
Knowledge-Based Systems 65 (2014) 21–30
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
Bagging-like metric learning for support vector regression
http://dx.doi.org/10.1016/j.knosys.2014.04.002
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding authors. Tel.: +86 15850685790.
E-mail addresses: zou_pc@163.com (P.-C. Zou), s.chen@nuaa.edu.cn (S. Chen).
Peng-Cheng Zou ⇑, Jiandong Wang, Songcan Chen *, Haiyan Chen
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
a r t i c l e i n f o

Article history:
Received 26 December 2013
Received in revised form 28 February 2014
Accepted 2 April 2014
Available online 19 April 2014

Keywords:
Distance metric learning
Support vector regression
Ensemble learning
Bagging
Distance-based kernel
a b s t r a c t

Metric plays an important role in machine learning and pattern recognition. Though many available off-
the-shelf metrics can be selected to achieve some learning tasks at hand such as for k-nearest neighbor
classification and k-means clustering, such a selection is not necessarily always appropriate due to its
independence on data itself. It has been proved that a task-dependent metric learned from the given data
can yield more beneficial learning performance. Inspired by such success, we focus on learning an embed-
ded metric specially for support vector regression and present a corresponding learning algorithm
termed as SVRML, which both minimizes the error on the validation dataset and simultaneously enforces
the sparsity on the learned metric matrix. Further taking the learned metric (positive semi-definite
matrix) as a base learner, we develop a bagging-like effective ensemble metric learning framework in
which the resampling mechanism of original bagging is specially modified for SVRML. Experiments on
various datasets demonstrate that our method outperforms the single and bagging-based ensemble
metric learnings for support vector regression.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction reduction method can also be viewed as a pseudo-metric learning
Metric learning plays an important role in many learning tasks
including k-nearest neighbor classification, k-means clustering and
kernel-based algorithms such as support vector machines [1–5]. In
recent years, many studies have demonstrated empirically and
theoretically that it is often beneficial for a learning task to learn
a metric from the given data, instead of using an off-the-shelf
one such as Euclidean distance metric.

Depending on the availability of the given data, these methods
roughly fall into two main categories: unsupervised metric learn-
ing and supervised metric learning. Each unsupervised metric
learning method is essentially to learn a distance metric without
supervised information [6,7]. While in supervised metric learning,
more information about data such as label information is used to
learn the metric and it is better to capture the idiosyncrasies of
the data of interest [8,9]. We pay particular attention to the super-
vised methods in this paper.

Supervised distance metric learning can be further divided into
task-independent and task-dependent metric learnings. The task-
independent methods usually include two separated learning
steps: in the first step, a metric is learned by solving an optimiza-
tion problem with the supervised information. Then the second
step uses the learned metric to solve a subsequent task. The classi-
cal Linear Discriminant Analysis (LDA) though as a dimensionality
method [10]. The metric learned by LDA can be used in many
subsequent tasks such as k-nearest neighbor classification. In
addition, MMC by Xing et al. learns a metric by minimizing the
distances in equivalence constraints and maximizing the distances
in inequivalence constraints. Then the metric learned by MMC is
used in different clustering tasks [1].

Though the task-independent methods have used the
supervised information when learning the metrics, such a two step
method cannot guarantee the learned metric is optimal for the
subsequent task. Therefore, a more desirable method is to learn
the metric directly via incorporating the specific subsequent task,
just as the task-dependent distance metric learning. It is similar
to the feature selection problem that embedding methods can
usually achieve better performance than filter methods [11]. The
task-independent metric learning is corresponding to the filter
method and the task-dependent metric learning is corresponding
to the embedding method. One of the most representative works
is Large Margin Nearest Neighbor (LMNN) [2], in which the learned
metric is tailored specially for k-nearest neighbor classification
and leads to significant improvement compared to k-nn with
task-independent metrics. Several related researches have also
been proposed, such as Neighborhood components analysis
(NCA) [4], multi-task LMNN [12] and Non-linear LMNN [13], etc.

It should be noted that most of the existing task-dependent
metric learning methods are designed for classification tasks
especially k-nn. Similar to classification, regression is another
important task in machine learning and its performance is also

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.04.002&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.04.002
mailto:zou_pc@163.com
mailto:s.chen@nuaa.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.04.002
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


22 P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30
highly dependent on the chosen metric. However, these methods
designed for classification tasks cannot be used directly for
regression tasks. Only few of the metric learning methods have
been proposed specially for regression tasks so far. A typical one
is MLKR [14] which learns a metric specially for kernel regression.
Unfortunately, the improvement of regression performance
achieved by MLKR is limited that it is still difficult to achieve a
comparable performance with some sophisticated methods such
as support vector regression [15] on many datasets.

To explore further the metric learning method for regression
tasks, we consider learning a metric via incorporation of support
vector regression (SVR) which is one of the most popular regression
algorithms. Metric is also important for SVR especially with kernels.
Typical kernels for SVR have no prior knowledge about the meaning
of the features and are assumed to be isotropic. Therefore, we focus
on learning an embedded metric in SVR to improve the regression
performance. We propose a corresponding learning algorithm
termed as SVRML, which minimizes the error on the validation
set and enforces the sparsity on the learned metric matrix simulta-
neously. The learning process combines the Mahalanobis [16]
metric learning with the training of SVR. More importantly, to make
the metric learned by SVRML more effective, we propose a bagging-
like ensemble metric learning framework. It extends the original
bagging algorithm [17] in which a positive semi-definite matrix is
taken as a base-learner rather than either classifier or regressor.

The proposed SVRML algorithm has the following desirable
properties: (1) SVRML learns a sparse Mahalanobis metric which
is capable of removing potential redundancy or noise in data. (2)
SVRML can parallelly learn multiple base metrics by using a bag-
ging-like ensemble metric learning framework and obtain an aggre-
gated metric to achieve better generalization performance for SVR.
(3) It is easy to implement and can be treated as an alternative fea-
ture selection method to provide a convenient way to pre-process
the data automatically. The primary contributions of this work
are therefore as follows: (1) We propose a task-dependent metric
learning algorithm for SVR. (2) We develop an effective bagging-like
ensemble metric learning framework in which the resampling
mechanism of original bagging is specially modified for SVRML.

The rest of this paper is organized as follows: we provide an
overview of the related work in Section 2. Section 3 explains
how to learn an embedded metric for SVR. The bagging-like
ensemble metric learning framework is discussed detailedly in
Section 4. Experimental studies are shown in Section 5. Finally,
we draw the conclusions and list our future works in Section 6.

