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Abstract Recently, matrix norm l2,1 has been widely applied to feature selection in
many areas such as computer vision, pattern recognition, biological study and etc. As
an extension of l1 norm, l2,1 matrix norm is often used to find jointly sparse solution.
Actually, computational studies have showed that the solution of l p-minimization
(0 < p < 1) is sparser than that of l1-minimization. The generalized l2,p-minimization
(p ∈ (0, 1]) is naturally expected to have better sparsity than l2,1-minimization. This
paper presents a type of models based on l2,p (p ∈ (0, 1]) matrix norm which is
non-convex and non-Lipschitz continuous optimization problem when p is fractional
(0 < p < 1). For all p in (0, 1], a unified algorithm is proposed to solve the l2,p-
minimization and the convergence is also uniformly demonstrated. In the practical
implementation of algorithm, a gradient projection technique is utilized to reduce the
computational cost. Typically different l2,p (p ∈ (0, 1]) are applied to select features
in computational biology.
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1 Introduction

In many applications, such as computer vision, handwriting character recognition,
medical diagnosis and etc., l2,1 matrix norm has received increasing attention to select
features for its joint sparsity. The underlying assumption is that features in high dimen-
sional data are related to each other but only a few of informational features contribute
to discrimination. Existing schemes employ various strategies to capture the feature
relatedness and select the most discriminative features, then take into account in the
learning formulation. The involved models and methods are frequently constructed in
l1-norm framework. Actually, extensive computational studies [2–5,12] have showed
that using l p-norm (0 < p < 1) can find sparser solution than using l1-norm. Natu-
rally, one can expect mixed l2,p-norm (0 < p ≤ 1) based minimization to have better
sparsity pattern than l2,1-norm. A similar l p − lq (0 < p ≤ 1, 1 ≤ q ≤ 2) penalty for
sparse linear and multiple kernel multi-task learning has been considered in [13]. But
the induced optimization problems have to be separately solved by different algorithms
according to the convex (p = 1) and non-convex (0 < p < 1) cases. This brings com-
putational difficulty to freely vary p and q. This paper presents a generalized model
based on l2,p (p ∈ (0, 1]) matrix norm1. When p is a positive fraction (0 < p < 1),
the involved optimization problem is neither convex nor Lipschitz continuous. When
p = 1, it is just the well defined l2,1-minimization. Inspired by the work in [1,2], we
will develop a unified algorithm to solve the mixed l2,p-norm based minimization for
all p in (0, 1]. To the best of our knowledge, this presentation has the innovations as
follows. (1) The general model based on mixed l2,p (p ∈ (0, 1]) norm is more adaptive
than l2,1−norm to offer better sparsity for different data structures. (2) The unified
algorithm and its unform convergence for p ∈ (0, 1] provides algorithmic support
in pursuing more sparse patterns. (3) In the implementation of unified algorithm, a
gradient projection scheme is utilized to reduce the computational cost. The running
CPU time comparisons confirm the numerical economy of this technique. (4) Typical
p ∈ (0, 1] are tested in l2,p-minimization, the experiments in bioinformatics study
provide empirical evidence that some 0 < p < 1 are alternatives in constructing better
sparse patterns than p = 1 .

The rest of the paper is organized as follows. Section 2 states some necessary
notations and induces the generalized model based on l2,p-norm (p ∈ (0, 1]). Section 3
develops a unified approach to solve the specially mixed optimization problem, and
the convergence analysis is also established. Section 4 considers a gradient projection
technique for solving the subproblems inexactly. Some experiment results are reported
in the Sect. 5. Conclusions and further extensions are discussed in the last section.

2 l2, p-Norm based minimization

We employ the notations as usual. Matrices are written as uppercase letters while
vectors are written as lowercase letters. For example, A = (ai j )d×n denotes a real

1 ‖ · ‖2,p (0 < p < 1) is not a valid matrix norm because it does not admit the triangular inequality. Here
we call it matrix norm for convenience.
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A unified algorithm for mixed l2,p-minimizations 411

d × n matrix, ai ∈ Rn(i = 1, · · · , d) and a j ∈ Rd( j = 1, · · · , n) are the i−th row
and j−th column of A respectively.

