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Abstract 

Images usually have specific spatial structures, and related researches have shown that these 

structures can contribute to the establishment of more effective classification algorithms for 

images. So far though there have been many solutions of making use of such spatial structures 

separately proposed, little attention has been paid to their systematic summary, let their 

comparative study alone. On the other hand, we find that the existing image-oriented ordinal 

regression (OR) methods do not utilize such structure information, which motivates us to 

compensate a comparative study through embedding such spatial structure into ORs. Towards the 

end, in this paper, we 1) through a summary, find three typical strategies of using image prior 

spatial information, i.e., structure-embedded Euclidean distance strategy, structure-regularized 

modeling strategy for classifier learning, and direct manipulation strategy on images without 

vectorization for image; more importantly, 2) apply these strategies to establish corresponding 

ORs for classifying data with ordinal characteristic, conduct comprehensive comparisons and give 

analysis on them under three evaluation criteria. Experimental results on typical ordinal image 

datasets JAFFE, UMIST and FG-NET show that the latter two strategies can, on the whole, 

achieve distinct gain in OR performance and while the first one cannot necessarily as expected, 

which is due to whether the spatial information is directly embedded into the objective function 

involved or not. 
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1.1. Background 

Images have two-dimensional inherent spatial structures, in which explicit and implicit 

discriminative information beneficial to image classification is involved. For example, in human 

faces, the eyes, nose and mouth are distributed in different regions, and specific geometric 

relations exist between them. However, most current developed pattern recognition and machine 

learning algorithms are based on vector patterns, in which the process of matrix-to-vector 

conversion is conducted, consequently, useful spatial structure information to classification is lost 

seriously, thus leaving the room of performance promotion. 

Over past years, though strategies of taking advantage of spatial structure information have 

been separately developed for improving performance of image classification, a systematic 

summary and comparative study among them is still lacked. For this purpose, in this paper, we 

will first make a summary from those scattered related literature and classify them into three 

categories; then for making a comparison, we choose one of currently popular topics in image 

classification, i.e., image-oriented ORs such as age estimation of face images, as a comparative 

platform, due to that 1) these ORs designed specially for image classification have so far hardly 

exploited such spatial information, and 2) the multi-index-based synthetic evaluation originated 

from their duality of classification and regression can more be reflected from multi-facets for such 

information utilization than single-index evaluation for image classification such as face 

recognition. And next, we develop three image-oriented OR variants by the compensation of 

spatial information with the aforementioned three strategies and then make a relatively 

comprehensive comparison from a joint view of regression and classification under three 

evaluation criteria of MAE, Acc and OCI. 

1.2. Categorization of the strategies of using spatial structure information 

In this subsection we analyze the existing separate schemes of the use of spatial structure 

information and summarize them into three main families as follows: 

a) Structure-embedded Euclidean distance strategy 

It is known that Euclidean distance (ED) is one of the most often-used metric in pattern 

recognition. However, when it is used to similarity/distance measure between two images, the 

spatial structure information involved in them is not sufficiently reflected such that 

classification performance for the images is unfavorably affected. In order to compensate such 



loss, many attempts [1-8] have been done, among which [1] can be viewed as their 

representative. In [1], the authors developed the IMage Euclidean Distance (IMED) through 

embedding spatial structure of images to ED and applied it to handwritten digit and human 

face recognition with better performance than ED. Due to its insensitiveness to small distortion 

of images and generality able to be embedded into such classifiers as SVM, IMED can 

successively be extended. For example, Li et al. [4] extended IMED to multi-view gender 

classification and achieved higher classification accuracy; Liu et al. [5] further proposed 

multi-linear locality-preserved maximum information embedding for face recognition with 

more stable performance. Moreover, Li and Lu in [8] developed an adaptive IMED (AIMED) 

by further fusing gray level knowledge of image to IMED besides the spatial information to 

achieve more satisfactory identification performance for human face and handwritten digit. In 

the following comparative study, we just adopt IMED as basic embedding, but any of its 

effective variants can straightforwardly be utilized in a similar way. 

b) Structure-regularized modeling strategy 

In this family, the strategy of exploiting spatial structure usually adopts the regularization 

technique to penalize a related objective function such that the resulted solution (from 

optimizing the objective) is spatially smooth as much as possible [9-13]. The spatial smooth 

subspace learning (SSSL) proposed in [9] can be regarded as the representative, in which a 

Laplacian penalty is imposed to constrain the projection coefficients to be spatially smooth. 