2. Related works

Over the last decade, several task-dependent metric learning
algorithms have been proposed [2,4,18,14]. However, only few of
them are designed specially for regression tasks. Support vector
regression which is very popular for regression tasks also depend
heavily on the metric. As far as we know, our work is the first to
combine metric learning with support vector regression. Our pro-
posed method SVRML is also in the family of task-dependent dis-
tance metric learning.

Weinberger and Tesauro constructed a metric learning algo-
rithm for kernel regression termed as MLKR [14] which learns a
task-specific (pseudo-)metric over the input space where small
distances between two vectors imply similar target values. This
metric in MLKR is learned by directly minimizing the leave-one-
out regression error. Similarly, Xu et al. [19] proposed a metric
learning algorithm for support vector classification by minimizing
the 0–1 classification error. Inspired by these work, we consider
learning a metric for SVR by minimizing the regression error on a
validation set. But one drawback of them is that they incline to
overfit the validation data [8].
As a remedy, ensemble learning is an alternate method we can
use to combine with the metric learning process, as ensemble learn-
ing is able to improve the generalization performance of learning
systems [20]. Some ensemble learning methods such as boosting
[21] have already been introduced into metric learning. For example,
Shen et al. [22] proposed a boosting-based technique BoostMetric to
learn a metric using trace-one rank-one matrices as weak learners.
Chang [23] developed a metric base-learner specific to the boosting
framework by improving a loss function iteratively. Mu et al. [24]
proposed a local discriminative metrics ensemble learning algo-
rithm. But none of them focus on regression tasks. To fill the gap,
we propose a bagging-like ensemble framework designed specially
for SVRML to improve the regression performance. Different from
the existing methods such as BoostMetric which iteratively learns
the base metrics, our framework retains the parallelism like bagging.
In our framework, the resampling mechanism of original bagging is
specially modified for SVRML to achieve better performance.

In addition to the above, our work is also inspired by the kernel-
parameter selection methods for SVR. For example, Chang and Lin
[25] derived various leave-one-out bounds for SVR parameter
selection to improve the generalization performance. The kernel-
parameter selection for SVR can be analyzed on the metric learning
perspective that the adjusting of the inner product leads to
different distance metrics. Different from choosing a single or a
few kernel-parameters, our method optimizes the entire metric
matrix and learns a nonlinear metric.

3. Metric learning for support vector regression (SVRML)

3.1. Support vector regression

Our method is based on L2-SVR [15], one of the most commonly
used varieties of SVR. Given a set of training examples fxi; yig

‘
i¼1 of

size ‘, where the input vector xi 2 Rd, and the target value yi 2 R ,
L2-SVR solves the primal problem:

minw;b;n;n�
1
2 wT wþ C

2

X‘
i¼1

n2
i þ C

2

X‘
i¼1

ðn�i Þ
2

s:t: �e� n�i 6 wT/ xið Þ þ b� yi 6 eþ ni; i ¼ 1; . . . ; ‘:

ð1Þ

In order to solve the above problem effectively, practically we
solve the dual problem of (1) instead:

mina;a�
1
2 a� � að ÞT ~K a� � að Þ þ e

Xl

i¼1

a�i þ ai
� �

�
Xl

i¼1

yi a�i � ai
� �

s:t:
Pl

i¼1ða�i � aiÞ ¼ 0; i ¼ 1; . . . ; ‘;

ai;a�i P 0; i ¼ 1; . . . ; ‘;

ð2Þ

where kðxi; xjÞ ¼ /ðxiÞT/ðxjÞ is the kernel function. ~K ¼ K þ I=C and
Id�d is an identity matrix. The final prediction function is

gðxÞ ¼ wT/ðxÞ þ b ¼
X‘
i¼1

ða�i � aiÞkðxi; xÞ þ b: ð3Þ

As the convenience of narrative, we do not distinguish L2-SVR
from SVR in the following sections any longer. Many kernel func-
tions are used for SVR. In fact, any function kð�; �Þ can be used as
a well-defined kernel if only it is positive semi-definite. In this
paper, we use the popular kernel function RBF kernel uniformly
due to its popularity and particularity that it depends on the dis-
tance function directly. The RBF kernel is defined as follows:

kðxi; xjÞ ¼ exp �d2ðxi; xjÞ
n o

; ð4Þ

where dð�; �Þ is the distance metric of data. In the RBF kernel, it is
commonly the squared Euclidean distance with a kernel width
parameter rðr > 0Þ. When training the SVR, the prediction
performance can be improved by choosing an effective parameter r.



P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30 23
In order to incorporate the Mahalanobis distance into RBF kernel,
we transform the original RBF kernel in the following form:

kAðxi; xjÞ ¼ exp �d2
Aðxi; xjÞ

n o
¼ exp �ðxi � xjÞT Aðxi � xjÞ

n o
ð5Þ

The matrix A is the target metric matrix we would like to opti-
mize. When we set the matrix as A ¼ 1

r2 Id�d, the kernel function
will resume to the original form of RBF kernel.

3.2. Cost function

In order to learn an effective metric parameterized by A, our
cost function is designed by single validation estimate. This esti-
mate is unbiased and its variance gets smaller as the size of the val-
idation set increases [26]. Supposing the validation set is x0i; y

0
i

� �p
i¼1 ,

our cost function is given by:

eðAÞ ¼ 1
p

Xp

i¼1

gðx0iÞ � y0i
� �2 þ kkAkð2;1Þ;

where gðx0iÞ ¼
X‘
j¼1

ða�j � ajÞ exp �ðx0i � xjÞT Aðx0i � xjÞ
n o

þ b

¼ KAðx0i;XÞða� � aÞT þ b:

ð6Þ

There are two competing terms in the cost function. The first
term penalizes the mean square error between each target value
and its estimated value. The prediction function gðxÞ is obtained
by solving the dual problem of SVR in (2) on the training set. With
the updating of A; gðxÞ will also be re-trained. The second term is a
mixed (2,1)-norm regularization [27] over A:

kAkð2;1Þ ¼
Xd

i¼1

kAik2 ð7Þ

where Ai denote the ith row vector of A. Due to A ¼ LT L, by enforcing
the L1-norm regularization across the vector ðkA1k2; kA2k2; . . . ;

kAdk2Þ, it will enforce several columns of L to be zeros and eliminate
the impact of the some features to yield feature sparsity.

