is mapped to a
corresponding (approximately) linear problem in a higher dimen-
sional feature space. An interesting point about the kernel trick is
that the concrete form of the mapping need not be known as long
as the involved operation between any pair of input data is the
inner product [20].

With such kernel trick, Tan et al. induced nonlinear measures
using some RBF kernels and then establish the kernel-induced
measures model (KIM) [13] to design denoising algorithms. Con-
cretely, let Φ be a mapping from a low-dimensional space to a
higher-dimensional space, X(i) and Y(j) be any two pixels in the
low-dimensional space, which belong to the original image X and
the noisy image Y respectively, then the squared Euclidean
distance in the higher-dimensional space corresponding to these
two pixels can be expanded as

dðXðiÞ;YðjÞÞ2 ¼ JΦðXðiÞÞ�ΦðYðjÞÞJ22
¼ ðΦðXðiÞÞ�ΦðYðjÞÞÞT ðΦðXðiÞÞ�ΦðYðjÞÞÞ
¼ 〈ΦðXðiÞÞ;ΦðXðiÞÞ〉�2〈ΦðXðiÞÞ;ΦðYðjÞÞ〉þ 〈ΦðYðjÞÞ;ΦðYðjÞÞ〉
¼ KðXðiÞ;XðiÞÞ�2KðXðiÞ;YðjÞÞþKðYðjÞ;YðjÞÞ
where 〈U ; U〉 denotes the inner product operation. Finally, KIM
produces the following filtering output:

X̂ðiÞ ¼ arg min
XðiÞ

∑
jAW

dðXðiÞ;YðjÞÞ2 ð10Þ

where Wis a local sliding window centered at location i.
Different kernels generally induce different measures. For

instance, when the K is specified as Exponential (Gaussian) kernel,
KIM proposed in Eq. (10) is accordingly specified as

X̂ðiÞ ¼ arg min
XðiÞ

∑
jAW

ð1�KðXðiÞ;YðjÞÞÞ

¼∑jAWKðXðiÞ;YðjÞÞYðjÞ
∑jAWKðXðiÞ;YðjÞÞ

which is a nonlinear iteration solution to X(i) and called Gaussian
kernel based filter (GK) in [13].

By means of the KIM, the kernel trick can also be used to
generalize the existing filtering algorithms such as the Mean filter
and the Median filter to their kernelized counterparts to make
them powerful in denoising [13]. Even so, KIM is still a pixel-based
and local filter (model). From a viewpoint of machine learning, we
can find that this model is just a paradigm using single kernel, e.g.,
Gaussian kernel. Inspired by the fact that multi-kernel methods
are usually more flexible and powerful than single-kernel ones
in handling complicated tasks in machine learning field [14]
and motivated by the success of the two outstanding denoising

methods (KIM and NLM), we develop a novel denoising model
(GNLMKIM) in the next section. Besides combing the advantages
of KIM and NLM, GNLMKIM inherits favorable properties of multi-
kernel method and exhibits excellent performance in removing
the complicated noises.

3. A non-local denoising model (GNLMKIM)

In this section, we first formulate the model and then give the
corresponding solution.

3.1. Model formulation

The similarity between two image patches Xi and Xj can be
expressed by a kernel KðXi;XjÞ. And similar to that in KIM, a robust
dissimilarity measure between them can directly be induced by
1�KðXi;XjÞ. Further, by means of multi-kernel method, we can
also generalize the kernel K to a multi-kernel which is linearly
combined by k base kernels. Now the new measure is turned into
dðXi;XjÞ2 ¼ 1�∑k

t ¼ 1λtKtðXi;XjÞ with λtZ0 and ∑k
t ¼ 1λt ¼ 1. Analo-

gously to the classical weighted mean filter (WMF) which is

derived by X̂ðiÞ ¼ arg min
XðiÞ

∑jAWwjðXðiÞ�YðjÞÞ2, we can also define

GNLMKIM model as a weighted dissimilarity-minimized problem
as follows:

min
Xi ;λ

∑
iAΩ

∑
jA Si

wj 1� ∑
k

t ¼ 1
λtKtðXi;YjÞ

� �
�pHðλÞ

s:t: λtZ0; ∑
k

t ¼ 1
λt ¼ 1: ð11Þ

And X̂ðiÞ, the central pixel of X̂i, is the filtering output of
GNLMKIM. The wj in GNLMKIM plays the same role as that in
WMF. Similar to that in NLM, Si is a search window by setting its
size, GNLMKIM can operate in a non-local manner. Considering
that the multiple kernel is a linear combination of many base
kernels in Eq. (11), we need to introduce the regularization term
H(λ) with λ¼ ðλ1; λ2;…; λkÞT to avoid yielding the degenerate
solution. And p is a nonnegative parameter controlling the degree
of penalty for the λ.