Zuo et al. [12] went further by weighting the Laplacian penalty function with Gaussian 

function to realize multi-scale image smoothing. Moreover, Chen et al. in [13] developed a 

regularized metric learning framework by imposing the Laplacian penalty and achieved 

competitive face recognition performance on several benchmark datasets. From these related 

researches it can easily be found that, structure-regularized modeling indeed can compensate 

the spatial information loss induced by tensor- or matrix-to-vector conversion. In the following 

comparative study, without loss of generality, we will take the SSSL as the basic regularization 

strategy. Actually, its extensions or variants can be employed in a similar way. 

c) Direct manipulation strategy on images 

The strategies in former two families are all vector-pattern-oriented. Though the spatial 

structure information of images can get utilized and related learning performance is thus 



boosted, these strategies usually suffer from (1) high computational complexity; and (2) 

so-called “small sample problem”, i.e., in which dimensionality of feature vector is higher than 

the sample set size, easily leading to over-fitting. Hence, a natural way to mitigate or handle 

these problems is operating directly image (or reshaped image) patterns. Along this line, many 

studies have been developed, for example, [14-25], in which the works of Chen et al. [14-18] 

and Tao et al. [20-25] can be regarded as their representatives. More specifically, Chen et al. 

developed a series of classifiers, such as MatMHKS [14] and MatFE+MatCD [18], directly 

based on image (or reshaped image) patterns and achieved competitive performance in such 

classification tasks as human face and handwritten digit identification, against the 

vector-pattern-oriented counterparts; while Tao et al. implemented their dimensionality 

reduction or classification modeling directly manipulated on (high order) tensor patterns and 

applied them respectively for human gait recognition [20] and visual tracking [25]. Likewise, 

it can be found that direct operation on matrix or tensor data indeed can make more sufficient 

use of the inherent spatial structure information of data themselves, thus promoting the 

performance more sufficiently, compared with vector pattern counterparts. 

1.3. Review of OR 

Following the summary and categorization on separate spatial structure information utilization 

strategies, our next step is in position to taking the OR as a research platform, on which we will 

make an empirical comparison on three benchmark image datasets among our afore-summarized 

three families. As for OR, actually it is a special learning strategy used to design classifiers for 

ordinal classes for example, age estimation for human beings, thus its outputs are ordered discrete 

labels, leading to its duality of regression and classification. Due to its power, OR has so far been 

widely applied in such domains as recommender system [26], web page ranking [27], image 

retrieval [28], medical image diagnosis [29-30] and age estimation [31-32], and in implementing 

them, various approaches have been put forward [33-44], including KDLOR [44], one of 

distinguished ORs. Though most of these ORs have achieved performance to different extents, 

however, when manipulated on images, almost all these methods neglect the compensation of 

spatial structure information for vectorized images, thus choosing the image-oriented OR as the 

research platform to give a comparison among the summarized three categories of using spatial 

structure is reasonable. Though such a work of incorporating the spatial information to existing 
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OR is trivial, to the best of our knowledge, there has indeed no related study done yet. 

Now for the sake of clarity, and without loss of generality, we will just take the linear version 

of KDLOR, a typical OR model proposed in [44], as a basic OR approach (herein denoted as 

LDLOR), and select IMED [1], SSSL [9] and bilinear modeling [14] as the comparative 

representatives of the three families of spatial structure information utilization to re-model 

LDLOR, thus yielding three modified LDLOR versions, respectively called IMED-LDLOR, 

SSSL-LDLOR and Bil-LDLOR, and for which we conduct a series of experiments on several 

image benchmark datasets and report comparison results in terms of the OR-specific evaluation 

criteria. 

The remainder of the paper is organized as follows. In section 2, we briefly review a 

representative OR, i.e., LDLOR, which is taken as the base model. In section 3, three re-modeled 

LDLOR counterparts derived from three spatial structure information utilizing strategies are 

detailed. Section 4 shows the experimental results and gives comparison analysis. The conclusions 

are drawn in section 5. 

2. Review of LDLOR 

LDLOR, one of the distinguished ORs, aims to find the best projection direction along which 

the ordinal indices of orderly classes can be preserved well after projection. Based on this 

principle, LDLOR has two main characteristics: maximizing the distance between each pair of 

mean vectors of neighboring ordinal classes, and simultaneously minimizing the within-class 

scatters, which makes it distinguish from the discriminant principles used in DA models such as 

LDA [45] due to the imposition of relative order constraint between all the data classes on 

LDLOR. 

Now let (x ,y )  R R, i=1,2,..,Nl

i i    be the training data set, where x R l

i   denotes 

the i-th sample, i {1,2,...,K}y   denotes its corresponding class label, N is the data set size, and 

K the number of classes. Then LDLOR can be formulated as 
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where wS  denotes the within-class scatter matrix as follows 
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   is the mean vector of the k-th class and kN  is the corresponding 

sample set size. 

The formulation in (1) is a typical quadratic programming (QP) problem and thus can be 

solved directly or via its dual-form using Lagrangian theorem. 

From the formulation of its objective, when directly applied to image classification, LDLOR 

also suffers from the spatial information loss resulted from image-to-vector conversion. 

3. Three Re-modeled LDLORs Fused Spatial Structure Information 

In order to utilize the spatial structure information involved in such data as images to LDLOR, 

in the following sub-sections, we will first briefly review the implementations of IMED [1], SSSL 

[9] and bilinear modeling [14] (as the representatives of three spatial information utilization 

strategies), and then employ them to re-model the basic LDLOR to form its new variants: 

IMED-LDLOR, SSSL-LDLOR and Bil-LDLOR. 