By incorporating the regularization term into our cost function,
it learns a sparse metric, which reduces the risk of overfitting
caused by the noise in data and improves the prediction perfor-
mance of SVR. We would like to find an effective distance matrix
A by both minimizing the error on validation set and enforcing
the sparsity on the metric matrix simultaneously. The proposed
sparse metric learning formulation is:

minA
1
p

Xp

i¼1

gðx0iÞ � y0i
� �2 þ kkAkð2;1Þ

s:t: A � 0:

ð8Þ
3.3. Optimization algorithm

In order to compute the distance matrix, we use the common
gradient-based optimization method in this paper. Considering
the continuity and differentiability of the cost function, we make
an assumption about the kernel function first:

Assumption 1. The kernel function is differentiable respect to
distance matrix A.

However, the mixed (2,1)-norm regularization over A is non-
convex and non-differentiable. Actually, the minimum of the
mixed (2,1)-norm regularization is equivalent to the trace of A,
which is presented as Theorem 1. The theorem is firstly proved
by Huang and Sun [28].

Theorem 1. (Huang and Sun [28]) min kAkð2;1Þ ¼ trðAÞ.

According to the theorem, the optimization problem (8) can be
reformulated as
minA
1
p

Xp

i¼1

gðx0iÞ � y0i
� �2 þ ktrðAÞ

s:t: A � 0:

ð9Þ

Then, we can obtain the gradient of eðAÞ by computing the
derivative with respect to A of each term in eðAÞ respectively. Mak-
ing use of @trðAÞ

@A ¼ I, the derivative of the second term in (9) is

@ktrðAÞ
@A

¼ kI: ð10Þ

For the simplicity of notation, we use L to denote the first term
of (9). To obtain the derivative of with respect to A, we complete
the chain-rule as:

@L
@A ¼ 2

p

Xp

i¼1

@L
@gðx0

i
Þ
@gðx0

i
Þ

@A ;

@L
@gðx0

i
Þ ¼ gðx0iÞ � y0i:

ð11Þ

The SVR prediction function g, defined in (3), can be further
rewritten as:

gðx0iÞ ¼ �KAðx0i;XÞðâ; bÞ; ð12Þ

where �KAðx0i;XÞ ¼ ðKAðx0i;XÞ;1Þ and â ¼ a� � a. So, gðxÞ depends on
indirectly through ðâ; bÞ and KA. Applying the chain-rule to the
derivative of gðxÞ results in

@gðx0iÞ
@A

¼ @gðx0iÞ
@ðâ; bÞ

@ðâ; bÞ
@A

þ @gðx0iÞ
@KAðx0i;XÞ

@KAðx0i;XÞ
@A

ð13Þ

The derivatives
@gðx0

i
Þ

@ðâ;bÞ,
@gðx0

i
Þ

@KAðx0i ;XÞ
,
@KAðx0i ;XÞ

@A , are straight-forward and fol-

low from definition (13) [29].
In order to compute the derivative @ðâ;bÞ

@A , we need to recall the
Karash–Kunh–Tucker (KKT) [25] optimality conditions of the dual
problem of L2-SVR in (2): A vector a is optimal for (2) if and only
if it satisfied constraints of (2) and there is a scalar b such that

ð~Kða� � aÞÞi þ b ¼ yi þ e; if ai > 0;

ð~Kða� � aÞÞi þ b ¼ yi � e; if a�i > 0;

yi � e 6 ð~Kða� � aÞÞi þ b 6 yi þ e; if ai ¼ a�i ¼ 0;

ð14Þ

whereð~Kða� � aÞÞi is the ith element of ð~Kða� � aÞÞ. From (14),
aia�i ¼ 0 when the KKT condition holds. So, for all support vectors,
KKT optimality conditions (14) and (2) imply that

~KSV eT
SV

eSV 0

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

M

âSV

b

� �
¼

p
0

� �
;where pi ¼

yi � e if âi > 0;
yi þ e if âi < 0;

	
ð15Þ

and eSV ¼ ð1;1; . . . ;1ÞT . âSV ¼ a�SV � aSV is the support vectors’ part of

â. Since the parameters að�Þi of non-support vectors are zero, the

derivative of these að�Þi with respect to A are also zero, we can only

consider the derivative @ðâSV ;bÞ
@A instead of @ðâ;bÞ

@A . According to (15),
we obtain

âSV

b

� �
¼ M�1 p

0

� �
: ð16Þ

It follows that

@ðâSV ;bÞ
@A ¼ �M�1 @M

@A M�1 p
0

� �
¼ �M�1 @M

@A

âSV

b

� �
¼ �M�1 @eK SV

@A âSV

0

 !
¼ �M�1

@eK SV
@A 0SV

0T
SV 0

 !
âT

SV

b

� �
@ ~KSVð Þij

@A ¼ @ðKSVþI=CÞij
@A ¼ @ KSVð Þij

@A

¼ �exp � xi � xj
� �T A xi � xj

� �n o
xi � xj
� �

xi � xj
� �T


 �
:

ð17Þ



24 P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30
Completing the gradient computation @eðAÞ
@A , we implement an

iterative sub-gradient projection method to optimize (9) in terms
of the positive semi-definite matrix A. We refer to the Mahalanobis
distance matrix at the tth iteration as At . At each iteration, the met-
ric matrix is updated by

At ¼ At�1 � g
@e
@A

ð18Þ

where g is a small positive step-size constant, denoting the learning
rate. The optimization of (9) must enforce the constraint that the
matrix At remains positive semi-definite. To enforce this constraint,
our optimization takes a step along the sub-gradient to reduce the
cost function and then projects At onto the feasible set, the cone of
all positive semi-definite matrixes Sþ. Let At ¼ PKPT denote the eig-
endecomposition of At , where P is the orthonormal matrix of eigen-
vectors and K is the diagonal matrix of corresponding eigenvalues.
The projection of At onto the cone of positive semi-definite matrixes
is given by (19). The projection effectively truncates any negative
eigenvalues from the gradient step, setting them equal to zero.
The sub-gradient methods using the alternating projection tech-
nique provably converge [30] to a correct solution, provided that
the gradient step-size is sufficiently small [31].

PSðAtÞ ¼ PKþPT ð19Þ

According to the above details, the proposed algorithm is illus-
trated in Algorithm 1. A validation set independent from the train-
ing set is used to monitor the performance. We control the steps of
sub-gradient descent by early-stopping with maximum iterations
and stop the sub-gradient descent when the cost function con-
verges to the minimum. The local minima is a concern due to the
non-convex of the optimization problem (9). To overcome this
shortage, we use several runs with different learning rates g, and
choose the outcome with minimum cost function eðAÞ. Additionally,
our bagging-like ensemble metric learning framework discussed in
the next section is also conducive to make up this shortage.

Algorithm 1. Metric learning for support vector regression
(SVRML)

Input: Training examples, maxiter (maximum iterations),
convergence threshold d.