For any x ∈ Rd , several useful vector norms are given as follows,

‖x‖0 =
∑

xi �=0

|xi |0, ‖x‖p
p =

d∑

i=1

|xi |p, ‖x‖1 =
d∑

i=1

|xi |, (1)

where p ∈ (0, 1). Actually, neither l0 nor l p (0 < p < 1) is a well defined norm
because the both definitions do not satisfy the norm axioms.

l2,1-norm of matrix was firstly introduced in [6] which can be considered as a
generalization of l1 vector norm to matrix,

‖A‖2,1 =
d∑

i=1

‖ai‖2. (2)

Now we generalize the definition of l2,1-norm to mixed l2,p-norm as follows

‖A‖2,p =
(

d∑

i=1

‖ai‖p
2

) 1
p

, p ∈ (0, 1]. (3)

Note that l2,p-norm (0 < p < 1) is not a valid norm, and neither convex nor Lipschitz
continuous. This properties challenge researchers to solve the related optimization
problems.

Given observation data {a1, a2, · · · , an} ⊆ Rd and corresponding outputs
{b1, b2, · · · , bn} ⊆ Rc. Traditional least square regression for discrimination solves
the following optimization for unknown X ∈ Rd×c

min
X

n∑

i=1

‖X T ai − bi‖2
2 + αR(X), (4)

where X contains the projection matrix and bias vector for simplicity. R(X) denotes
regularization and α > 0 is the regularization parameter. It is well known that the
square-norm residual is sensitive to outliers, hence Nie et. al. [1] proposed to use a
robust l2,1-norm loss function

min
X

n∑

i=1

‖X T ai − bi‖2 + αR(X). (5)

In this paper, we like to use the generalized version

min
X

n∑

i=1

‖X T ai − bi‖p
2 + αR(X), p ∈ (0, 1]. (6)
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For any p ∈ (0, 1], the noise magnitude of distant outlier in (6) is no more than that
in (5). Thus the model (6) is expected to be more robust than (5).

Joint sparse regularization R(X) is usually chosen

R�(X) =
d∑

‖xi ‖2 �=0

‖xi‖0
2 or R�(X) =

d∑

i=1

‖xi‖2. (7)

Theoretically, R�(X) are mostly preferred for its desirable sparsity. But R�(X) is
practically chosen more often for the computational sake. Under certain conditions,
R�(X)-regularization is equivalent to R�(X)-regularization. Here we chose the gen-
eralized norm in the sense

R�(X) =
d∑

i=1

‖xi‖p
2 , p ∈ (0, 1]. (8)

Hence the feature selection from high-dimensional data can be concluded as a mixed
optimization problem based on l2,p-norm (p ∈ (0, 1]),

min
X

n∑

i=1

‖X T ai − bi‖p
2 + γ p

d∑

i=1

‖xi‖p
2 , p ∈ (0, 1], (9)

where α = γ p is the regularization parameter. When p = 1, problem (9) is reduced
to the popular l2,1-norm based minimization proposed in [1]. But when 0 < p < 1, it
is a non-convex and non-Lipschitz continuous minimization, the algorithm in [1] can
not be directly applied. As far as we know, very few scheme is presented to uniformly
solve this specially mixed problem. Therefore, it is necessary to develop an unified
approach to efficiently solve problem (9) for all p ∈ (0, 1].

3 Main results

Denote A = [a1, a2, · · · , an] ∈ Rd×n and B = [b1, b2, · · · , bn]T ∈ Rn×c, the
problem (9) can be rewritten as

min
X

‖AT X − B‖p
2,p + γ p‖X‖p

2,p , p ∈ (0, 1]. (10)

Let E = 1
γ
(AT X − B), the unconstrained optimization problem (10) becomes

min
E,X

‖E‖p
2,p + ‖X‖p

2,p,

s.t. − γ E + AT X = B.
(11)
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It can be easily proved that ‖
[

E
X

]
‖p

2,p = ‖E‖p
2,p + ‖X‖p

2,p . If we denote

Y :=
[

E
X

]
∈ Rm×c and M := [−γ In AT ] ∈ Rn×m, (12)

where m = n + d, problem (11) can be reformulated as

min
Y

‖Y‖p
2,p

s.t.MY = B.
(13)

The Lagrangian function of optimization problem (13) is

L(Y,�) = ‖Y‖p
2,p − T r(�T (MY − B)). (14)

where � ∈ Rn×c is Lagrangian multiplier matrix, and T r(·) stands for trace operator.
Y � is the KKT point of problem (13) if and only if there exists a �� ∈ Rn×c such that

{
∂L(Y,�)

∂Y = pD�Y � − MT �� = 0
MY � = B

, (15)

where

D� = diag{ 1

‖y1‖2−p
2

,
1

‖y2‖2−p
2

, · · · ,
1

‖ym‖2−p
2

} (16)

is induced from Y �. After simple reformulation, (15) is equivalent to

Y � = D−1
� MT (M D−1

� MT )−1 B. (17)

Although D� is necessary in equation (15), only D−1
� is involved to compute Y � in

formula (17). If we fix Y and D in (16) and (17) alternatively, an iterative algorithm
to solve problem (13) can be designed as follows.