3.1. IMED-LDLOR 

It is known that conventional ED is one often-used metric applied to measure the similarity 

or distance between two vectors. However, when used to images, it usually yields unreasonable 

metric results, due to its neglect for the spatial relationships among image pixels. Specifically, 

now let x and y be two M N  images, their vectorized versions respectively be 

1 2( , ,..., )MN Tx x x x  and 
1 2( , ,..., )MN Ty y y y . Then the ED ( , )Ed x y  between x and y is 

 
2 2

1

( , ) ( ) ( ) ( )
MN

k k T

E

k

d x y x y x y x y


     .  

Obviously, it can be found that in 
2 ( , )Ed x y , the spatial relationships between pixels are not 

reflected due to that all pixels are independently treated with the same weight. However, when 

these pixels in image lattice are closer to each other, their corresponding gray values intuitively 

should also be more similar. In other words, images usually have locally spatial smoothness in 

gray levels. It is such a consideration that Wang et al. [1] invented so-called IMED ( , )IMEDd x y  



based on ED which is formulated as follows: 
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i i j j T

IMED ij

i j

d x y g x y x y x y G x y


      ,  

where ( )ij MN MNG g   and ijg  is defined as the weight between the i-th and j-th pixels of the 

vectorized image according to their geometric or spatial ED in original two-dimensional lattice, 

and generally inversely proportional to the ED value. As a result, the spatially smooth 

relationships between neighboring pixels are incorporated into the ED for reasonable image metric. 

However, in order to ensure IMED to be a valid metric, G must be positive semi-definite for 

which a Gaussian function is often used, leading to 
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where , ( , 1,2,..., )i jP P i j MN  are the i-th and j-th pixels in the vectorized image. Further, 

since positive semi-definition of G, 
2 ( , )IMEDd x y  can be expanded as 
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where 
1/2u G x , 

1/2v G y . Therefore, by the way of (2), the IMED between the images of x 

and y is actually equivalent to the ED between the new-converted u and v via a linear transform. 

From Eq. (2), it can be found that 1) IMED is easily to be embedded into other metric models 

in a similar way as (2); and more importantly, 2) by the way of linear transform, the spatial 

relationships between neighboring pixels are embedded into the metric transformation. Next we 

embed IMED to LDLOR to generate a spatial structure information compensated LDLOR, i.e., 

IMED-LDLOR which can be obtained by optimizing the following objective:  
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where 
IMED

wS  denotes the within-class scatter matrix 
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k
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k

x Xk
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    denotes the mean vector of the k-th ordinal 

class, K is the class number, and kN  the sample size of the k-th class. 

Similar to LDLOR in (1), IMED-LDLOR in (3) can be solved in the same way, thus we omit 

its detail. 

3.2. SSSL-LDLOR 

In subspace learning such as LDA [45-46], LPP [46] and NPE [47], when operating on the 

vectorized images, they also need a spatial information compensation for such loss as spatially 

smooth information resulted from image vectorization process. In [9], Cai et al. established a 

spatially smooth learning framework, i.e. SSSL, in which they proposed to incorporate the 

spatially smooth information into model learning by the way of regularization. Specifically, let w 

be a projection vector with the same dimension as that of a vectorized n1-by-n2 image, 1D  ( 2D ) 

be a 1 1n n ( 2 2n n ) second-order gradient smoothing operator or matrix here along the rows 

(columns) of image and be formulated as 

 2
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where 1/ , 1,2j jh n j  . Next for describing the whole smooth on image space, we introduce 

the global second-order gradient convolution matrix   by 

 1 2 2 1D I D I     , (4) 

where jI  is an j jn n  identity matrix for 1,2j  , and   denotes the Kronecker operator. 

Using the convolution matrix  , we can evaluate the whole spatial smoothness of w  by 



 
2|| || T T Tw w w w w       . (5) 

. The intuitive interpretation of (5) is that the closer to each other the entries of w, the less the 

value of  , and vice versa, thus spatial smoothness can be reflected. Now, adding (5) to the 

objective function of basic LDLOR, we get the newly-modeled SSSL-LDLOR derivable from the 

following problem 

 

1

min ( , )

 . .  ( ) , 1,2,..., 1,

T T

w

T

k k
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s t w m m k K
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. (6) 

By appropriately tuning the value of hyper-parameter , we can control spatial smoothness for 

good trade-off. Intuitively, SSSL-LDLOR should be superior to LDLOR. 

Similar to LDLOR, the SSSL-LDLOR in (6) can be solved directly or via its dual form. 

