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Abstract. Learning good feature representation from unlabeled data
has attracted researchers great attention recently. Among others, K-
means clustering algorithm is popularly used to map the input data into
a feature representation, by finding the nearest centroid for each input
point. However, this ignores the density information of each cluster com-
pletely and the resulting representation may be too terse. In this paper,
we proposed a SVDD (Support Vector Data Description) based method
to address these issues. The key idea of our method is to use SVDD to
measure the density of each cluster resulted from K-Means clustering,
based on which a robust feature representation can be derived. For this
purpose, we add a new constraint to the original SVDD objective func-
tion to make the model align better with the data. In addition, we show
that our modified SVDD can be solved very efficiently as a linear pro-
gramming problem, instead of as a quadratic one. The effectiveness and
feasibility of the proposed method is verified on two object classification
databases with promising results.

Keywords: Feature learning, K-means, Support Vector Data Descrip-
tion(SVDD), C-SVDD, object classification

1 Introduction

Learning good feature representation from unlabeled data is the key to make
progress in recognition and classification tasks, and has attracted great attention
and interest from both academia and industry recently [1]. Deep learning method
which aims to learn multiple layers of abstract representations from data has
gained much success and has become a popular way for representation learning.
In this method layers of representation is usually obtained by greedily training
one layer at a time on the lower level [2], [3], [4], using an unsupervised learning
algorithm. In this sense, the performance of single-layer learning has an big effect
on the final representation. Neural network based single-layer methods, such as
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autoencoder [5] and RBM (Restricted Boltzmann Manchine,[6]), are widely used
for this but they have the disadvantages that the models are usually very complex
and have many parameters to adjust. In addition, many parameters involved are
need to be set through cross-validation, which is very time-consuming.

That is why a simple and fast method is preferred for unsupervised feature
learning. Among others K-means clustering algorithm is commonly used to map
the input data into a feature representation. The simplest way for this is to map
each data point to its nearest cluster center and use it as the feature to describe
the data. There is only one parameter involved in the K-means based method,
i.e., the number of clusters, hence the model is very simple and fast. Coates
et al. [7] shows that the K-means based encoder achieves the best performance
compared with sparse autoencoder, sparse RBM and GMM (Guassian Mixture
Model) under some circumstances. Despite of the success, the above K-means
based feature representation scheme is not perfect from the aspect of the richness
of information it conveys. Actually, such a representation is too terse, and does
not take the non-uniform distribution of cluster size into account. Intuitively,
those clusters containing more data are likely to be part of the features with
higher influential power, compared to the smaller ones.

In this paper, we proposed a SVDD (Support Vector Data Description, [8],
[9]) based method to address these issues. The key idea of our method is to use
SVDD to measure the density of each cluster resulted from K-means clustering,
based on which more robust feature representation could be built. Actually the
K-means algorithm lacks a robust definition of the size of its clusters, since the
nearest center principle is not robust against the noise or outliers common in
real world applications. We advocate that the SVDD could be a good way to
address this issue. Actually SVDD is a widely used tool to find a minimal a closed
spherical boundary to include all the data belong to target class and therefore,
given a cluster of data, we are expecting SVDD to generate a ball containing the
all normal data excepting outliers. Performing this procedure on all the clusters
of K-means, we will finally get K SVDD balls on which our representation can be
built. In addition, considering that a bigger ball is more influential than smaller
ones, we use the distance from the data to each ball’s surface instead of the
center as the feature.

One problem of our model comes from the instability of SVDD’s center, due
to the fact that its position is mainly determined by the support vectors on the
boundary and the noise in the data may deviate the center far from the mode
(c.f., Fig. 3(left)). This makes the SVDD ball not be consistent with the data’s
distribution when used for feature representation. To address this, we add a
new constraint to the original SVDD objective function to make the model align
better with the data. In addition, we show that our modified SVDD can be solved
very efficiently as a linear programming problem, instead of as a quadratic one.
Experiments on the AR face dataset and CIFAR-10 object database show that it
is robust, efficient, and when combined with K-means, it provides a much richer
representation for the input data and thus improves the performance of object
classification.
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2 Preliminaries

2.1 Unsupervised Feature Learning

The overall pipeline of the feature representation is as follows. For a given image,
a set of patches are first sampled at the positions of a regular grid [7]. By
mapping those patches to their nearest cluster centers, a set of feature maps
could be obtained. Then one can pooling on these and reshape them into a
vector, which yields the final feature representation for the input image. It is
worthy mentioning that there is a small difference between the above method
and others such as the CNN network [10], [11], i.e., instead of using a learnt
filtering bank for convolution, the K-means centers are used as references for
feature mapping. In other words, the cluster centers play the same role as the
filtering bank in CNN network but its way for feature mapping is different from
the latter.