Algorithm 3.1 (Solving problem (13))

1. Start: Given M ∈ Rn×m, B ∈ Rn×c and set D1 = Im.
2. For k = 1, 2, · · · until convergence do :

Yk+1 = D−1
k MT (M D−1

k MT )−1 B,

U pdate D−1
k+1 wi th diagonal entries : ‖yi

k+1‖2−p
2 , i = 1, 2, · · · , m.

Remark 3.1 If D, Y are decided as in (16) and (17), it can be easily derived that
T r(Y T DY ) = ‖Y‖p

2,p for 0 < p ≤ 1.

Denote {Yk} the matrix sequence generated by Algorithm 3.1, now let us show its
convergence. The first lemma is apparent so the proof is omitted.

123



414 L. Wang et al.

Lemma 3.1 If φ(t) = 2
2−p t − p

2−p t
2
p − 1 for p ∈ (0, 1], then φ(t) ≤ 0 in (0,+∞)

and t = 1 is the unique maximum point.

Lemma 3.2 Suppose that yi
k , yi

k+1 is the i−th row of Yk, Yk+1 respectively, then for
any p in (0, 1]

‖yi
k+1‖p

2 − p

2

‖yi
k+1‖2

2

‖yi
k‖2−p

2

≤ ‖yi
k‖p

2 − p

2

‖yi
k‖2

2

‖yi
k‖2−p

2

, i = 1, · · · , m. (18)

Equalities in (18) hold if and only if ‖yi
k+1‖p

2 = ‖yi
k‖p

2 for i = 1, 2, · · · , m.

Proof Let t = ‖yi
k+1‖p

2

‖yi
k‖p

2
in φ(t), then φ(

‖yi
k+1‖p

2

‖yi
k‖p

2
) ≤ 0, that is

2

2 − p

‖yi
k+1‖p

2

‖yi
k‖p

2

− p

2 − p

‖yi
k+1‖2

2

‖yi
k‖2

2

− 1 ≤ 0. (19)

Note that ‖yi
k+1‖p

2 = ‖yi
k‖p

2 for i = 1, 2, · · · , m is sufficient and necessary to let the
equality in (19) happen. Multiplying the two sides of formula (19) with (1− p

2 )‖yi
k‖p

2 ,
we have

‖yi
k+1‖p

2 − p

2

‖yi
k+1‖2

2

‖yi
k‖2−p

2

≤ (1 − p

2
)‖yi

k‖p
2 , (20)

which is also an equivalent formula of (18). 	

Theorem 3.1 ‖Yk‖p

2,p monotonically decreases with respect to iteration k until the
matrix sequence {Yk} converges to the KKT point of problem (13).

Proof From remark 3.1 and the construction of Algorithm 3.1, we can easily verify
that Yk+1 is the optimal solution to

min
Y

fk(Y ) := 1
2 T r(Y T DkY )

s.t. MY = B.
(21)

So we have

T r(Y T
k+1 DkYk+1) ≤ T r(Y T

k DkYk), (22)

which is to say

m∑

i=1

‖yi
k+1‖2

2

‖yi
k‖2−p

2

≤
m∑

i=1

‖yi
k‖2

2

‖yi
k‖2−p

2

. (23)
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On the other hand, formula (18) in Lemma 3.2 shows

m∑

i=1

(
‖yi

k+1‖p
2 − p

2

‖yi
k+1‖2

2

‖yi
k‖2−p

2

)
≤

m∑

i=1

(
‖yi

k‖p
2 − p

2

‖yi
k‖2

2

‖yi
k‖2−p

2

)
(24)

Combining (23) and (24), we have

m∑

i=1

‖yi
k+1‖p

2 ≤
m∑

i=1

‖yi
k‖p

2 ,

which is ‖Yk+1‖p
2,p ≤ ‖Yk‖p

2,p.