3.3. Bil-LDLOR 

Different from previous two spatial structure information compensation strategies for 

vectorized image, a more natural strategy is to establish a classifier directly on original images 

(or their reshaped matrix patterns). Based on such a starting point, there are many studies 

developed [14-18]. In [14-18], the authors designed a series of matrix-oriented classifiers by 

using the bilinear discriminant functions to replace the linear ones in existing vector-oriented 

classifiers such as Support Vector Machines (SVMs) [48] and Least Squares Support Vector 

Machines (LS-SVMs) [49], consequently, obtaining better recognition performance on face 

images. Inspired by the above studies, we likewise introduce the idea of bilinear modeling to OR 

for image classification to develop corresponding bilinear LDLOR, for short, Bil-LDLOR. 

Though such a idea is trivial, to our knowledge, there has indeed had no such an attempt. 

To establish Bil-LDLOR, let us define 1 2n n

iX R


  as an image and a corresponding 

bilinear (discriminant) function operating on it is described as 
T

iu X v , u  and v  respectively 

are the left and right weight vectors. Then we follow basic LDLOR to establish our Bil-LDLOR 

by 
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where kM  denotes the mean matrix of the k-th class, 1 2n nk

iX R


  is a sample from the k-th 



class set kX , k = 1, 2, .., K, and the meaning of all the other notations are the same as those in 

(1). 

Compared with the derivation of basic LDLOR in (1), the objective of Bil-LDLOR in (7) 

brings several key advantages: 1) the left and right weight vectors 1nu R  and 2nv R  in (7) 

can respectively be determined by 1n  and 2n  free variables, totally being 1 2n n , much fewer 

than 1 2n nw R 
  in (1) whose dimensionality is 1 2n n , thus reducing the VC-dimension and more 

likely avoiding the over-fitting risk, especially when the size of training set is much less than the 

dimensionality; more importantly, 2) Bil-LDLOR directly operates on matrix-pattern to avert the 

matrix-to-vector conversion, thus the spatial structure information involved in the data can be 

more desirably reflected. Intuitively, Bil-LDLOR should outperform the basic LDLOR in OR 

performance when operating on such structured data as images. 

It can be observed that the objective (7) is not convex anymore as in (1) but bi-convex w.r.t. 

u  and v , i.e., it is convex in u (v) for fixed v (u). Fortunately, we can adopt the off-the-shelf 

alternating iteration strategy to solve them. More importantly, it has theoretically been proven that 

such iteration process can converge to a local optimum [50], and experimentally shown that it just 

needs several rounds of alternative iterations to convergence. 

The whole optimization procedure of Bil-LDLOR includes two main alternative optimization 

steps described as follows: 

a) fixing v  to optimize u  
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and 

b) fixing u  to optimize v  
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where   
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can be easily found that both the sub-objectives of (8) and (9) are formally the same as that of (1), 

hence the implementation for (1) can be directly copied here. 

Now we give the complete solving procedure of Bil-LDLOR, illustrated in Algorithm 

Bil-LDLOR. 

Algorithm Bil-LDLOR 

Input: 1 2 1 2, ,..., , ,NX X X n n  

Output: u , v  

1. Compute the mean matrix iM  of the i-th class 

2. 0 1( ,1)assignv random n ; 

3. For i from 1 to maximal Iteration 

4.     Fix v  to optimize u  using (8), 

       1

update

i iu u  ; 

5.     Fix u  to optimize v  using (9), 

       1

update

i iv v  ; 

6. End For 

7. maxIter maxIter, ;update updateu u v v   

8. Return u  and v . 

3.4. Overall comparisons between three re-modeled LDLORs 

In previous sub-sections, we introduced three variants of LDLOR fused spatial structure 

information by three representative strategies of the metric embedding, the structure regularization, 

and the bilinear modeling. Here we summarize these re-modeled LDLORs in Table 1. 

Table 1. Overall summary for three re-modeled LDLORs 

OR method Main idea Convexity Input pattern # of variables
*
 

IMED-LDLOR metric embedding Yes Vector 1 2n n  

SSSL-LDLOR structure regularization Yes Vector 1 2n n  

Bil-LDLOR Matrix bilateral projection No Matrix 1 2n n  

* n1 and n2 are respectively the # of rows and columns of an image/matrix. 



It can be noticed that from Table 1, both the objectives of IMED-LDLOR and SSSL-LDLOR 

can be solved by QP optimization, while Bil-LDLOR cannot due to the non-convexity in u  and 

v of its objective function, but can still be solved alternatively with convergence guarantee. 

4. Experiments 

In this section, we conduct experiments and make empirical comparisons among LDLOR, 

IMED-LDLOR, SSSL-LDLOR and Bil-LDLOR on three benchmark image datasets, i.e., JAFFE 

(for human facial expression intensity regression), UMIST (for human head pose regression), and 

FG-NET (for human age group regression), their classes all are ordinal. To eliminate the 

influence of image size to experiments, all images are cropped and resized to 16×16, and the raw 

(pixel) gray levels are directly used as features to represent images. 