2.2 K-means for Feature Learning

K-means is a data clustering algorithm to divide data into a set of K clusters,
with Euclidean distance as similarity measure. It aims to minimize the sum of
distance between all data to their corresponding centers. Let X={xi},i=1,...,n
be the set of n d-dimensional points, C = {ck}, k=1,...,K be the K clusters.
Let µk be the mean of the cluster ck. The objective function is defined as:
J(C) =

∑K
k=1

∑
xi∈ck ‖xi − µk‖

2.
As mentioned in the previous section, each cluster would be used to produce a

feature mapping. So if we have K clusters, the dimension of the resulting feature
representation will be K as well. The simplest way for feature mapping is the
so-called ”hard coding” method, i.e., simply setting the winner cluster center on
while all the others off, as follows,

fk(x) =

{
1 if k = argminj‖cj − x‖22
0 otherwise

(1)

The resulting K-dimensional vector f can be thought as the MAP estimate
of the input point x given the K-means model. However it is too sparse and
is often not representative of the full posterior mass. A better summary is the
following ”soft coding”:

fk(x) = max{0, µ(z)− zk} (2)

where zk = ‖x− ck‖2, and µ(z) is the mean of the elements of z. This activation
function outputs 0 for the feature fk that have an above average distance to the
centroid ck. This model leads to a less sparse representation (roughly half of the
features are found to be 0 in our experiments), but as shown in the experimental
section, it significantly improves the classification performance.

However, this method does not take the characteristics of each cluster into
consideration. Actually, the number of data point in each cluster is usually dif-
ferent, so is the distribution of data points in each cluster. We believe that these
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Fig. 1. Illustration of the unequal cluster effect.

differences would make a difference in feature representation as well. However,
the aforementioned K-means feature mapping scheme completely ignores these
and only use the position of center for coding. As shown in Fig. 1, although the
data point x has the same distance to the centers C1 and C2 of two clusters,
it should be assigned a higher score on C1 than on C2 since the former cluster
C1 is much bigger than the latter. In practice such unequal clusters are not
uncommon and the K-means method by itself can not reliably grasp the size of
its clusters due to the existence of outliers. To this end, we propose an SVDD
based method to describe the density and distribution of each cluster and use
this for more robust feature representation.

3 THE PROPOSED METHOD

3.1 Using SVDD Ball to Cover Unequal Clusters

Assume that a data set contains N data objects, {xi}, i = 1, ..., n and a ball is
described by its center a and the radius R. The goal of SVDD (Support Vector
Data Description, [8]) is to find a closed spherical boundary around the given
data points. In order to avoid the influence of outliers, SVDD actually faces the
tradeoff between two conflicting goals, i.e., minimizing the radius while covering
as many data points as possible.

The SVDD method can be understood as a type of one-class SVM and its
boundary is solely determined by support vectors points. SVDD allows us to
summarize a group of data points in a nice and robust way. Hence it is nat-
ural to use SVDD ball to model each cluster from K-means, thereby combin-
ing the strength of both models. In particular, for a given data point we first
compute its distance hk to the surface of each SVDD ball Ck, and then use
the following soft coding method for feature representation similar to E.q.( 2):
fk(x) = max{0, g(z) − hk}, where g(z) = µ(z) − µ(R) and µ(R) is the mean
of radius R of balls, while hk = |zk − Rk| is the distance from the point to the
surface of the SVDD ball.

Shown in Fig. 2 for a data point x, Ci, i=1,2 respectively are the centroids
of two SVDD balls with Ri, i=1,2 being their the radius respectively, and hi =
|zi −Ri| is the distance from x to the surface of i− th ball. Since the distances
from x to C1 and C2 are equal, x will get the same scores on the two ball with
the K-means scheme (c.f., E.q.( 2)). However, if we take the density and size
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Fig. 2. Using the SVDD ball to cover the clusters of K-means.
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Fig. 3. Illustration of the difference between SVDD and C-SVDD, where the left ball
(C1) is from SVDD while the right (C2) is from C-SVDD. Note that the center of
C-SVDD ball aligns better with the high density region of the data points. The Cm

marks the center of K-means.

of the clusters into accounts, the score from C2 should be higher and that is
exactly our method does.

3.2 The C-SVDD Model
Although SVDD ball provides a robust way to describe the cluster of data, one
unwelcome property of the ball is that it may not align well with the distribu-
tion of data points in that cluster. As illustrated in Fig. 3 (left), although the
SVDD ball covers the cluster C1 well, its center is biased to the region with low
density. This should be avoided since it actually gives suboptimal estimates on
the distribution of the cluster of data.

To address this issue, inspired by the observation that the centers of K-means
are always located at the corresponding mode of their local density, we propose
to shift the SVDD ball to the centroid of the data such that it may fit better
with the distribution of the data in a cluster. Our new objective function is then
formulated as follows,

minR,ξi R
2 + C

N∑
i=1

ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi

a =
1

N

N∑
i=1

xi

ξi ≥ 0

(3)
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where ‖.‖ is the L2-norm and ξi is the slack variable to the ith sample xi. With
Lagrange multipliers αi ≥ 0 and αj ≥ 0 according to KKT Conditions, one has
the following dual function:

max
∑
i

αi〈xi, xi〉 −
2

N

∑
i

∑
j

αi〈xi, xj〉

s.t.
∑
i

αi = 1 , αi ∈ [0, C] , i = 1, ..., N
(4)

Eq.( 4) can be rewritten as:

min
2

N
αTHe− αTF

s.t. αT e = 1 , αi ∈ [0, C] , i = 1, ..., N
(5)

where H = (〈xi, xj〉))N×N , F = (〈xi, xi〉)N×1 , e = (1, 1, ..., 1)T . It is worthy
mentioning that this objective function is linear to α, and thus can be solve
efficiently with a linear programming algorithm.