If ‖Yk+1‖p
2,p = ‖Yk‖p

2,p happens for some k, since Yk+1 is constructed such that
(22) and (23) hold, hence from (24) we easily derive

m∑

i=1

‖yi
k+1‖p

2 − p

2

‖yi
k+1‖2

2

‖yi
k‖2−p

2

=
m∑

i=1

‖yi
k‖p

2 − p

2

‖yi
k‖2

2

‖yi
k‖2−p

2

. (25)

Notice that (18) is valid for each 1 ≤ i ≤ m, the equalities in Lemma 3.2 have to
exist which means ‖yi

k+1‖p
2 = ‖yi

k‖p
2 for i = 1, 2, · · · , m. Hence D−1

k+1 equals D−1
k

in Algorithm 3.1, Yk+1 and Dk+1 satisfy the stationary condition (17). Algorithm
3.1 generates a matrix sequence such that the objective function value monotonically
decreases until it converges to the KKT matrix of problem (13). When p = 1, the
convergence matrix is also the global minimizer of problem (13). 	

Remark 3.2 To some extent, Algorithm 3.1 offers an alternative to solve l p (0 < p <

1) regularized problems when the number of columns in Y is 1.

Remark 3.3 Algorithm 3.1 is a unified approach to solve problem (13) for any p ∈
(0, 1]. This scheme provides algorithmic support to freely adapt p for better sparsity
pattern in different data structures.

4 Computational details and practical algorithm

In Algorithm 3.1, each step has to compute (M D−1
k−1 MT )−1 which is expensive espe-

cially for high dimensional data. We notice that in the k−th iteration of Algorithm
3.1, Yk+1 solves (21) exactly. Actually, subproblem (21) is a quadratic programming
with linear equality constraints, and there are varieties of efficient methods to solve it
iteratively.

Now let us solve the subproblem (21) inexactly. Here we employ the gradient
projection method in [14]. Suppose that Yk has been generated as an approximate
solution to the (k −1)−th subproblem. The next approximate matrix Yk+1 to the k−th
subproblem (21) will be constructed from Yk

Yk+1 = Yk + αk Sk, (26)
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where αk is the step length and Sk is the line search matrix. If only the objective function
value fk(Yk+1) has sufficient reduction compared with fk(Yk), the convergence will
be guaranteed. Because the last approximation Yk is feasible, that is MYk = B, Yk+1
is feasible if and only if M Sk = 0. In the gradient projection method [14], Sk is chosen
to be the projection of −∇ fk(Yk) on the null subspace of M , where

− ∇ fk(Yk) = −DkYk ∈ Rm×c (27)

is the steepest direction matrix from Yk . Let P denote the projection operator from
Rm×c to Null(M), then Sk := −P DkYk . Different P results in different numerical
algorithm. Here we choose

P = Im − MT (MT )+, (28)

where (MT )+ = (M MT )−1 M . Since MT has full column rank, (M MT )−1 is well
defined. If we have the QR decomposition of MT in the form

MT = [Q1 Q2]
[

R
0

]
, (29)

where Q = [Q1 Q2] is an orthogonal matrix and R ∈ Rn×n is an invertible upper
triangular matrix, then

P = Im − MT (MT )+ = Im − Q1 QT
1 . (30)

It is easily verified that P is an orthogonal projection operator from Rm×c to its
subspace Null(M).

After the line search matrix Sk is fixed, the step length αk can be computed by
solving the following minimization

min
α≥0

ϕ(α) := T r((Yk + αSk)
T Dk(Yk + αSk)). (31)

The ϕ(α) can be detailedly rewritten as

ϕ(α) = T r(Y T
k DkYk) + 2T r(ST

k DkYk)α + T r(ST
k Dk Sk)α

2. (32)

Matrices Dk and P are obviously symmetric and positive semi-definite, hence

T r(ST
k Dk Sk) ≥ 0 , T r(ST

k DkYk) = −T r((DkYk)
T P(DkYk)) ≤ 0.

Then the optimal step length to (31) is

αk = −T r(ST
k DkYk)

T r(ST
k Dk Sk)

≥ 0. (33)
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A unified algorithm for mixed l2,p-minimizations 417

The objective function value reduction of subproblem (21) can be evaluated

fk(Yk+1) = fk(Yk) − (T r(ST
k DkYk))

2

2T r(ST
k Dk Sk)

, (34)

which is sufficient to guarantee the convergence of matrix sequence {Yk}.
Based on the computational details (Eqs. (27)–(34)), a one-step gradient projection

method for solving problem (13) can be concluded as follows.