Considering OR’s characteristics of both classification and regression, we use the most 

often-used criteria of mean absolute error (MAE) and classification accuracy (Acc) to respectively 

evaluate its regression deviation and classification performance. Specifically, MAE defined as 

1

1
| |

N predicted groundtruth

i ii
l l

N 
 , denotes the average deviation of the prediction from the 

ground-truth rank and the lower its value, the better the regression performance; while Acc, 

defined as 
right

total

N

N
, denotes the classification accuracy of a classifier, and the higher the Acc value, 

the better the classification performance. On the other hand, considering the aforementioned 

duality of ORs, we further use a recently-proposed Ordinal Classification Index (OCI) evaluation 

criterion OC

  [51] that is specially designed for ORs, and the lower the OCI value, the better 

the OR performance. It should be noted that different from MAE and Acc, OC

  can well 

eliminate the influence of numerical scales used to label ordinal classes on MAE and Acc and thus 

more suitably measures the deviation of the predicted results from the actual ones. In the 

following experiment, we set parameter (γ, β) in OC

  to (1, 0.75) as recommended in [51]. As 

for more details about OC

 , due to the complexity of its definition, we omit it here and please 

refer to the specific definition (7) in [51]. 

In our experiments, for each dataset, we adopt a nearest class-mean classifier to perform final 

ordinal classification and report the averaged results over 20 random splits by cross-validation 



(CV). The tuning ranges of all hyper- or trade-off parameters involved in the experiments are 

{1e-5, 1e-3, 1e-1, 1e0, 1e1, 1e3, 1e5}. The results of Bil-LDLOR correspond to those after 10 

round alternating iterations in each CV. 

4.1. JAFFE Dataset 

The original JAFFE dataset contains 213 images of 7 facial expressions (6 basic facial 

expressions + 1 neutral) posed by 10 Japanese female models and each image has been rated on 6 

emotion adjectives by 60 Japanese subjects. In the experiment, we select 29 samples each class, 

these selected samples cover all 7 (ordinal) facial expressions from disgust to surprise, and some 

examples of them are shown in Figure 1. 

 

 

 

Figure 1. Examples from JAFFE dataset 

The experimental results on JAFFE are tabulated in Tables 2a - 2c, respectively according to 

MAE, Acc and OC

 . Note that the underlined bold results (including the ones on UMIST and 

FG-NET) are statistically best compared with the other methods in the same row after t-test 

(significance value p = 0.05). 

Table 2a. MAE comparisons among LDLORs on JAFFE (mean ± std-dev)  

# NPer
*
 LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

4 1.92 ± 0.21 1.60 ± 0.09 1.78 ± 0.18 1.65 ± 0.14 

8 1.55 ± 0.16 1.48 ± 0.07 1.43 ± 0.17 1.29 ± 0.24 

12 1.28 ± 0.12 1.44 ± 0.05 1.17 ± 0.15 1.22 ± 0.24 

16 1.22 ± 0.36 1.46 ± 0.24 1.02 ± 0.10 1.15 ± 0.23 

20 1.06 ± 0.24 1.40 ± 0.06 0.92 ± 0.13 1.03 ± 0.27 

24 0.95 ± 0.16 1.36 ± 0.06 0.79 ± 0.14 0.86 ± 0.13 

* “# NPer” represents the number of training samples of each ordinal class (similarly hereinafter). 

Table 2b. Acc comparisons among LDLORs on JAFFE (mean ± std-dev) 

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

4 0.22 ± 0.03 0.20 ± 0.04 0.23 ± 0.04 0.27 ± 0.04 

8 0.28 ± 0.04 0.22 ± 0.04 0.29 ± 0.04 0.33 ± 0.04 

12 0.30 ± 0.03 0.21 ± 0.03 0.33 ± 0.04 0.35 ± 0.05 



16 0.32 ± 0.07 0.20 ± 0.04 0.38 ± 0.05 0.37 ± 0.05 

20 0.35 ± 0.06 0.23 ± 0.04 0.40 ± 0.06 0.39 ± 0.07 

24 0.37 ± 0.10 0.22 ± 0.06 0.42 ± 0.09 0.40 ± 0.04 

Table 2c. OC

  comparisons among LDLORs on JAFFE (mean ± std-dev) 

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

4 0.88 ± 0.02 0.84 ± 0.00 0.87 ± 0.02 0.84 ± 0.03 

8 0.84 ± 0.03 0.82 ± 0.02 0.81 ± 0.03 0.79 ± 0.05 

12 0.79 ± 0.03 0.81 ± 0.02 0.76 ± 0.03 0.77 ± 0.06 

16 0.76 ± 0.06 0.80 ± 0.04 0.73 ± 0.04 0.75 ± 0.06 

20 0.73 ± 0.05 0.79 ± 0.02 0.69 ± 0.04 0.70 ± 0.07 

24 0.69 ± 0.07 0.77 ± 0.02 0.62 ± 0.07 0.64 ± 0.04 

From Tables 2a-2c respectively for the evaluation indices of MAE, Acc and OC, it can be 

observed that for facial expression regression on JAFFE, compared with the baseline LDLOR, 

SSSL- and Bil-LDLORs both perform better in the three evaluation indices, especially 

SSSL-LDLOR, which partially indicates that ORs using either direct spatially regularized 

objectives or direct operation on images can outperform the corresponding vectorized versions. 