In fact, the GNLMKIM model in Eq. (11) can equivalently be
rewritten as

min
Xi ;λ

∑
iAΩ

∑
jA Si

wj ∑
k

t ¼ 1
ðλtð1�KtðXi;YjÞÞÞ�pHðλÞ

s:t: λtZ0; ∑
k

t ¼ 1
λt ¼ 1: ð12Þ

As mentioned before, 1�KðU ; U Þ is a dissimilarity measure. By
comparing Eq. (11) with Eq. (12), we can interestingly find that the
design problem of a filter in Eq. (11) in the multi-kernel fashion can
be converted to an equivalent design problem in Eq. (12) in a
multi-measure fashion. Specifically, on one hand, the objective in
Eq. (11) is associated with one dissimilarity measure induced by
the multi-kernel; on the other hand, the objective is associated
with a linear combination of k measures in Eq. (12). The different
formulations remind us of the early design method of combination
filters such as the mean-median (MEM) [21], mean-LogCauchy
(MLC) [21] and mean-GK (MGK) [13] filters, which are designed by
directly (linearly) combing two base filters (more precisely, their
filtering results) instead of combing a set of measures in Eq. (12).
And each such base filter is derived independently from its
corresponding optimization objective associated with the Eucli-
dian, Laplacian, Cauchy or Gaussian-kernel-induced measures [13].
That is, such an early combination filter is NOT resulted from
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optimizing a single objective. However, the objective function of
GNLMKIM in Eq. (12) is single and associated with the linearly
combined measures. Thus, GNLMKIM provides us with a novel way
to design filters. In this paper, we mainly focus on the multi-kernel
viewpoint in Eq. (11) to discuss GNLMKIM and leave the designs
based on the multi-measure viewpoint in Eq. (12) as our future work.

We highlight characteristics of GNLMKIM as follows:

(1) Its measures are patch-based and multi-kernel-induced.
(2) Its operation is non-local, similar to NLM.
(3) It is general. As illustrated later, the non-local filters such as

the well-known NLM and the lately proposed MNF are both
special cases of it and can be improved effectively.

(4) It is robust due to the case that a linear convex combination of
robust kernels is still robust, for which we give a proof in
Appendix A.

3.2. Model solution

From the constraint λtZ0 and ∑k
t ¼ 1λt ¼ 1 in Eq. (11), we find

that the λt s can be described in probability. To optimize it, a class
of (discrete) entropies is often adopted for measuring the degree
of uncertainty within a probability distribution. Table 1 lists typical
examples of commonly used (generalized) entropy measures [22],
any of which can be used to GNLMKIM as a prior constraint.

Considering the robustness kernels involved in Eq. (11) have
different forms, we tabulate three commonly used kernels [13] in
Table 2.

It should be mentioned here, for image denoising, when
Jx�yJ22 in Table 2 is replaced with jjx�yjj22;α and jjx�yjj22;M
respectively, the resulting K(x,y)s are still kernels.

In what follows, we derive GNLMKIM from Eq. (11) by using
alternating minimization algorithm:

Step 1 λ̂¼ arg min
λ

∑
iAΩ

∑
jASi

wj 1� ∑
k

t ¼ 1
λtKtðYi;YjÞ

� �
�pHðλÞ

s:t: λtZ0; ∑λt ¼ 1 ð13Þ

Step 2 X̂i ¼ arg min
Xi

∑
iAΩ

∑
jA Si

wj 1� ∑
k

t ¼ 1
λ̂tKtðXi;YjÞ

� �
ð14Þ

In step 1, we set Xi¼yi to solve λ, and then in step 2, we fix λ to
solve Xi. Since the objective in Eq. (11) is not convex, our algorithm
can only converge to a local optimum by iterating the two steps.
Fortunately, based on a great deal of experiments, we find that one

iteration is enough for obtaining promising results. Thus, we run
the two steps only one time throughout all our experiments.

4. Extension of NLM

With the help of GNLMKIM, in this section, we reinterpret the
well-known NLM and extend it to its multi-kernel counterpart.

4.1. NLM as a special case of GNLMKIM

Nowwe choose a single kernel KðXi;YjÞ ¼ exp ð�jjXi�Yjjj22;α=h2Þ
and let all wjs be equal in Eq. (11). As a result, GNLMKIM is reduced
to

X̂i ¼ arg min
Xi

∑
jA Si

1�exp �jjXi�Yjjj22;α
h2

 ! !
ð15Þ

Let D(Gα) be an operator which returns a matrix with Gα on the
main diagonal and the rest entries are all zeros. To solve the
problem in Eq. (15), we zero the following derivative:

∂ ∑
iAΩ

∑
jA Si

1�exp �jjXi �Yj jj22;α
h2

� �� �
∂Xi

ð16Þ

for which we further have

¼ ∂∑iAΩ∑jASi ð1�expð� JDðGαÞðXi�YjÞJ22=h2ÞÞ
∂Xi

¼ ∂∑jA Si ð1�expð�ð
ffiffiffiffiffiffiffiffiffiffiffiffi
DðGαÞ

p
ðXi�YjÞÞT ð

ffiffiffiffiffiffiffiffiffiffiffiffi
DðGαÞ

p
ðXi�YjÞÞ=h2ÞÞ

∂Xi

¼∑jA Si �2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
DðGαÞ

p
ðXi�YjÞÞ

h2 exp �jjðXi�YjÞjj22;α
h2

 !" #

¼ 0

As a result, a corresponding fixed point equation is got:

Xi ¼
1
CðiÞ ∑jA Si

exp �jjXi�Yjjj22;α
h2

 !
Yj ð17Þ

where CðiÞ is still a normalized factor. Further, using Yi to
substitute Xi in jj:jj of Eq. (17), we can obtain an approximate
solution to the fixed point equation:

X̂i ¼
1
CðiÞ ∑jA Si

exp �jjYi�Yjjj22;α
h2

 !
Yj

with

CðiÞ ¼ ∑
jASi

exp �jjYi�Yjjj22;α
h2

 !

So, in this particular condition, X̂ðiÞ ¼ ð1=CðiÞÞ∑jASiexpð�jj
Yi�Yjjj22;α=h2ÞYðjÞ is the output of GNLMKIM and also the result
of NLM. That is, NLM is a special case of GNLMKIM.

4.2. A multi-kernel extension of NLM

As mentioned before, different kernels have different charac-
teristics for adapting different application environments. A kernel
which effectively deals with low level noises is usually unsuitable
for high level noises, and vice versa. In other words, using the
single kernel in NLM does generally not work well in removing the
wide (no matter low or high) level noises, which is also validated
in our following experiments. To compensate the weakness of
NLM in removing the complicated noises, we attempt to extend
this filter to its multi-kernel counterpart based on GNLMKIM.
Specifically, considering that the noises all belong to the same type
(Gaussian noise), we choose homogenous kernels (two

Table 1
Typical examples of entropy measure H(λ).

(1) Shannon entropy: �∑tλt log λt Differentiable
(2) l2-entropy: 1�λTλ Differentiable

(3) l1-entropy: 2�∑t λt�1
n

�� �� Non-differentiable

(4) l1-entropy: 1� max fλt t ¼ 1;…; k
�� g Non-differentiable

Table 2
Three commonly used kernels of Kt .

(1) Exponential: Kðx; yÞ ¼ exp �jjx�yjj22
h2

� �
Differentiable

(2) Laplacian: Kðx; yÞ ¼ exp �jjx�yjj12
h

� �
Non-differentiable

(3) Geman-McClure:
Kðx; yÞ ¼ 1= 1þjjx�yjj22

h2

� �2 Differentiable
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Exponential kernels) to construct multi-kernel in GNLMKIM in
Eq. (11) and set the HðλÞ as Shannon entropy. As shown in the
following, this regularization term always leads to a closed-form
solution regardingλ.

After setting up the parameters of GNLMKIM in Eq. (11), we
specify the model as follows:

min
Xi ;λ

∑
iAΩ

∑
jA Si

1� ∑
2

t ¼ 1
λtKtðXi;YjÞ

� �
þp ∑

2

t ¼ 1
ðλt lnðλtÞÞ

s:t: λtZ0; ∑
k

t ¼ 1
λt ¼ 1: ð18Þ

with

K1ðXi;YjÞ ¼ exp �jjXi�Yjjj22;α
h1

2

 !

K2ðXi;YjÞ ¼ exp �jjXi�Yjjj22;α
h2

2

 !

Solving the problem in the two-step alternation described in
Section 3.2, we get

Step 1 λ̂¼ arg min
λ

∑
iAΩ

∑
jA Si

1� ∑
2

t ¼ 1
λtKtðYi;YjÞ

� �
þp ∑

2

t ¼ 1
ðλt lnðλtÞÞ

s:t: λtZ0; ∑λt ¼ 1 ð19Þ

Step 2 X̂i ¼ arg min
Xi

∑
iAΩ

∑
jASi

1� ∑
2

t ¼ 1
λ̂tKtðXi;YjÞ

� �
ð20Þ

To solve the subproblem in Eq. (19), we construct Lagrangian
function as follows:

LðλtÞ : ¼ ∑
iAΩ

∑
jASi

1� ∑
2

t ¼ 1
λtKtðYi;YjÞ

� �
þp ∑

2

t ¼ 1
λt ln λt�η ∑

2

t ¼ 1
λt�1

� �

And let

∂L
∂λt

¼ ∑
iAΩ

∑
jA Si

�KtðYi;YjÞþpðln λtþ1Þ�η¼ 0

we have

λt ¼ exp
η

p
�1

� �
exp

1
p
∑
iAΩ

∑
jA Si

KtðYi;YjÞ
 !