Algorithm 4.1 (One-step gradient projection method for problem (13))

1. Start: Given M ∈ Rn×m and B ∈ Rn×c.
2. QR decompose MT = Q1 R, where Q1 ∈ Rm×n and R ∈ Rn×n.
3. Compute P = Im − Q1 QT

1 and Y1 = Q1 R−T B.
4. For k = 1, 2, · · · until convergence do :

Dk = diag{‖y1
k ‖p−2

2 , ‖y2
k ‖p−2

2 , · · · , ‖ym
k ‖p−2

2 },
Sk = −P DkYk,

αk = − T r(ST
k Dk Yk)

T r(ST
k Dk Sk )

,

Yk+1 = Yk + αk Sk .

Remark 4.1 The k−th iteration in Algorithm 4.1 is essentially the steepest descent
method over the subspace Null(M). Since MT has full column rank, any accumulation
point of {Yk} will be the KKT point of problem (13) [14] .

Remark 4.2 If yi
k = 0 happens in some iteration, then Dk can not be well updated

and Algorithm 4.1 breaks down. Here we treat Dk in two natural ways. One is setting
the i−th diagonal element {Dk}i i = 0 which can be considered as the generalized
inverse of D−1

k . The other one is to give a perturbation ε > 0 such that {Dk}i i =
(

√
yi

k(yi
k)

T + ε)p−2 �= 0.

The computational cost comparison between two algorithms can be easily analyzed
as follows. With the same outer loop, Algorithm 4.1 substitutes one-step gradient
projection to the matrix inverse (M D−1

k−1 MT )−1 in Algorithm 3.1. In each iteration,
the time complexities are O(n2m +cmn)+O(n3) flops in Algorithm 3.1 and O(cm2)

flops in Algorithm 4.1. Here m, n, c denote the numbers of dimension, samples and
selected features respectively. Except for extremely small sample data, Algorithm 4.1
will be faster than Algorithm 3.1 which is also confirmed by the CPU time comparison
in the next section.

5 Experimental results

In our experiments, four public data sets in biological study are used. Brief description
about all data sets is given as follows.

ALLAML is Leukemia gene microarray data, originally obtained by Golub et. al.
[8]. There are 7129 genes, 72 samples containing two classes, acute
lymphocytic leukemia (ALL) and acute mylogenous leukemia (AML).
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Table 1 Classification error (%) of different l2,p matrix norms

Top 20 features Top 40 features

p = 0.25 0.5 0.75 1 0.25 0.5 0.75 1

ALLAML 6.86 4 6.67 5.43 5.52 4.1 5.52 4.1

GLIOMA 0 0 0 2 2 0 0 2

LUNG 3.94 1.98 3.46 2.95 1.46 1.46 1.46 1.96

Pro-GE 4.9 3.9 6.81 5.9 8.71 6.71 8.71 9.71

Average 3.925 2.47 4.235 4.07 4.4225 3.0675 3.9225 4.4425

GLIOMA contains four classes, cancer glioblastomas, non-cancer glioblastomas,
cancer oligodendrogliomas and non-cancer oligodendrogliomas [9].
There are total 50 samples and each class has 14, 14, 7, 15 samples
respectively. Each sample has 12625 genes.

LUNG cancer data is available at [10]. There are 12533 genes and total 203
samples in two classes, malignant pleural mesothelioma and adenocar-
cinoma of the lung.

Prostate-GE data set has 12600 genes. It contains two classes, tumor and normal. 52
samples are tumor and 50 samples are normal. The dataset is available
in [11].

Those data have high dimensional features around ten thousand but most of features
are redundant even noise for classifications. Features with strong discrimination power
always lie in a lower dimension subspace. It is important and necessary to select
the most informative features for knowledge discovery and practical diagnosis in
medicinal field. Before applied Algorithms 3.1 or 4.1 to feature selection, all data sets
are performed the same preprocessing as in [7] to remove the redundant genes. Then
the data sets are standardized to be zero-mean and normalized by standard deviation.

To demonstrate the effect of different l2,p matrix pseudo norms in feature selection,
we implement typical l2,p-norm based optimization problems for p = 0.25, 0.5, 0.75
and 1. Using the selected top 20, 40, 60, 80 features respectively, SVM clas-
sifiers are individually performed on four data sets with fivefold crosses. Based
on Theorem 3.1, the reduction of objective function value estimates the conver-
gence precision. To eliminate the magnitude influence of different data, we employ

ρk := ‖Yk‖p
2,p−‖Yk+1‖p

2,p

‖Yk‖p
2,p

≤ 10−5 as the stopping criterion of two algorithms. Under

the same running environment, Algorithm 3.1 and 4.1 have the same classification
accuracy which are reported in Tables 1, 2. The bold values indicate the best ones.