However, though embedded spatial information, IMED-LDLOR mostly behaves the worst (even 

worse than LDLOR in case of the number of training samples ranging from 12 to 24), slightly 

better just in MAE (Table 2a) when the training set is small, e.g., NPer = 4. On the other hand, as 

the number of training samples grows from 4 to 24 (with an increment of 4), on the whole, the 

performances of all the approaches are getting better and better, to different extents, especially 

both SSSL-LDLOR and Bil-LDLOR achieve more significant performance, respectively. For 

example, in the Acc index in Table 2b, the OR classification accuracy gets an improvement of 

about 20 percentages from 0.23 to 0.42 for SSSL based regularization and of 13 percentages from 

0.27 to 0.40 for direct OR modeling. However, the Acc performance increase of IMED-LDLOR is 

especially slow and not so distinct, i.e., just about 2 percentages from 0.20 to 0.22, and is a tenth 

of that of SSSL-LDLOR. Such a result may be due to that the embedding of the spatial structure 

information into ED is just for metric but not for final OR criterion to be optimized. 

4.2. UMIST Dataset 

The original UMIST dataset consists of 564 images of 20 individuals. For sake of OR 

experiment, we select 6 consecutive ordinal interval angles from profile to frontal views for OR, 

and each angle with 56 samples. I.e., 6 ordinal head pose classes and each class with 56 samples 



are selected for head pose regression. Some samples are shown in Figure 2. 

 

 

 

Figure 2. Examples from UMIST dataset 

The experimental results on UMIST are respectively listed in Tables 3a - 3c as follows. 

Table 3a. MAE comparisons among LDLORs on UMIST (mean ± std-dev)  

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

6 0.74 ± 0.11 0.85 ± 0.15 0.72 ± 0.10 0.81 ± 0.14 

12 0.61 ± 0.08 1.00 ± 0.15 0.57 ± 0.05 0.59 ± 0.09 

18 0.58 ± 0.07 1.12 ± 0.09 0.48 ± 0.05 0.54 ± 0.06 

24 0.58 ± 0.08 1.09 ± 0.13 0.43 ± 0.03 0.50 ± 0.06 

30 0.60 ± 0.05 1.05 ± 0.12 0.38 ± 0.04 0.49 ± 0.06 

36 0.67 ± 0.11 1.14 ± 0.04 0.37 ± 0.05 0.46 ± 0.05 

42 0.85 ± 0.15 1.15 ± 0.07 0.33 ± 0.05 0.45 ± 0.07 

48 1.26 ± 0.29 1.21 ± 0.14 0.30 ± 0.07 0.42 ± 0.07 

Table 3b. Acc comparisons among LDLORs on UMIST (mean ± std-dev) 

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

6 0.43 ± 0.05 0.41 ± 0.05 0.46 ± 0.05 0.44 ± 0.05 

12 0.49 ± 0.05 0.38 ± 0.05 0.52 ± 0.04 0.52 ± 0.05 

18 0.51 ± 0.04 0.35 ± 0.05 0.58 ± 0.04 0.54 ± 0.06 

24 0.51 ± 0.05 0.31 ± 0.03 0.60 ± 0.03 0.56 ± 0.04 

30 0.49 ± 0.03 0.27 ± 0.03 0.64 ± 0.03 0.57 ± 0.04 

36 0.45 ± 0.04 0.24 ± 0.03 0.65 ± 0.05 0.59 ± 0.04 

42 0.39 ± 0.07 0.25 ± 0.02 0.68 ± 0.05 0.60 ± 0.06 

48 0.32 ± 0.08 0.24 ± 0.03 0.70 ± 0.06 0.62 ± 0.06 

Table 3c. OC

  comparisons among LDLORs on UMIST (mean ± std-dev) 

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

6 0.64 ± 0.05 0.67 ± 0.06 0.62 ± 0.05 0.67 ± 0.05 

12 0.57 ± 0.05 0.72 ± 0.05 0.55 ± 0.03 0.56 ± 0.05 

18 0.56 ± 0.04 0.72 ± 0.01 0.49 ± 0.03 0.53 ± 0.06 

24 0.56 ± 0.05 0.71 ± 0.05 0.46 ± 0.03 0.51 ± 0.04 

30 0.57 ± 0.03 0.71 ± 0.05 0.41 ± 0.04 0.50 ± 0.04 

36 0.60 ± 0.05 0.73 ± 0.02 0.40 ± 0.05 0.48 ± 0.04 

42 0.67 ± 0.06 0.74 ± 0.03 0.36 ± 0.05 0.46 ± 0.06 

48 0.77 ± 0.08 0.77 ± 0.04 0.33 ± 0.07 0.43 ± 0.06 



Observing the results from Tables 3a-3c on UMIST for human head-pose regression, we can 

discover that 1) SSSL-LDLOR in all evaluation indices occupies the first position with absolute 

performance superiority, more importantly, with the increasing size of training set, its performance 

superiority is growing more obvious, e.g., in case of NPer = 42 and 43, its Acc performance in 