Since ∑λt ¼ 1

exp
η

p
�1

� �
¼ 1

∑2
t ¼ 1exp

1
p∑iAΩ∑jASi ðKtðYi;YjÞÞ
� �

Then, we obtain the solution to the subproblem in Eq. (19):

λ̂t ¼
1

UðtÞexp
1
p
∑
iAΩ

∑
jA Si

KtðYi;YjÞ
 !

where

UðtÞ ¼ ∑
2

t ¼ 1
exp

1
p
∑
iAΩ

∑
jASi

KtðYi;YjÞ
 !

To solve the subproblem in Eq. (20), we solve

∂ ∑
iAΩ

∑
jASi

ð1�∑2
t ¼ 1λ̂tKtðXi;YjÞÞ

∂Xi
¼ 0

similar to the method used in Section 4.1, and get

X̂i ¼
1

CðiÞ ∑jASi

∑
2

t ¼ 1
ðλ̂tKi

tðYi;YjÞÞYj

with

CðiÞ ¼ ∑
jA Si

∑
2

t ¼ 1
ðλ̂tKt

0 ðYi;YjÞÞ

and

Kt
0 ðYi;YjÞ ¼

1

ht
2KtðYi;YjÞ

Finally, the filtering output of the novel multi-kernel filter
becomes

X̂ðiÞ ¼ 1
CðiÞ ∑jASi

∑
2

t ¼ 1
ðλ̂tKt

0 ðYi;YjÞÞYðjÞ ð21Þ

From the above discussion, we can find that NLM and its multi-
kernel counterpart we proposed here both need computing values
of the kernel functions, which is expensive in practice. Concretely,
for an image of size M�M, the computational complexity of NLM
is O ðM4ðd� dÞÞ ¼ OðM4d2Þ, and that of the multi-kernel version is
O ð2M4d2Þ ¼ O ðM4d2Þ. Here, d�d is the size of the patches.

4.3. Experimental results

All experiments are conducted on Core2 Duo 2.2 GHz (2 GB
memory). And the software environment is Matlab 7.11. Through-
out the experiments, we mainly focus on validating the effective-
ness of the proposed multi-kernel extensions. Speeding up [23–
25], threshold setting [26] and other improving strategies for NLM
go beyond the scope of this paper. Similar to single-kernel
methods, the strategies [23–26] can also be borrowed to boost
our multi-kernel methods.

Different parameter settings of a kernel or filter often lead to
different denoising effects. To objectively conduct the experi-
ments, we set all the parameters of the compared methods to
the values recommended in their corresponding original docu-
ments respectively unless specified.

(1) Three single exponential kernels are tested in our experi-
ments. In the first one, the kernel parameter h2¼10s which is
the setting recommend in [4,15] for NLM. In the second one,
h2¼100s, and in the last one, h2¼1000s.

(2) In our method, we choose the multi-kernel composed of the
first two single kernels and set the regularization parameter
p¼5000. Although the setting for the parameters of our multi-
kernel method is not necessarily the best, it has shown
promising results in the following experiments.

(3) By adding the single kernel with h2¼1000s to our method, we
get another multi-kernel (K3 for short) which is combined by
all the three single ones.

(4) For all the filters involved in the experiment, as recommended
in [4,5,15], the size of patches and search windows are set to
7�7 and 21�21 respectively.

In our experiments, we select six frequently used images with
different degrees of detail as shown in Fig. 1.

As usual, we evaluate the quality of restored images in terms of
visual effect and quantitative index of peak signal-to-noise-ratio
(PSNR) which is defined as

PSNR¼ 10 log 10
2552

MSE

 !
ð22Þ

with MSE¼ ð1=jΩjÞ∑iAΩðXðiÞ� X̂ðiÞÞ2. According to the definition,
the larger the PSNR value, the better the restored quality is. First,
we list the specific PSNR results on the tested images in Table 3.

Then, in Fig. 2, we illustrate the performances of the compared
filters in terms of average PSNR corresponding to Table 3.
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From the results above, we can observe that

(1) Different kernels generally adapt different noises. The single
kernel with h2¼10s can effectively deal with low level noises
and gradually tends to fail as the level is increased higher than

50, while the single kernel with h2¼100s is only active for the
high level noises. However, the single kernel with h2¼1000s
hardly remove any level noise added in this experiment,
implying that it is not appropriate (nonsensical) in such a
case.

BridgeBoatsLenna

Barbara Peppers Couple

Fig. 1. Six images (512�512) for denoising experiment

Table 3
The PSNR (dB) results with Gaussian noise. The numbers in bold are the largest PSNR values corresponding to the results of the different denoising methods.