1: Initialize distance matrix A0  Id�d, cost eold  Inf , integer
t  0;

2: solve the dual problem of L2-SVR in (2) with A0 to obtain

að0Þ and bð0Þ;
3: compute the cost function et;
4: while j eold � et j> d and t 6 maxiter do
5: t  t þ 1; eold  et�1;
6: compute the gradient of cost function @e

@At�1
at the tth

iteration;

7: At  PS At�1 � g @e
@At�1


 �
;

8: solve the dual problem of L2-SVR in (2) with At to obtain

aðtÞ and bðtÞ;
9: compute the cost function et at the tth iteration;

10: end while
Output: At .
1 For the simplicity of explanation, we only consider the situation that the total
number of set S is an even number, and the other situation is almost the same.
4. Bagging-like ensemble metric learning

According to the Algorithm 1, the metric matrix can be com-
puted. To make the metric learned by SVRML more effective, we
further propose a bagging-like ensemble metric learning frame-
work. The basic idea of bagging is to generate multiple versions
of training sets with same size of the original one by bootstrap
resampling. Then it trains different base-learners from these train-
ing sets and uses these base-learners to get an aggregated learner.
For regression tasks, the predicting outcome of the ensemble is
computed according to Eq. (20):

f̂ ðxÞ ¼
XK

i¼1

wifiðxÞ; ð20Þ

where fiðxÞ is the output of sample x by the base-learner fi, and a
weight wiði ¼ 1;2; . . . ;KÞ is assigned to each base-learner
fiði ¼ 1;2; . . . ;KÞ. Then the predicting outcome f̂ ðxÞ is combined
through weighted averaging.

4.1. Metric ensemble strategy

Similarly, we can easily train K versions of metric matrixes
A1;A2; . . . ;AK by multiple sampling from the original train set. Then
the distance of any pair of examples can be computed through
weighted averaging of the distances computed by all the metrics:

d̂A xi; xj
� �

¼
XK

k¼1

wk xi � xj
� �T Ak xi � xj

� �
 �
¼
XK

k¼1

xi � xj
� �T wkAk xi � xj

� �
 �
¼ xi � xj
� �T XK

k¼1

wkAk

 !
xi � xj
� �

:

ð21Þ

Set

Â ¼
XK

k¼1

wkAk; ð22Þ

then,

d̂A xi; xj
� �

¼ xi � xj
� �T Â xi � xj

� �
¼ dbA xi; xj

� �
: ð23Þ

By observing the similarity between Eqs. (20) and (22), we may
view the learned metric Ak as a base-learner and the matrix Â com-
puted through weighted averaging as the strong learner we would
like to learn. It is obvious that the distance between examples
derived by matrix Â still satisfy the conditions of metric. So, the
bagging-like ensemble metric learning extends the original bag-
ging algorithm in which a positive semi-definite matrix is taken
as a base-learner rather than classifier or regressor.

It should be noted that there is something subtly different
between the weighted averaging of learned metrics (metric
ensemble) and the weighted averaging of predicting outcomes of
base regressors (regression ensemble). Especially, when the
weights are equal, the outcome of regression ensemble is the mean
of predicting values. In contrast, metric ensemble does not produce
the final predicting outcome directly but an aggregated metric.
Metric ensemble implies a principle which is similar to majority
voting in classification that the aggregated metric tends to catch
the common elements in matrixes recognized by the most base
metrics. Then the aggregated metric is used to train the final SVR
model and obtain the predicting outcome. Therefore, it is reason-
able that metric ensemble can achieve better generalization per-
formance for SVR than regression ensemble.

The bagging-like ensemble metric learning framework is shown
in Fig. 1. The resampling mechanism is described as follow. Given
an original set of learning examples S, a set ST with half size1 of S is
generated from S by random sub-sampling as the training set of SVR,



Fig. 1. Bagging-like ensemble metric learning framework.

P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30 25
and a set SV with the same size of ST is also generated from S as the
validation set of SVRML to learn the distance metric.

The resampling mechanism in bagging cannot be used directly
in this work. Only a single learning set is required for each base-
learner in bagging. But in our framework, two learning sets both a
training set and a validation set are required for each base metric.
Therefore, we generate two subsets from the original learning set
by resampling respectively. In addition, we use the random sub-
sampling resampling method rather than bootstrap used in
bagging. The main difference between them is that bootstrap is
sampling with replacement and the same instance can appear
several times in a validation set which easily leads to the risk of
overfitting, whereas sub-sampling is sampling without replace-
ment and can be taken as a special case of bootstrap, and it will
cover more instances than bootstrap.

Then, there are two theorems about our resampling
mechanism.

Theorem 2. During the generative process of learning set for each
base-learner, the training set is ST , and the validation set is SV . If set
S\ ¼ ST \ SV , then the average size of S\ is 1=4 of original learning set
S with size N.

Proof. Random sample N=2 instances from S to generate ST , the
probability of each sample being selected is 1=2. Similarly, when
random sampling N=2 instances from S to generate SV , the proba-
bility of each instance being selected is also 1=2. The twice sam-
pling process is independent from each other. So, the probability
of an instance being selected twice is 1=2� 1=2 ¼ 1=4. Then the

probability the size of set S\ being i is PðiÞ ¼ Ci
N=2 � C

ðN=2Þ�i
N=2


 �.
CN=2

N ði ¼ 1;2; . . . ;N=2Þ, and the expectation of the size of S\ is:

Eðj S\ jÞ ¼
XN=2

i¼1

i � PðiÞ ¼
XN=2

i¼1

i � Ci
N=2 � C

ðN=2Þ�i
N=2


 �
 .
CN=2

N

�
¼ N=4: ð24Þ

h

Theorem 3. During the generative process of learning set for each
base-learner, the training set is ST , and the validation set is SV . If set
S[ ¼ ST [ SV , then the average size of S[ is 3=4 of original learning
set S with size N.
Proof. Set S[ ¼ S� S[. Random sample N=2 instances from
learning set S to generate ST , the probability of each sample being
selected is 1=2. Similarly, when random sampling N=2 instances
from learning set S to generate SV , the probability of each
instance being selected is also 1=2. The twice sampling process is
independent from each other. So, the probability an instance
not being selected each time is ð1� 1=2Þ � ð1� 1=2Þ ¼ 1=4.
Then the probability that the size of set S[ being i is
P0ðiÞ ¼ CðN=2Þ�i
N=2 � Ci

N=2


 �.
CN=2

N ði ¼ 1;2; . . . ;N=2Þ, and the expectation
of the size of S[ is:

Eðj S[ jÞ ¼
XN=2

i¼1

i � P0ðiÞ ¼
XN=2

i¼1

i � CðN=2Þ�i
N=2 � Ci

N=2


 �
=CN=2

N


 �
¼ N=4: ð25Þ

The expectation of the size of S[ is Eðj S[ jÞ ¼j S j �Eðj S[ jÞ ¼
ð3=4ÞN. h

According to Theorem 2, for each base-learner, the average of
the same number in ST and SV is 1=4 of S. Half of the instances in
SV is different from those in ST , which guarantees the diversity
between SV and ST . So, SV can be used as the validation set of
SVRML to learn the distance metric. By applying SVRML algorithm
on the kth ST and SV , we obtain the metric Ak.