Since the model is centered towards the mode of the distribution of the data
points in a cluster, we named our method as C-SVDD (centered-SVDD). Figure.3
shows the difference between SVDD and C-SVDD, where the left result is from
SVDD and the right from C-SVDD. We can see that our new model aligns better
with the density of the data points, as expected.

4 EXPERIMENTS AND ANALYSIS

To investigate whether the proposed method can produce good feature represen-
tation. We conducted a series of experiments on the AR face database [12] and
the CIFAR-10 object dataset [13], on each of which, we compared our method
(C-SVDD with K-means) with other three types of feature mapping strategies,
i.e., K-means(hard), K-means(soft) and SVDD (combined with K-means). All
the images in use undergone whitening preprocessing before being sampled for
feature mapping [7].

The AR face database [12] contains over 4,000 color images corresponding
to 126 people’s faces. Every person has 2 sessions images with 13 for each.
Images are all frontal view faces with different facial expressions, illumination
conditions, and occlusions. Here we use all the images from the first session for
training while those in the second session for testing. All images are resized to
64× 64. For training we sample 40000 patches with size 6× 6 from training set,
and cluster them using K-means by varying the number of clusters K. Then we
do the feature mapping as described in the previous section. Note that for the
normalization parameter C in SVDD and C-SVDD, If C = 0, the representation
result of C − SV DD is equal to K-means, while a larger C value means more
noise is allowed to enter the ball. We use 5-cross validation to set its value from
a range of {0.005, 0.01, 0.1, 1}.



7

50 100 200 300 400 500
65

70

75

80

85

90

95
Performance on AR Database

A
cc

ur
ac

y 
on

 T
es

tin
g 

S
et

(%
)

Features

Kmeans(hard)
Kmeans(soft)
SVDD
C−SVDD

(a)

200 400 600 800 1200 1600
60

62

64

66

68

70

72

74

76

78
Performance on CIFAR−10 Database

A
cc

ur
ac

y 
on

 T
es

tin
g 

S
et

(%
)

Features

Kmeans(hard)
Kmeans(soft)
SVDD
C−SVDD

(b)

Fig. 4. Comparative performance of the proposed method with various K-means based
encoding strategies on (a) the AR dataset and (b) the CITAR-10 dataset.

The CIFAR-10 [13] dataset is a more complicated database which consists
of 60000 32x32 color images in 10 classes with 6000 images per class. There are
50000 training images and 10000 test images, and the training set is divided into
five batches. We also use 5-cross validation to set the best C value for C-SVDD
and SVDD with a range of {0.004, 0.005, 0.006, 0.008, 0.01}. The receptive field
is 6 by 6, and 400000 patches are sampled for training.

Figure 4 gives the results. It can be seen that our C-SVDD-based repre-
sentation method is the best performer on both datasets. The K-means (hard)
method is the worst one as expected due to its extremely sparse representation,
while replacing the hard coding with a soft one (K-means (soft)) significantly
improves the performance. The figure also reveals that the scheme of simply
adding SVDD ball onto the top of soft K-means does not necessarily work and
may actually hurt the performance due to the bias it introduced (as explained in
the previous section). However, once this problem solved, the performance is im-
proved a lot. Another point needing to be pointed out is that when the number
of features (i.e., the cluster number K in K-means) increases, the performance
of all the four methods improves consistently. This indicates the importance of
encoding richer information in the feature representation.

Table 1 gives the comparative performance (%) of our method with other
state-of-the-art single-layer network results on the CIFAR-10 dataset. For a fair
comparison, we adopted the same evaluation protocol as that in [7], and all the
results except the last row are directly cited from it. It is clear that our C-SVDD
method performs the best among the compared methods.

5 Conclusion

In this paper, we proposed a SVDD based feature learning algorithm that en-
hances the K-means ”soft” feature representation. The key idea of our method
is to describe the density and distribution of each cluster from K-means with a
SVDD ball for more robust feature representation. For this purpose, we presented
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Table 1. Comparative performance (%) with other state-of-the-art single-layer network
methods on the CIFAR-10 dataset.

Algorithm Accuracy
Sparse auto-encoder [7] 73.4

Sparse RBM [7] 72.4
K-means (Hard) [7] 68.6

K-means (Triangle, 4000 features) [7] 79.6
C-SVDD (4000 features) (ours) 79.8

a new SVDD algorithm called C-SVDD that centers the SVDD ball towards the
mode of local density of each cluster. Furthermore we show that the objective
of C-SVDD can be solved very efficiently as a linear programming problem. Ex-
periments on the AR and the CIFAR-10 database show that our C-SVDD based
feature representation method outperforms the original K-means based scheme.
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