Noise STD s¼10 s¼30 s¼50 s¼70 s¼90 s¼100

Lenna h2¼10s (NLM)[4] 34.81 27.33 21.47 17.87 15.67 14.90
h2¼100s 29.88 27.16 25.44 23.84 22.39 21.76
h2¼1000s 24.65 23.17 22.57 21.94 21.20 20.82
Ours 34.73 27.39 25.55 23.81 22.30 21.70
K3 34.73 27.39 25.55 23.81 22.30 21.71

Boats h2¼10s (NLM)[4] 32.58 26.40 21.07 17.58 15.45 14.71
h2¼100s 27.18 24.61 23.30 22.16 21.15 20.70
h2¼1000s 22.58 21.52 21.09 20.67 20.17 19.91
Ours 32.49 26.43 23.43 22.20 21.11 20.63
K3 32.49 26.43 23.43 22.20 21.11 20.63

Bridge h2¼10s (NLM)[4] 29.06 24.54 20.47 17.47 15.45 14.72
h2¼100s 23.98 22.07 21.11 20.26 19.42 19.02
h2¼1000s 20.48 19.61 19.26 18.89 18.44 18.19
Ours 29.02 24.52 21.23 20.31 19.39 19.00
K3 29.02 24.52 21.23 20.31 19.39 19.00

Barbara h2¼10s (NLM)[4] 33.75 26.45 21.19 17.81 15.65 14.88
h2¼100s 27.60 24.27 22.70 21.43 20.32 19.82
h2¼1000s 21.92 20.81 20.37 19.88 19.30 18.99
Ours 33.61 26.51 22.86 21.49 20.29 19.77
K3 33.61 26.51 22.86 21.49 20.29 19.79

Peppers h2¼10s (NLM)[4] 34.26 27.39 21.59 18.00 15.77 14.99
h2¼100s 30.30 27.20 25.03 23.18 21.60 20.93
h2¼1000s 24.43 22.49 21.73 21.01 20.23 19.84
Ours 34.17 27.43 25.43 23.12 21.53 20.89
K3 34.17 27.43 25.43 23.12 21.53 20.89

Couple h2¼10s (NLM)[4] 32.43 26.08 20.86 17.44 15.36 14.65
h2¼100s 26.32 23.98 22.88 21.96 21.12 20.74
h2¼1000s 22.24 21.39 21.07 20.73 20.32 20.09
Ours 32.36 26.21 23.02 22.03 21.07 20.66
K3 32.36 26.21 23.02 22.03 21.07 20.69
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(2) Our multi-kernel method has more flexibility by optimizing
the linear combination of the two kernels, which can well
remove wide (no matter low or high) level noises;

(3) From the behaviors of K3 filter, we notice that adding a
nonsensical kernel does not produce unfavorable denoising
effect.

In addition to the above observations, it is worthwhile to point
out that our multi-kernel filtering method cannot necessarily
always outperform the single kernels in attacking individual noise
level (except for 50), which is probably because that an appro-
priately chosen single kernel can be affordable enough to remove
such just-one-level noise.

Finally, we show a few closer investigations of the noisy images
and the corresponding denoised ones in Figs. 3 and 4.

The visual effects above also show that the extension of NLM
based on multi-kernel method is excellent in removing Gaussian
noise. Compared with the three single-kernel ones, the novel filter
has better behaviors in the wide noise levels.

5. Extension of MNF

To further illustrate the effectiveness of GNLMKIM, based on
this model, we extend the lately proposed mixed noise filter
(MNF) [10] to its multi-kernel counterpart too.

5.1. A multi-kernel extension

Similar to the extension of NLM, we give the reinterpretation
of MNF first. Choosing a single kernel KðXi;YjÞ ¼ exp ð�jj Xi�
Yjjj22;M=2s2MÞ and replacing wj with wI(j) (proposed in Eq. (8)), we
specify GNLMKIM model in Eq. (11) into the following formula-
tion:

X̂i ¼ arg min
Xi

∑
jASi

wIðjÞ 1�exp �jjXi�Yjjj22;M
2sM2

 ! !
ð23Þ

Analogously solving the problem in Eq. (15) in Section 4.1, we
get X̂ðiÞ ¼ ð1=CðiÞÞ∑jA SiwIðjÞexpð�jjYi�Yjjj22;M=2sM2ÞYðjÞ which is
the denoised output of MNF in Eq. (8) indeed. That is, MNF is also
a special case of GNLMKIM.