According to Theorem 3, for each base-learner, the average
number of instances in S[ is about 3=4 of the original set S. It is lar-
ger than the one generated by bootstrap, which is about 63% of the
original set [17].

The base metric learned remains different bias, as it trends to
concern more about the errors on different validation sets. Though
a single learning set cannot cover the full set S, with the increase of
the number of base-learners, they cover more number of instances
in S. We have a deduction according to Theorem 3 that when the
number of base-learners is K, the coverage rate of the learning sets
is a ¼ 1� 1� 3=4ð ÞK . For example, if K ¼ 3, then a � 98:4%, and if
K ¼ 5, then a � 99:9%.

4.2. Metric ensemble algorithm

We aggregate all learned metrics by Eq. (22). To simplify this
process, we give all learned matrixes equal weights by setting
wi ¼ 1=K , and obtain the final metric matrix Â. Then, we train
SVR on the original learning set S with the learned metric. The pro-
posed bagging-like ensemble metric learning algorithm for support
vector regression is sketched in Algorithm 2.

Algorithm 2. Bagging-like metric learning for support vector
regression (Bag-SVRML)

Input: Training set S, weak metric learner M(SVRML), and
integer K (the number of generated metrics).

1: for i ¼ 1 to K do

2: SðiÞT ¼ random sample from training set S, with SðiÞT ¼ N=2;

3: SðiÞV ¼ random sample from training set S, with SðiÞV ¼ N=2;

4: Ai  M SðiÞT ; S
ðiÞ
V


 �
;

5: end for

Output: Â ¼
PK

i¼1wiAi.



26 P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30
Our method is very convenient to generate multiple versions of
base-learners parallelly. The learning process of each metric has no
communication with others. It is helpful to improve the efficiency

of our method. In addition, though the size of learning set for base-
learners is fixed above, we can adjust the size of learning set flex-
ibly according to the scale of tasks. On the premise of adequate
sampling, the smaller the learning set is, the more the base metrics
are needed.
Table 1
Benchmark datasets used in the experiments.

Dataset #Examples #Features #Training
examples

#Testing
examples

Housing 506 13 455 51
Auto mpg 392 7 353 39
Triazines 186 60 167 19
Abalone 4177 8 3759 418
mg 1385 6 1247 139
Pyrim 74 27 67 7
Space_ga 3107 6 2796 311
Energy efficiency 768 8 691 77
Compressive strength 1030 8 927 103
Slump test 103 7 93 10
Cpusmall 8192 12 4096 4096
Bodyfat 252 15 227 25
Eunite2001 336 16 302 34
Yacht hydrodynamics 308 6 277 31
Winequality 4898 11 2449 2449

Table 2
The prediction error on each dataset.

Dataset RMSE

SVR-RBF (5-fold) SVR-RBF (10-fold) MLKR Bag

Housing 3.267 3.080 4.126 2.4
(0.6250) (0.6024) (0.7731) (0.2

Auto mpg 2.599 2.564 3.799 2.4
(0.5796) (0.5186) (0.4272) (0.5

Triazines 0.1016 0.1035 0.1144 0.0
(0.0113) (0.0115) (0.0103) (0.0

Abalone 2.095 2.090 2.1703 2.0
(0.0576) (0.0627) (0.0766) (0.0

mg 0.1284 0.1274 0.1336 0.1
(0.0052) (0.0054) (0.0074) (0.0

Pyrim 0.0600 0.0583 0.0839 0.0
(0.0133) (0.0150) (0.0132) (0.0

Space_ga 0.1145 0.1158 0.1580 0.1
(0.0123) (0.0131) (0.0237) (0.0

Energy efficiency 2.056 1.624 2.3326 0.9
(0.1518) (0.200) (0.3345) (0.1

Compressive strength 6.048 6.056 8.6359 4.7
(0.4516) (0.5801) (0.7323) (0.4

Slump test 0.8234 0.6840 3.0122 0.4
(0.2339) (0.2152) (0.3144) (0.1

Cpusmall 3.398 3.314 4.494 3.0
(0.0523) (0.0495) (0.0530) (0.0

Bodyfat 0.016 0.015 0.019 0.0
(0.0024) (0.0015) (0.0053) (0.0

Eunite2001 18.64 18.47 18.49 17.
(1.939) (1.945) (2.515) (1.7

Yacht hydrodynamics 0.7360 0.7342 2.230 0.7
(0.4204) (0.4304) (1.352) (0.4

Winequality 0.7393 0.7356 0.7376 0.7
(0.0097) (0.0094) (0.0060) (0.0
4.3. Time complexity analysis

The time complexity analysis of our algorithm is given in this
subsection. Given the data X 2 Rd�n, where n is the number of sam-
ples and d is the number of features, the training time of the origi-
nal SVR is Oðn3Þ[32,33]. In each iteration of updating the metric of
SVRML, the time for calculating the gradient of metric matrix is
Oð1=2n2d2Þ, which is in the same complexity order with the train-
ing of MLKR [14]. Then, the total training time for each base metric
become Oð‘ðn3 þ 1=2n2d2ÞÞ, where ‘ is the number of iterations and
usually small.

Although intuitively ought to have much longer training time than
the original SVR because of large number of calls to the SVR solver, our
algorithm has actually contained an additional yet convenient and
automatical pre-processing process for data. Moreover, the imple-
mentation of our algorithm can be much faster. On the one hand,
we use a simple warm-start technique that the previous SVM solution
is often a good guess for the current problem. The warm-start call to
the SVM solver results in much less computation than a call from
scratch [34]. On the other hand, the computational intensive parts
of the gradient outside of the SVR calls are trivially parallelizable
and could be computed on multiple cores. As it is not the focal point
of this paper, we do not focus on further scalability here.

