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Overview High Dimensional Data

• High dimensional data everywhere everyday
– Images, documents, web pages, genes…
– Complicated but useful

• The problem: to learn some meaningful 
structure/model from them (or, manifold 
learning).
– For visualization, classification, regression…
– But hidden among a couple of sparsely and 

irregularly sampled data, possibly polluted by 
noise, outlier, etc.

– Is that possible? – largely positive.



Overview High Dimensional Data

• A generative point of view
– Two-step generation process

• Generated by a simple low-dimensional process
– Few degree of freedom & little noise

• Observed by a complex observation process
– no structure in high-dim by itself, Low-dim 

process lends it to the high-dim data.
– Ill posed inverse problem (few HD data ->general struc.)
– structure latent –we will never see it (but can re-embed it)

generating

Learning

The One Latent space

Observation space



Overview High Dimensional Data

• Classical solutions for manifold learning

• Two approaches 
– Deterministic methods – nonparametric
– Probabilistic methods – parametric

– Share common characteristics, but make 
different assumptions 

• impose different bias on the manifold to be learned
• work well only when such conditions are satisfied.



Overview

• Deterministic (geometric) approach
– Manifold should be densely & regularly sampled
– Data located on the manifold - no noise
– Flexible – can be any shape of distribution

• ISOMAP (Tenenbaum, et al, 00)
• LLE (Roweis, Saul, 00)
• Laplacian Eigenmaps (Belkin, Niyogi, 01)
• Local Tangent Space Alignment (Zhang, Zha, 02)
• Hessian Eigenmaps (Donoho, Grimes, 02)
• Diffusion Maps (Coifman, Lafon, et al, 04)

*ISOMAP & Hessian Eigenmaps has strong asymptotic 
guarantees.

Classical Methods



Overview

• Probabilistic approach
– Manifold can be sparsely /  irregularly sampled
– Data is “close to” the manifold - noisy
– types of shape of distribution - Limited 

• Local PCA
• Principal curve & surface (Hastie 89)
• Manifold chart (Brand 03)
• Global coordination( Roweis,Saul 02,Teh, Saul 

02,Verbeek 02,06)
• GPLVM (Lawrence 03,05)
• …

Classical Methods



Overview

• How they works? Follow a common proc.
• Step 1, observation model – our bias about 

the structure to be learned
– Neighborhood graph (Deterministic methods) 
– Finite Mixture Model/GP/DP/BP (Probabilistic 

methods) 

• Step 2, embedding 
– Spectral techniques (Deterministic methods)  
– Different alignment methods for Local 

coordinate systems (Probabilistic methods)

Manifold Learning



Overview

• Neighborhood graph
– Connecting neighboring points in the space

– How you connect them ~ what kind of topology 
to be preserved.

– To be or not to be a neighborhood – user’s 
needs and preferences (not necessarily 
Eucldiean distances). –> k-rule or epsilon-rule

Neighborhood Graph

J.Lee et al.  NDR



Overview

• K-ary neighborhoods

K-rule

•Uncontroll
able patch 
size (outlier 
sensitive)

•Easy in 
practice

J.Lee et al.  NDR



Overview ruleε −

•Difficult to set

•Good only in uniform 
distr. regions.

J.Lee et al.  NDR



Overview

• Drawbacks of K-rule and epsilon-rule
– Lack of flexibility

• a fixed global parameter to determine the 
neighborhoods for all the data

– Lack of discriminative power
• Tends to put samples from different classes into the 

same patch, thus enlarging the within-class variations.

• How to overcome these shortcomings?

Neighborhood Graph



Contribution

• Neighborhood graph as sparse linear model
– For each point yy in the observed space, seek a linear 

model with two requirements:
•• y is approximated by a linear modely is approximated by a linear model yy’’ =Aw as accurately as =Aw as accurately as 

possible, A is the dictionarypossible, A is the dictionary.
•• w is sparse (many zero entries) and robust to noise (bad fit forw is sparse (many zero entries) and robust to noise (bad fit for

noise)noise)
– This leads to the l0-norm minimization problem

– By solving it, we get both neighbors and weights 
• adaptively and robustly, with sparsity property 

exploited.

L1-norm Neighborhood Graph



Contribution

• Neighborhood graph as sparse linear model

• Under certain conditions, l0-norm is equivalent to 
l1-norm (LASSO)

L1-norm Neighborhood Graph

In this paper, solved it by a slightly different but essentially equivalent form



The Proposed Method L1-norm Neighborhood Graph

L1-norm neighborhood and its weights
Sparse, Adaptive, Discriminative, Outlier-insensitive



The Proposed Method K-rule Neighborhood Graph

conventional K neighborhood and its weights
Put samples from different class into one patch



The Proposed Method LASSO

• Two practical issues:

• 1. Can we always obtain a sparse solution 
using LASSO?

• 2. Can we always recovery the real sparse 
pattern that supposed to preserved?

NO! – largely depends on your design matrix A



The Proposed Method Sparse Condition

• Can we always obtain a sparse solution?

• RIP (restricted isometry property)
– Hard to check but always ok for a Gaussian 

random matrix (Candes 06, Baraniuk 07) 

– If not fulfilled, multiply the design matrix by a 
Gaussian random matrix



The Proposed Method Sparse Pattern Recovery

• Can we always recovery the real sparse 
pattern?

• sign(w’)= (+1, -1, 0, 0, +1, -1, -1, 0, 0,…)
• If the prob. of recovered sparse pattern equals true 

sparse pattern converges to 1 -> sign consistency

• neighborhood stability (Meinshausen 06) or 
Irrepresentable condition (Zhao & Yu 06) 
– Hard to check.
– If not fulfilled, use a two step procedures 

(Meinshausen & Yu 07)
• Step 1, run LASSO with a smaller lambda
• Step 2, remove small absolute coefficient



The Proposed Method Experiments

Dealing with outliers



The Proposed Method Experiments

Face Recognition on the manifold

Approx. true sparse pattern better



Conclusions and Future work

• l1-norm neighborhood graph 
– Sparsity, adaptive, discriminative, robust
– Give some analysis on practical issues.

• weakness:
1. Lambda/tau is hard to set as well, but generally 

smaller/larger one leads to better predication 
performance

2. May need a few samples from the same class to 
encourage its discriminative capability

3. Could be very slow for large data set (no obvious way 
to accelerate it, k-d tree is no use here)

4. overall geometric property of neighborhood graph is 
unclear (it uses non-local information).



Thanks!

Presented to you by Tan xiaoyang x.tan@nuaa.edu.cn http://parnec.nuaa.edu.cn/xtan



Overview K-rule in action

K-rule LLE – very sensitive to the value of k



The Proposed Method Out of sample projection

• When new sample comes
– Get its sparse representation in the observation 

space
– Reconstruct itself in the low-dimensional space 

by fixing the weights.



The Proposed Method Discriminative of sparse reconstruction

• Where the discriminative power of sparse 
reconstruction comes from?
– R. V. E. Elhamifar. Sparse subspace clustering. 

CVPR, 2009. 

– If the number of samples of each subjects are so large 
that the self-express condition is satisfied, any new test 
sample will only be recovered by the samples with the 
same identity.