Considering that MNF is mainly designed for removing the
mixture of Gaussian and impulse noises, and in order to improve
the denoising ability of this filter, we select two heterogeneous
kernels (Exponential kernel and Geman-McClure kernel) to con-
struct the multi-kernel in Eq. (11). In fact, richer and more types of
kernels can be used in practical conditions. Here, we still use

Shannon entropy to regularize the λ. As a result, GNLMKIM is
specified as follows:

min
Xi ;λ

∑
iAΩ

∑
jA Si

wIðjÞ 1� ∑
2

t ¼ 1
λtKtðXi;YjÞ

� �
þp ∑

2

t ¼ 1
ðλt lnðλtÞÞ

s:t: λtZ0; ∑
k

t ¼ 1
λt ¼ 1 ð24Þ

where

K1ðXi;YjÞ ¼ exp �jjXi�Yjjj22;M
h1

2

 !

and

K2ðXi;YjÞ ¼ 1= 1þjjXi�Yjjj22;M
h2
2

 !2

According to the two-step alternation method described in
Section 3.2, we get

Step 1 : λ̂¼ arg min
λ

∑
iAΩ

∑
jASi

wIðjÞ 1� ∑
2

t ¼ 1
λtKtðYi;YjÞ

� �
þp ∑

2

t ¼ 1
ðλt lnðλtÞÞ

s:t: λtZ0;∑λt ¼ 1 ð25Þ

Step 2 : X̂i ¼ arg min
Xi

∑
iAΩ

∑
jAΩ

wIðjÞ 1� ∑
2

t ¼ 1
λ̂tKtðXi;YjÞ

� �
ð26Þ

Similar to the methods in Section 4.2, we solve these two sub-
problems and get the output of the novel filter, expressed by

X̂ ¼ ðiÞ ¼ 1
CðiÞ ∑jA Si

∑
2

t ¼ 1
ðλ̂twIðjÞKt

0 ðYi;YjÞÞYðjÞ ð27Þ

where CðiÞ is still a normalized factor

K1
0 ðYi;YjÞ ¼

1

h21
exp �jjYi�Yjjjj22;M

h1
2

 !

K2
0 ðYi;YjÞ ¼

2

h22
= 1þ JXi�Yj J22;M

h2
2

 !3

and

λ̂t ¼
1

UðtÞexp
1
p
∑
iAΩ

∑
jASi

wIðjÞKtðYi;YjÞ
 !

with

UðtÞ ¼ ∑
2

t ¼ 1
exp

1
p
∑
iAΩ

∑
jA Si

wIðjÞKtðYi;YjÞ
 !

5.2. Experimental results

To illustrate the effectives of the multi-kernel modification, we
compare our novel filter with the original MNF in denoising. Two
classical filters, signal-dependent rank ordered mean (SD-ROM)
filter [27] and Trilateral filter [9], for removing the mixed noised
are also considered here.

To objectively conduct the experiments, we still set the para-
meters of the compared filters to the values recommended in their
corresponding original documents. Similar to NLM, in our novel
filter, we believe h2

i ði¼ 1;2Þ should also depend on noise level and
thus directly set hi2¼aisþbir (where ai and bi are parameters to be
settled, s is still the Gaussian noise STD, and r is the impulse noise
level defined in Eq.(3)). In fact, the 1st term of the sum results
from the influence of Gaussian noise while the 2nd term is from
the influence of impulse noise. In such setting, we find that good
selections for h1 and h2 are h21 ¼ 5sþ150r and h2

2 ¼ sþ30r,

Fig. 2. Comparison in terms of average PSNR corresponding to Table 3.
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respectively. And the other parameters are set the same values as
those in MNF. Specifically, as recommended in [10],
sI ¼ sJ ¼ 100þs�160r, the size of patches and search windows
are set to 3�3 and 7�7 respectively. Although the above
parameter settings for our novel filter are not necessarily the best,
their corresponding experimental results are promising.

Next, we report the corresponding PSNR in Table 4.
To compare their visual effects, we also show a few denoising

closer investigations in Fig. 5.

Jointly from Table 4 and Fig. 5, we can find that, similar to the
extension of NLM in Section 4, the multi-kernel counterpart of
MNF is very effective too. And its filtering results in removing the
mixed noise defeat the original mixed noise filter, i.e., MNF, in both
visual effect and PSNR.

Further, in Table 5 and Fig. 6, we give the experimental results
on removing the wide level Gaussian noises.

In removing the Gaussian noise, as showed in the results
above, our multi-kernel method also exhibits effectiveness, which

Fig. 3. Closer investigations of the six tested images corrupted by Gaussian noise with s¼30. From left to right: (a) the noisy data, (b–d) restored by the single kernel
methods with h2¼10s (NLM)[4], 100s, 1000s respectively, and (e) restored by our multi-kernel method.
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outperforms the SD-ROM filter and the Trilateral filter apparently.
We also notice that, compared with the original MNF, the multi-
kernel method is not so effective when the noise level is quite
high (s460). That is, selecting the two heterogeneous kernels
(Exponential kernel and Geman-McClure kernel) to construct the
multi-kernel does not necessarily always work well in removing
the homogenous noise, e.g., Gaussian noise. Thus, in specific
applications, the kernel members involved in the combination
need to be selected as in terms of available prior knowledge as
possible.