5. Experiments

In this paper, we propose a bagging-like metric learning for sup-
port vector regression, which learns a task-dependent distance
metric. To verify the effectiveness of the proposed method, we
MAPE (%)

-SVRML SVR-RBF (5-fold) SVR-RBF (10-fold) MLKR Bag-SVRML

23 10.01 9.668 15.97 8.964
338) (1.676) (1.823) (1.547) (1.329)

68 8.122 8.265 12.08 7.989
379) (1.192) (1.095) (1.012) (1.156)

989 11.61 12.39 14.45 11.45
097) (1.473) (1.766) (2.371) (1.382)

51 15.03 14.99 19.95 14.39
554) (0.479) (0.472) (1.104) (0.532)

221 12.45 12.43 11.47 11.58
062) (1.187) (1.264) (1.532) (1.187)

502 7.205 6.951 10.90 6.048
115) (1.650) (1.987) (2.039) (1.555)

102 17.33 16.97 30.20 16.34
114) (1.383) (1.200) (4.426) (1.290)

696 6.576 4.605 9.518 2.710
788) (0.395) (0.533) (1.233) (0.3740)

62 16.52 16.68 21.21 12.04
764) (5.796) (2.267) (4.083) (2.315)

782 1.946 1.627 6.812 1.087
256) (0.5909) (0.6255) (1.148) (0.3461)

27 8.923 6.782 5.382 5.246
439) (1.723) (1.655) (0.2922) (0.3041)

16 0.1113 0.1083 1.538 0.1063
019) (0.0331) (0.0352) (0.0292) (0.0307)

95 1.977 1.850 2.159 1.799
01) (0.0344) (0.0421) (0.1826) (0.1317)

373 44.79 41.30 21.06 37.61
99) (4.049) (3.001) (4.557) (4.594)

142 10.11 10.09 9.980 9.724
143) (0.1083) (0.1068) (0.1237) (0.1220)



P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30 27
empirically evaluate it on a number of regression datasets. Firstly,
we compare our algorithm with other related method on several
benchmark datasets. Then, a set of experiments are given to
explore the connection between the number of the base metrics
and the effectiveness of the learned metric. Meanwhile, we com-
pare the performances of SVRML with different ensemble strate-
gies. In addition, to verify the robustness of the learned metric,
we augment benchmark datasets with synthetic noise of varying
dimensions to investigate the prediction performance as noisy fea-
tures are introduced.

5.1. Comparison with representative algorithms

To evaluate the performance of our algorithm, we compare it
with the related regression algorithms as follows:

(1) SVR-RBF: SVR with RBF kernel, in which the parameters C
and r2 are selected by cross validation.
0 100 200 300 400

winequality
yacht hydrodynamics

eunite2001
bodyfat

cpusmall
slump test

compressive strength
energy efficiency

space_ga
pyrim

mg
abalone
triazines

auto mpg
housing

Fig. 2. The running time of each

0 1 3 5 10 15

2.6

2.8

3

3.2

3.4
Housing

Number of Base Metrics

Er
ro

r(
R

M
SE

)

0 1 3
2.45

2.5

2.55

2.6

2.65

2.7
MP

Number of B

Er
ro

r(
R

M
SE

)

0 1 3 5 10 15
1

1.2

1.4

1.6

1.8

2
Energy efficiency

Number of Base Metrics

Er
ro

r(
R

M
SE

)

0 1 3
4

4.5

5

5.5

6

6.5
Compressiv

Number of B

Er
ro

r(
R

M
SE

)

Fig. 3. The prediction errors on each dataset with
(2) MLKR: metric learning for kernel regression [14], in which a
new distance metric is learned on a distance based kernel
function.

For SVR-RBF, we search the penalty parameter C from the set
f10�3;10�2; . . . ;102;103g, and the width parameter r2 of the RBF
kernel from the set f10�2;10�1; . . . ;104;105g respectively through
5-fold and 10-fold cross validation. For MLKR, we initialize the dis-
tance metric with a diagonal matrix 1=r2 � Id�d, where the param-
eter r2 is searched from the same set as SVR-RBF. For our
algorithm Bag-SVRML, the penalty parameter C is searched from
the same set as SVR-RBF, and the distance matrix is initialized with
the identity matrix Id�d. The regularization parameter k in our algo-
rithm is used to control the trade-off between the error on the val-
idation and the regularization item. We empirically set k to 1=d2

and uniformly set the number of base metrics to 5. The influence
of the number of base metrics to the prediction results will be dis-
cussed in the next subsection. We test these regression algorithms
500 600 700 800 900 1000

Running Time

Bag−SVRML
MLKR
SVR−RBF(10−fold)
SVR−RBF(5−fold)

algorithm on each dataset.

5 10 15

G

ase Metrics
0 1 3 5 10 15

0.05
0.052
0.054
0.056
0.058

0.06
0.062
0.064

Pyrim

Number of Base Metrics

Er
ro

r(
R

M
SE

)

5 10 15

e Strength 

ase Metrics
0 1 3 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9
Slump Test

Number of Base Metrics

Er
ro

r(
R

M
SE

)

Bag−SVRML
SVR

the increase of the number of base metrics.



28 P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30
on 15 benchmark datasets. The descriptions of these datasets are
summarized in Table 1.

We use two widely-used standard measures to evaluate the
prediction performance of these algorithms. The first measure is
root mean squared error (RMSE), which estimates the absolute
error between predictive value and the target value of data.
Another measure is mean absolute percentage error (MAPE), which
takes into account the percentage of absolute error in target value.

For the fairness of comparison, we repeat experiments for 20
trials on each dataset. All the features of data are normalized.
The final predictive values are the average results of the 20 trials.
The prediction errors and the standard deviations on 15 datasets
are listed in Table 2. The bold ones represent the best performance
on each dataset. The predictive results provided by SVR-RBF are
under the best parameters C and r2 chosen by 5-fold and 10-fold
cross validation respectively. It is obvious that the predictive
0 1 3 5 10 15

2.6

2.8

3

3.2

3.4
Housing

Number of Base Metrics

Er
ro

r(
R

M
SE

)

0 1 3
2.5

2.55

2.6

2.65

2.7

2.75
MPG

Number of Ba

Er
ro

r(
R

M
SE

)

0 1 3 5 10 15

1.3
1.4
1.5
1.6
1.7
1.8
1.9

Energy efficiency

Number of Base Metrics

Er
ro

r(
R

M
SE

)

0 1 3
4

4.5

5

5.5

6

6.5
Compressive

Number of Ba

Er
ro

r(
R

M
SE

)

Fig. 4. The prediction errors with differen

0 2 4 8 16 32
2

2.5

3

3.5

4

4.5
Housing

Noise Dimensions

Er
ro

r(
R

M
SE

)

0 2 4
2

2.2
2.4
2.6
2.8

3
3.2
3.4

MP

Noise Dim

Er
ro

r(
R

M
SE

)

0 2 4 8 16 32
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6

abalone

Noise Dimensions

Er
ro

r(
R

M
SE

)

0 2 4
0.1

0.11

0.12

0.13

0.14

0.15

0.16
spac

Noise Dim

Er
ro

r(
R

M
SE

)

Fig. 5. The average prediction performance on each
results of MLKR are worse than the SVR based methods here, while
Bag-SVRML produces lower prediction error than the compared
methods on the most datasets.