Table 3b is about two times that of the basic LDLOR and even three times of IMED-LDLOR, 

which shows that making use of the spatial information by the regularization is significantly 

effective; 2) the performance of Bil-LDLOR directly-modeled on images is better than both 

LDLOR and the IMED-LDLOR but inferior to SSSL-LDLOR, which shows that compared to the 

vectorized ORs without compensation of spatial information, direct manipulation on images can 

likewise make use of the spatial information and thus promote its OR performance; and 3) 

IMED-LDLOR mostly yields the worst performance, e.g., just an average Acc of 0.31, even 

inferior to 0.45 of the LDLOR. More surprisingly, with the increasing training samples, its 

performances on UMIST and JAFFE do not monotonically increase as expected but significantly 

fluctuates, which seems counterintuitive. Such an occurrence, besides the similar reason analyzed 

in section 4.1, may be further due to the unaligned head poses in images of this dataset. 

4.3. FG-NET Dataset 

The FG-NET dataset contains a number of individuals aging from 0 to 69. In our experiment, 

we divide all the samples into 8 ordinal categories, i.e., 0 ~ 1 years old, 2 ~ 4 years old, 5 ~ 8 years 

old, 9 ~ 12 years old, 13 ~ 16 years old, 17 ~ 29 years old, 30 ~ 43 years old, and 44 ~ 69 years 

old. 43 typical samples for each category are selected for our ordinal age group regression, some 

samples of them are shown in Figure 3. 

 

 

 

Figure 3. Examples from FG-NET dataset 

The age group regression results on FG-NET are respectively given in Tables 4a - 4c. 

Table 4a. MAE comparisons among LDLORs on FG-NET (mean ± std-dev)  

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

6 1.94 ± 0.20 1.77 ± 0.07 2.07 ± 0.25 1.84 ± 0.16 



12 1.65 ± 0.17 1.74 ± 0.22 1.71 ± 0.16 1.60 ± 0.17 

18 1.71 ± 0.18 1.69 ± 0.06 1.51 ± 0.12 1.57 ± 0.14 

24 1.76 ± 0.12 1.70 ± 0.07 1.41 ± 0.08 1.51 ± 0.17 

30 2.18 ± 0.26 1.79 ± 0.13 1.30 ± 0.10 1.50 ± 0.15 

36 2.26 ± 0.18 1.87 ± 0.11 1.27 ± 0.12 1.49 ± 0.20 

Table 4b. Acc comparisons among LDLORs on FG-NET (mean ± std-dev) 

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

6 0.19 ± 0.03 0.18 ± 0.02 0.19 ± 0.03 0.23 ± 0.03 

12 0.22 ± 0.03 0.21 ± 0.02 0.21 ± 0.04 0.27 ± 0.02 

18 0.22 ± 0.03 0.19 ± 0.02 0.24 ± 0.04 0.29 ± 0.02 

24 0.22 ± 0.03 0.17 ± 0.02 0.27 ± 0.03 0.31 ± 0.03 

30 0.19 ± 0.04 0.16 ± 0.02 0.27 ± 0.02 0.31 ± 0.04 

36 0.20 ± 0.07 0.15 ± 0.03 0.28 ± 0.03 0.32 ± 0.06 

Table 4c. OC

  comparisons among LDLORs on FG-NET (mean ± std-dev) 

# NPer LDLOR IMED-LDLOR SSSL-LDLOR Bil-LDLOR 

6 0.89 ± 0.02 0.86 ± 0.01 0.90 ± 0.02 0.87 ± 0.01 

12 0.86 ± 0.02 0.85 ± 0.01 0.87 ± 0.02 0.84 ± 0.02 

18 0.87 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.83 ± 0.01 

24 0.87 ± 0.02 0.85 ± 0.01 0.82 ± 0.02 0.81 ± 0.02 

30 0.90 ± 0.03 0.87 ± 0.00 0.80 ± 0.02 0.81 ± 0.03 

36 0.90 ± 0.02 0.87 ± 0.00 0.79 ± 0.03 0.80 ± 0.04 

From the results on FG-NET of age group regression, we can find some hints: On the one 

hand, almost all the best results in performance are led by SSSL-LDLOR or Bil-LDLOR, and in 

particular for Acc (Table 4b), the latter stays ahead with about 4 percentage points defeating the 

former one. Besides, either for MAE, Acc or OCI, the performances of both SSSL-LDLOR and 

Bil-LDLOR have been improved with distinct significance, e.g., with the training samples 

increasing from 6 to 36, their Acc performances are increased by about 9 percentages (respectively 

from 0.19 to 0.28 and from 0.23 to 0.32). By contrast, the performances of neither the basic 

LDLOR nor IMED-based one has essentially been increased, e.g., for Acc index, their percentage 

points are improved respectively merely by about 3. On the other hand, with the increasing size of 

training set, all the indices of both SSSL-LDLOR and Bil-LDLOR are monotonically improved 

with significant extent, while those of both the basic and the IMED-based ones, however, do not 

emerge a similar monotonic trend. The reasons behind can similarly be analyzed as in sections 4.1 

and 4.2, thus are omitted here for avoiding redundancy. 