6. Conclusions

In this paper, inspired by the multi-kernel learning, we propose
a general non-local denoising model incorporating multi-kernel-
induced measures (GNLMKIM). This model is robust and patch-
based. As a general model, GNLMKIM provides us a platform to
analyze and design non-local filters. With the help of the platform,
we not only reinterpret the two typical non-local filters (NLM and
MNF), but also extend them to their multi-kernel counterparts
with encouraging experimental results.

Fig. 4. Closer investigations of the six tested images corrupted by Gaussian noise with s¼70. From left to right: (a) the noisy data, (b–d) restored by the single kernel
methods with h2¼10s (NLM) [4], 100s, 1000s respectively, and (e) restored by our multi-kernel method.
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To conclude, two possible extensions of the multi-kernel
methods derived from GNLMKIM are as follows:

(1) Similar to NLM, the multi-kernel methods are generally com-
plex in computation. Fortunately, as mentioned before, there
have been some fast algorithms designed [23–25] for
speeding-up NLM. It is possibly feasible to borrow the strate-
gies to speed up the multi-kernel methods.

(2) Constructed by two individual kernel members, the multi-
kernel methods have already exhibited excellent ability to
remove the complicated noises in this paper. However, as
illustrated in the experiments, there is still room for further
boosting the denoising performance. How to adjust the num-
bers and types of the combined members to specific applica-
tions is a meaningful yet challenging work, and is deserved as
a future study.
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Appendix A

Proof that GNLMKIM is a robust estimator

There are many robust estimators, e.g., M-estimator, L-estimator
and R-estimator [12]. Here we only focus on M-estimator. From Eq.
(14), we know fYjjASig is an observed dataset and Xi is an unknown
parameter to be estimated. Then, the M-estimator for the location
estimation can be generated by minimizing the following function:

JðXiÞ ¼ ∑
iAΩ

∑
jA Si

ρðXi�YjÞ ðA:1Þ

where

ρðXi�YjÞ ¼wj 1� ∑
k

t ¼ 1
λtKtðXi;YjÞ

� �

is a function which only depend on Xi�Yj in this proof. Then the
M-estimator is generated by solving the following equation:

J0ðXiÞ ¼ ∑
jA Si

ϕðXi�YjÞ ¼ 0 ðA:2Þ

where ϕðXi�YjÞ ¼ ð∂=∂XiÞρðXi�YjÞ. The influence function (IF) of
M-estimator [12] which is proportional to ϕ and defined as

IFðYj; F;XiÞ ¼
ϕðXi�YjÞR

ϕ0ðXi�YjÞdFYj
ðYjÞ

ðA:3Þ

where FYj
ðYjÞ is the distribution function of YJ. If the IF of an

estimator is unbounded, an outlier might cause trouble, i.e., the
estimator is not robust. There are many measures to estimate the
robustness derived from IF. And an important one of them is the
gross error sensitivity (GES), which is defined as

γn ¼ sup
Yj

jIFðYj; F;XiÞj ðA:4Þ

where jnj denotes ABS function (for a scalar) or l2 norm (for a
vector). The value of GES can interpret the worst approximate
influence that the addition of an infinitesimal point mass can have
on the value of the associated estimator. For simplicity, here we
only use two single kernels (Exponential and Geman-McClure
which definitions can be found in Table 2) to construct the
multiple kernel in the function ρ in Eq. (A.1). For other forms of
the multi-kernel, it can be proved by taking similar tactics. Thus,

Table 4
The PSNR (dB) results on the tested images with the mixed noise. The numbers in bold are the largest PSNR values corresponding to the results of the different denoising methods.

r¼0.1 r¼0.2 r¼0.3

s¼15 s¼20 s¼25 s¼30 s¼15 s¼20 s¼25 s¼30 s¼15 s¼20 s¼25 s¼30

Lenna SD-ROM [27] 25.90 24.23 22.99 22.08 25.51 23.83 22.67 21.74 24.75 23.25 22.16 21.31
Trilateral [9] 29.72 28.39 27.11 25.80 28.64 27.42 26.21 24.98 27.40 27.05 26.59 26.11
MNF [10] 30.02 29.30 28.69 28.02 29.48 28.82 28.10 27.43 28.85 28.20 27.49 26.76
Ours 31.60 30.49 29.53 28.48 30.80 29.74 28.69 27.66 29.70 28.69 27.62 26.62