The running time of each algorithm is reported in Fig. 2. The
time includes training, cross validation and testing. On the one
hand, the results show that Bag-SVRML consumes the training
resources roughly comparable with SVR-RBF by 5–10-fold cross
validation. It exhibits insensitiveness, to great extent, to the
involved parameters (thus we all set them to default values) and
more interestingly, without the need of conducting model selec-
tion by cross validation. In contrast, the SVR-RBF needs to select
its parameters by cross validation, leading to a large number of
calls to the SVR solver. On the other hand, the training time of
MLKR is less than that of the SVR based algorithms on most data-
sets. But it should be noted that, contrary to those SVR based algo-
rithms, the test process of MLKR is much more time-consuming as
5 10 15
se Metrics

0 1 3 5 10 15
0.052

0.054

0.056

0.058

0.06

0.062

0.064
Pyrim

Number of Base Metrics
Er

ro
r(

R
M

SE
)

5 10 15

 Strength

se Metrics
0 1 3 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9
Slump Test

Number of Base Metrics

Er
ro

r(
R

M
SE

)

SVRML−Bootstrap
Bag−SVRML
SVR

t resampling method on each dataset.

8 16 32

G

ensions
0 2 4 8 16 32

0.11

0.12

0.13

0.14

0.15

0.16
mg

Noise Dimensions

Er
ro

r(
R

M
SE

)

8 16 32

e_ga

ensions
0 2 4 8 16 32

0

1

2

3

4

5
Slump Test

Noise Dimensions

Er
ro

r(
R

M
SE

)

SVR(CV)
Bag−SVRML

dataset with different number of noise features.



P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30 29
it shows on dataset cpusmall and winequality. Therefore, consider-
ing both the prediction accuracy and time consumption, Bag-
SVRML outperforms the compared regression algorithms.

5.2. Influence of the number of base metrics and the ensemble
strategies

The number of base learners is very important to the ensemble
performance in bagging. Similarly, for Bag-SVRML, the number of
base metrics also has influence on the effectiveness of aggregated
metric, which directly displays on the prediction results. Mean-
while, the effectiveness of our ensemble strategies designed spe-
cially for SVRML need verifying against other existing ensemble
strategies. Therefore, we explore the performance of Bag-SVRML
with different number of base metrics and also compare the per-
formances of SVRML with different ensemble strategies. The
parameters set in the experiment is the same as Section 5.1.

Our experiments are performed on 6 datasets in which
relatively significant improvement are achieved. Fig. 3 displays
Table 3
The distance matrix learned with synthetic noise of varying dimensions.
prediction results of SVRML with the metrics learned by different
number of base learners. When the number of base learners is zero,
it denotes the performance of SVR without learned metric. It is
obvious that with the increase of the number of base learners,
the performance of SVRML on each dataset is improved. We get
most of the improvement when there are about 5 base-learners.
Meanwhile, with the increase of the number of base metrics, the
variance of the prediction results decreases, leading to more stable
prediction results. On the other hand, the distinction between met-
ric ensemble and regression ensemble we discuss in Section 4.1
can also be significantly shown in Fig. 3. If the number of base
learners is only one, the mean value is just equal to the result of
regression ensemble. While the result of metric ensemble is
shown by using multiple base metrics. From Fig. 3, we achieve bet-
ter prediction performance by metric ensemble than regression
ensemble.

To verify the effectiveness of the resampling mechanism in our
framework, we compare the prediction performance by using our
resampling method with the bootstrap in bagging. The result is



30 P.-C. Zou et al. / Knowledge-Based Systems 65 (2014) 21–30
shown in Fig. 4. It is obvious that our resampling method can
achieve better prediction performance than bagging especially
when the number of base metrics is small. With the increase of
the number of base metrics, the improvements for SVR achieved
by two different resampling method trend to be much closer.

5.3. Influence of noise features to the learned metric

In the real world regression tasks, the observed data is probably
contaminated with noise or redundancy, which has deep influence
on the performance of prediction results. It is an important evalu-
ation criteria for the learned metric whether it is able to effectively
remove the noise in data. In order to verify the robustness of the
metric learned by Bag-SVRML, we further perform experiments
in this section.

We augment benchmark datasets with synthetic noise of varying
dimensions. The number of noise features D is got from the set
f21;22;23;24;25g. Each noise feature is obtained by random genera-
tion and the value of each noise feature obeys ð10;100Þ – Gaussian
distribution. In order to avoid the influence carried by the scale of
each feature for the metric, the normalization procedure is applied
to each feature in our experiment. We measure the prediction per-
formance on six benchmark datasets: housing, mpg, mg, abalone,
space_ga and slump test. The chosen of the parameters in Bag-
SVRML are the same as the previous subsection. SVR-RBF (10-fold)
without learned metric is used as a baseline in this experiment.

Fig. 5 illustrates that the performance of original SVR get worse
with a high rate when the number of noise features increasing.
Meanwhile, Bag-SVRML is more robust to the noise features, and
the prediction error remains very low with the increase of the
number of noise. Table 3 displays the distance matrix A learned
by Bag-SVRML with synthetic noise of varying dimensions on each
dataset. Each grayscale image is corresponding to a learned dis-
tance matrix A. In each grayscale image, the brighter the block is,
the larger the absolute value of the corresponding element in the
matrix A will be. Otherwise, the absolute value of the correspond-
ing element is smaller. It is obvious that Bag-SVRML correctly iden-
tifies and suppresses most of the noise dimensions by assigning
small weights to the corresponding rows and columns of metric
A. With the increase of the number of noise feature, effective
dimensionality remains low and the correlation between different
features remains stable.

6. Conclusion

In this work, we propose a task-dependent metric learning algo-
rithm for support vector regression which both minimizes the
error on validation set and enforces the sparsity on the learned
metric matrix. Furthermore, we extend the general bagging algo-
rithm and propose a novel bagging-like ensemble metric learning
framework to enhance the effectiveness of the learned metric.
Experiments on various datasets demonstrate the effectiveness of
our method.

Owing to the fact that the computational complexity of learning
metrics still is expensive, we will discover a method to solve it so
that our method can be applied to the large-scale problems. On the
other hand, we will further explore the bagging-like ensemble
metric learning framework for more regression tasks.