4.4. Brief summary 



Now jointly from all the above experimental results, we can find that for OR on image set, 

both SSSL-LDLOR and Bil-LDLOR can make good use of the spatial information involved in the 

data and consequently improve their OR performance with some significance. By analyzing their 

essences, we can witness that both SSSL-LDLOR and Bil-LDLOR impose the spatial smooth 

constraints to the OR objectives, thus improve their OR performance through purposely respecting 

prior knowledge. It is worth noting that though the objective of Bil-LDLOR is not jointly convex 

but biconvex, thus we can adopt the block coordinate gradient to iteratively optimize its solution, 

theoretically it has been proven that such iterations are convergent and experimentally it can be 

observed that about 10 round iterations can lead to a stable solution as illustrated in Figure 4. 

 

 

 

Figure 4. Relationship between convergence under OCI and alternate iterations of Bil-LDLOR 

By contrast, though also embedded the spatial information, IMED just reflects the utilization of 

spatial information in metric rectification rather than the OR objective optimization, thus cannot 

definitely guarantee desirable results. In addition, it is worth to note that from the comparison of 

Tables 2a vs 2b and 4a vs 4b, some inconsistencies also exist among the evaluation indices. For 

example, in case of NPer equal to 18, 24, 30 and 36 on FG-NET respectively for human head pose 

regression, compared to SSSL-LDLOR, all the Acc results of Bil-LDLOR are all significantly 

better but neither of its MAE results is dominant, which indicates that good classification 

performance does not necessarily mean good regression performance, and vice versa. Therefore, 

neither MAE nor Acc is comprehensive enough to afford the evaluation for ORs. Relative to MAE 

and Acc, OCI is a more preferable OR-specific measure index in that its definition is more prone 

to OR nature than MAE or Acc through eliminating the influence of numerical scales used to label 



ordinal classes, thus we recommend biasedly OCI ( OC

 ) as a reasonable evaluation index in 

ordinal classification or regression task. 

5. Conclusions 

In this paper, first through a systematic summary for existing separately-proposed spatial 

structure information utilization schemes, we classified them into three main categories of the 

structure-embedded Euclidean distance preserving, the structure-regularized modeling and the 

direct manipulation on images; second, to further make a comparison among them in conditions 

that the spatial structure information is rarely reflected in existing image-oriented ORs, we 

respectively took IMED, SSSL and Bilinear modeling as their representative illustrations, and 

applied them to re-model the LDLOR (as the baseline/basic approach of OR) and develop 

corresponding variants: IMED-LDLOR, SSSL-LDLOR, and Bil-LDLOR, and then conducted 

sufficient experiments on JAFFE, UMIST and FG-Net respectively for human facial expression, 

head pose and age group regressions, with conclusions that 

a) Direct OR modeling methods on images, such as Bil-LDLOR, can effectively preserve 

and utilize the spatial information involved in the images to some extent by a similar way 

as 2DPCA [52] and thus achieve a significant OR performance improvement. 

b) The Structure-regularized based ORs, such as SSSL-LDLOR, can as well achieve a 

distinct gain of OR performance by imposing an regularization in terms of spatial 

information into their objectives. 

c) The Structure-embedded ORs, such as IMED-LDLOR, though embedded the spatial 

information, usually cannot yield a significance in improving the OR performance. The 

reason lies in that the spatial information is not taken into account for objective 

optimization and that it is further affected by some other potential factors to be 

discovered. 

d) In OR experiments, the results from the indices MAE (used to evaluate the regression 

deviation) and Acc (measuring the classification accuracy) are not always consistent, 

which is due to that they are not bound together in optimization. And in view of the 

duality of OR, thus adopting the OR-specific OCI to more comprehensively evaluate OR 

is reasonable and recommended. Moreover, by comparing the results among Tables 1c, 



2c and 3c w.r.t. the OCI OC

 , we can find that the OR difficulties of human facial 

expression on JAFFE and age on FG-NET are almost at the same level, both harder than 

that of human head pose regression on UMIST. That is, human head pose regression is 

relatively easy than the other two, this is consistent with human intuition. 

In short, both the two strategies of structure-regularized and direct manipulation on images 

can well obtain a distinct improvement in OR performance by directly imposing the spatial 

information in their objectives respectively through direct manipulation and structure 

regularization, while the third category of structure-embedded, however, cannot generate 

performance benefits as intuitively expected, where the spatial information just is embedded for 

the metric modification not directly related to the OR objective. From all the above experimental 

results and corresponding analyses, we can infer that whether the spatial information can boost the 

performance of a classifier (or regressor) depends on the embedding way of the spatial structure 

information. 
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