The experimental procedure indicates that four l2,p-norm (p = 0.25, 0.5, 0.75
and 1) based minimizations do select different features, hence result in distinct classi-
fication performances. The parameter p in (0, 1] balances the sparsity and convexity
of optimization problem (13). The closer to 0 the p is, the sparser the representation
is. While p is very near to 1, the model is almost convex. The classification error com-
parisons show that non-convex l2,p (0 < p < 1) matrix norms provide alternatives
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A unified algorithm for mixed l2,p-minimizations 419

Table 2 Classification error (%) of different l2,p matrix norms

Top 60 features Top 80 features

p = 0.25 0.5 0.75 1 0.25 0.5 0.75 1

ALLAML 6.86 5.52 6.86 8.29 8.57 5.71 8.57 8.57

GLIOMA 2 2 2 4 4 2 2 4

LUNG 9.33 7.37 8.37 10.3 0.99 0.99 1.48 1.48

Pro-GE 8.71 6.71 8.71 9.71 5.86 3.95 5.9 5.9

Average 6.725 5.4 6.485 8.075 4.855 3.1625 4.4875 4.9875
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Fig. 1 The convergence performance of four l2,p-norm based minimizations

to l2,1-norm. Especially, p = 0.5 empirically outperforms p = 1 for choosing better
sparse patterns in various situations.

To validate the consistent efficiency of the unified algorithms solving nonconvex
l2,p (0 < p < 1) pseudo norm optimization problems as well as the convex l2,1-norm
based minimization, we present the convergence behavior curve of Algorithm 3.1 with
exact solution to subproblem (21). Actually, the convergence behaviors for each l2,p-
norm case are similar with different numbers of top features. We display the change of
ρk with respect to iterations in the case of 80 features (see Fig. 1 ). It can be seen that
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Table 3 CPU time (second) of l2,p matrix norms for four data sets

Data sets ρk Methods p=0.25 p=0.5 p=0.75 p=1

ALLAML 10−3 Alg 3.1 0.75830 0.748663 1.013861 3.235237

Alg 4.1 0.763843 0.652863 0.866831 2.978958

10−5 Alg 3.1 0.817432 0.774233 2.646847 5.357066

Alg 4.1 0.89743 0.661479 1.894296 3.133529

GLIOMA 10−3 Alg 3.1 0.502860 0.604722 0.680267 0.574874

Alg 4.1 0.596583 0.814248 0.993919 2.371908

10−5 Alg 3.1 1.808854 1.752871 1.765150 3.524431

Alg 4.1 3.575885 1.759446 2.284880 6.803048

LUNG 10−3 Alg 3.1 3.395476 3.136372 3.034811 3.524408

Alg 4.1 1.538439 1.537972 1.533616 2.392894

10−5 Alg 3.1 3.554536 3.322220 6.279857 18.499058

Alg 4.1 3.081773 3.080179 5.946751 16.196881

Pro-GE 10−3 Alg 3.1 1.189551 1.160205 1.148347 1.501410

Alg 4.1 0.597630 0.558501 0.549335 0.630927

10−5 Alg 3.1 1.621582 1.222292 1.794353 7.867559

Alg 4.1 1.120652 1.083130 1.538585 4.705084

The bold values indicate the best ones

all experiments on four data sets uniformly get the expected accuracy within around
20 steps.

In practical implementation, especially for relatively large sample data, Algorithm
4.1 is preferred to Algorithm (3.1) for its economical computation. We still choose the
top 80 features as a typical example to compare the efficiency of two algorithms. Under
the same precisions (10−3 and 10−5) of ρk , the running CPU time of two algorithms on
four data sets is listed in Table 3. Algorithm 3.1 and Algorithm 4.1 are abbreviated by
Alg 3.1 and Alg 4.1 respectively. All experiments are performed in the same running
environment. In most of situations, Algorithm 4.1 is more time-saving than Algorithm
3.1 which especially supports Algorithm 4.1 in large scale applications.

6 Conclusions

In this paper, a type of minimizations based on l2,p (p ∈ (0, 1]) matrix pseudo norm is
presented. A unified algorithm is designed to solve the mixed optimization problems
and the convergence is also uniformly ensured. To refine the algorithm implementation,
a gradient projection is applied to inexactly solve the subproblems. Experiment results
on gene express data sets validate the unified performance of the proposed method.
This scheme provides more choices of p ∈ (0, 1] to fit variety of jointly sparse
requirements.
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