Acknowledgements

This work is sponsored by the National Natural Science Founda-
tion of China (No. 61139002), the Fundamental Research Funds for
the Central Universities (Nos. NS2012134, NZ2013306), the
National Science Foundation for Post-doctoral Scientists of Jiangsu
(No. 1301013A), and Jiangsu ‘‘QingLan’’ Project Foundation.

References

[1] E.P. Xing, M.I. Jordan, S. Russell, A. Ng, Distance metric learning with
application to clustering with side-information, in: Advances in Neural
Information Processing Systems, 2002, pp. 505–512.

[2] K.Q. Weinberger, L.K. Saul, Distance metric learning for large margin nearest
neighbor classification, J. Mach. Learn. Res. 10 (2009) 207–244.

[3] J.V. Davis, B. Kulis, P. Jain, S. Sra, I.S. Dhillon, Information-theoretic metric
learning, in: Proceedings of the 24th International Conference on Machine
Learning, ACM, 2007, pp. 209–216.

[4] J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, *****Neighbourhood
components analysis (2004) 513–520.

[5] N. Shental, T. Hertz, D. Weinshall, M. Pavel, Adjustment learning and relevant
component analysis, in: Computer Vision – ECCV 2002, Springer, 2006, pp.
776–790.

[6] L. Yang, R. Jin, Distance Metric Learning: A Comprehensive Survey, Michigan
State University, 2006.

[7] X. Chen, J. Zhang, Maximum variance difference based embedding approach
for facial feature extraction, Int. J. Pattern Recogn. Artif. Intell. 24 (2010) 1047–
1060.

[8] A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature vectors
and structured data, arXiv:1306.6709, in press.

[9] X. Chen, J. Zhang, D. Li, Direct discriminant locality preserving projection with
hammerstein polynomial expansion, IEEE Trans. Image Proces. 21 (2012)
4858–4867.

[10] Y. Zhang, D.-Y. Yeung, Worst-case linear discriminant analysis, in: Advances in
Neural Information Processing Systems, 2010, pp. 2568–2576.

[11] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (2003) 1157–1182.

[12] S. Parameswaran, K.Q. Weinberger, Large margin multi-task metric learning,
in: Advances in Neural Information Processing Systems, 2010, pp. 1867–1875.

[13] D. Kedem, S. Tyree, K. Weinberger, F. Sha, G. Lanckriet, Non-linear metric
learning, in: Advances in Neural Information Processing Systems 25, 2012, pp.
2582–2590.

[14] K.Q. Weinberger, G. Tesauro, Metric learning for kernel regression, in:
International Conference on Artificial Intelligence and Statistics, 2007, pp.
612–619.

[15] A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat. Comput.
14 (2004) 199–222.

[16] P.C. Mahalanobis, On the generalized distance in statistics, Proc. Nat. Inst. Sci.
(Calcutta) 2 (1936) 49–55.

[17] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.
[18] M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and metric learning in

semi-supervised clustering, in: Proceedings of the Twenty-First International
Conference on Machine Learning, ACM, 2004, pp. 81–88.

[19] Z. Xu, K.Q. Weinberger, O. Chapelle, Distance metric learning for kernel
machines, arXiv:1208.3422, in press.

[20] N.C. Oza, Online bagging and boosting, 2005 IEEE International Conference on
Systems, Man and Cybernetics, vol. 3, IEEE, 2005, pp. 2340–2345.

[21] R.E. Schapire, Theoretical views of boosting and applications, in: Algorithmic
Learning Theory, Springer, 1999, pp. 13–25.

[22] C. Shen, J. Kim, L. Wang, A. van den Hengel, Positive semidefinite metric
learning using boosting-like algorithms, J. Mach. Learn. Res. 13 (2012) 1007–
1036.

[23] C.-C. Chang, A boosting approach for supervised mahalanobis distance metric
learning, Pattern Recogn. 45 (2012) 844–862.

[24] Y. Mu, W. Ding, D. Tao, Local discriminative distance metrics ensemble
learning, Pattern Recogn. 46 (2013) 2337–2349.

[25] M.-W. Chang, C.-J. Lin, Leave-one-out bounds for support vector regression
model selection, Neural Comput. 17 (2005) 1188–1222.

[26] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple
parameters for support vector machines, Mach. Learn. 46 (2002) 131–159.

[27] K. Huang, Y. Ying, C. Campbell, Generalized sparse metric learning with
relative comparisons, Knowl. Inform. Syst. 28 (2011) 25–45.

[28] R. Huang, S. Sun, Kernel regression with sparse metric learning, J. Intell. Fuzzy
Syst. 24 (2013) 775–787.

[29] K.B. Petersen, M.S. Pedersen, The Matrix Cookbook, 2006.
[30] L. Vandenberghe, S. Boyd, Semidefinite programming, SIAM Rev. 38 (1996) 49–

95.
[31] S.P. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press,

2004.
[32] C.J. Burges, A tutorial on support vector machines for pattern recognition, Data

Mining Knowl. Discov. 2 (1998) 121–167.
[33] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines

and other Kernel-based Learning Methods, Cambridge University Press, 2000.
[34] A. Rakotomamonjy, F.R. Bach, S. Canu, Y. Grandvalet, Simplemkl., J. Mach.

Learn. Res. 9 (2008).

http://refhub.elsevier.com/S0950-7051(14)00115-4/h0045
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0045
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0055
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0055
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0060
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0060
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0060
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0060
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0065
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0065
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0065
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0070
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0070
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0070
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0075
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0075
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0075
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0080
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0080
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0090
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0090
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0095
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0100
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0100
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0100
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0100
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0105
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0105
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0105
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0110
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0110
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0110
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0115
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0115
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0115
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0120
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0120
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0125
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0125
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0130
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0130
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0135
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0135
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0140
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0140
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0145
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0145
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0150
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0150
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0155
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0155
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0155
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0160
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0160
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0165
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0165
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0165
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0170
http://refhub.elsevier.com/S0950-7051(14)00115-4/h0170

	Bagging-like metric learning for support vector regression
	1 Introduction
	2 Related works
	3 Metric learning for support vector regression (SVRML)
	3.1 Support vector regression
	3.2 Cost function
	3.3 Optimization algorithm

	4 Bagging-like ensemble metric learning
	4.1 Metric ensemble strategy
	4.2 Metric ensemble algorithm
	4.3 Time complexity analysis

	5 Experiments
	5.1 Comparison with representative algorithms
	5.2 Influence of the number of base metrics and the ensemble strategies
	5.3 Influence of noise features to the learned metric

	6 Conclusion
	Acknowledgements
	References