Boats SD-ROM [27] 25.19 23.65 22.53 21.65 24.64 23.20 22.12 21.31 23.90 22.61 21.62 20.80
Trilateral [9] 27.13 26.34 25.44 24.45 26.21 25.43 24.57 23.69 24.75 24.53 24.17 23.88
MNF [10] 26.81 26.29 25.84 25.42 26.32 25.82 25.35 24.95 25.80 25.35 24.90 24.45
Ours 28.73 27.92 27.19 26.44 27.88 27.14 26.36 25.73 26.97 26.26 25.55 24.83

Bridge SD-ROM [27] 24.05 22.77 21.75 20.96 23.37 22.21 21.27 20.54 22.47 21.51 20.67 19.96
Trilateral [9] 24.51 23.94 23.30 22.67 23.70 23.18 22.58 21.91 22.28 22.15 21.92 21.68
MNF [10] 23.81 23.50 23.20 22.95 23.49 23.17 22.88 22.60 23.10 22.84 22.53 22.23
Ours 25.30 24.80 24.31 23.88 24.73 24.24 23.78 23.33 24.01 23.60 23.14 22.64

Barbara SD-ROM [27] 23.24 22.22 21.38 20.70 22.76 21.80 21.00 20.32 22.13 21.29 20.53 19.88
Trilateral [9] 24.13 23.62 23.12 22.51 23.53 23.08 22.59 21.96 22.70 22.56 22.38 22.19
MNF [10] 24.81 24.27 23.86 23.52 24.18 23.77 23.45 23.13 23.62 23.31 23.03 22.74
Ours 27.19 26.16 25.31 24.59 25.79 25.03 24.40 23.79 24.51 23.99 23.46 22.97

Peppers SD-ROM [27] 25.80 24.10 22.91 22.02 25.24 23.69 22.52 21.65 24.41 22.99 21.94 21.04
Trilateral [9] 28.10 27.16 26.17 25.15 27.34 26.50 25.43 24.41 26.53 26.23 25.81 25.29
MNF [10] 30.26 29.50 28.70 28.05 29.49 28.76 27.91 27.31 28.64 27.90 27.16 26.37
Ours 31.55 30.60 29.55 28.59 30.56 29.63 28.51 27.66 29.25 28.32 27.34 26.25

Couple SD-ROM [27] 25.14 23.59 22.50 21.60 24.56 23.18 22.08 21.26 23.82 22.55 21.59 20.76
Trilateral [9] 26.81 25.98 25.10 24.17 25.92 25.20 24.37 23.49 24.38 24.25 23.98 23.63
MNF [10] 26.19 25.72 25.32 24.94 25.77 25.36 24.93 24.57 25.31 24.96 24.51 24.13
Ours 28.19 27.32 26.64 25.94 27.39 26.68 25.99 25.32 26.52 25.94 25.20 24.56
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we have

ρ¼wjð1�λ1K1ðXi;YjÞ�λ2K2ðXi;YjÞÞ ðA:5Þ

with

K1ðXi;YjÞ ¼ exp �jjXi�Yjjj22
h1

2

 !

and

K2ðXi;YjÞ ¼ 1= 1þjjXi�Yjjj22
h2

2

 !2

Therefore

ϕðXi�YjÞ
�� ��

Fig. 5. Closer investigations of the three tested images corrupted by the mixed noise with r¼0.2 and s¼25. From left to right: (a) the noisy data, (b) restored by SD-ROM
[27], (c) restored by Trilateral [9], (d) restored by MNF [10] and (e) restored by our multi-kernel method.
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¼ wj λ1exp �jjXi�Yjjj22
h2
1

 !
2

h21
jjXi�Yjjj2

 �����
þλ2 4=h2

2 1þjjXi�Yjjj22
h2
2

 !3
0
@

1
A
�����
�����Xi�Yj

�����
�����
2

1
A
�����

¼wj λ1exp �jjXi�Yjjj22
h21

 !
2

h22

 

þλ2 4=h22 1þjjXi�Yjjj22
h22

 !3
0
@

1
A
1
A Xi�Yj j2

������ ðA:6Þ

Let x denote jjXi�Yjjj2 and take continuation strategy in Eq.
(A.6), we get

ϕx

�� ��¼wj λ1exp �x2

h21

 !
2

h21
þλ2 4=h22 1þx2

h22

 !3
0
@

1
A

0
@

1
Ax ðA:7Þ

The function in (A.7) is continuous and derivable. Applying the
L'Hospital’s rule, we can get the following limitations for Eq. (A.7)

lim
x-1

jϕxj ¼ 0 ðA:8Þ

And their bounded maximum and minimum can be got by
zeroing the derivative of the function in Eq. (A.7).

According to the above, the function in Eq. (A.6) is bounded. So
the corresponding IF is bounded too. Therefore the gross error
sensitivity defined in Eq. (A.4) is finite, which means that
GNLMKIM is a robust estimator.
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