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Abstract

Feature selection is an important preprocessing step in mining high-dimensional data. Generally, supervised feature selection methods with
supervision information are superior to unsupervised ones without supervision information. In the literature, nearly all existing supervised
feature selection methods use class labels as supervision information. In this paper, we propose to use another form of supervision information
for feature selection, i.e. pairwise constraints, which specifies whether a pair of data samples belong to the same class (must-link constraints) or
different classes (cannot-link constraints). Pairwise constraints arise naturally in many tasks and are more practical and inexpensive than class
labels. This topic has not yet been addressed in feature selection research. We call our pairwise constraints guided feature selection algorithm
as Constraint Score and compare it with the well-known Fisher Score and Laplacian Score algorithms. Experiments are carried out on several
high-dimensional UCI and face data sets. Experimental results show that, with very few pairwise constraints, Constraint Score achieves similar
or even higher performance than Fisher Score with full class labels on the whole training data, and significantly outperforms Laplacian Score.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the rapid accumulation of high-dimensional data such
as digital images, financial time series and gene expression
microarrays, feature selection has been an important prepro-
cessing step to machine learning and data mining. In many real-
world applications, feature selection has shown very effective
in reducing dimensionality, removing irrelevant and redundant
features, increasing learning accuracy, and enhancing learning
comprehensibility [1–3]. Typically, feature selection methods
can be categorized into two groups, i.e., (1) filter methods [3]
and (2) wrapper methods [4]. The filter methods evaluate the
goodness of features by using the intrinsic characteristics of the
training data and are independent on any learning algorithm.
On the contrary, the wrapper methods directly use predeter-
mined learning algorithms to evaluate the features. Generally,
the wrapper methods outperform the filter methods in terms
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of accuracy, but the former are computationally more expen-
sive than the latter. When dealing with data with huge number
of features, the filter methods are usually adopted due to their
computational efficiency. In this paper, we are particularly in-
terested in the filter methods.

According to whether the class labels are used, feature selec-
tion methods can be divided into supervised feature selection
[1] and unsupervised feature selection [5,6]. The former evalu-
ates feature relevance by the correlation between features and
class labels, while the latter evaluates feature relevance by the
capability of keeping certain properties of the data, e.g., the
variance or the locality preserving ability [7,8]. When labeled
data are sufficient, supervised feature selection methods usu-
ally outperform unsupervised feature selection methods [9].
However, in many cases obtaining class labels is expensive and
the amount of labeled training data is often very limited. Most
traditional supervised feature selection methods may fail on
such ‘small labeled-sample problem’ [10]. A recent important
advance on this direction is to use both labeled and unlabeled
data for feature selection, i.e. semi-supervised feature selection
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[11], which introduces the popular semi-supervised learn-
ing technique [12] into feature selection research. However,
like in supervised feature selection, the supervision informa-
tion used in semi-supervised feature selection is still class
labels.

In fact, besides class labels, there exist other forms of su-
pervision information, e.g. the pairwise constraints, which
specifies whether a pair of data samples belongs to the same
class (must-link constraints) or different classes (cannot-link
constraints) [13–15]. Pairwise constraints arise naturally in
many real-world tasks, e.g. image retrieval [13]. In those
applications, considering the pairwise constraints is more
practical than trying to obtain class labels, because the true
labels may be unknown a priori, while it can be easier for
a user to specify whether some pairs of examples belong
to the same class or not, i.e. similar or dissimilar. Besides,
the pairwise constraints can be derived from labeled data
but not vice versa. Finally, unlike class labels, the pairwise
constraints can sometimes be automatically obtained without
human intervention. For those reasons, pairwise constraints
have been widely used in distance metric learning [16] and
semi-supervised clustering [12–14]. In one of our recent work,
we have proposed to use pairwise constraints for dimension re-
duction [15].

It’s worthy to note that one should neither confuse the pair-
wise constraints mentioned in this paper with the pairwise
similarity or dissimilarity value used in spectral graph based al-
gorithms [17–20], nor with some class pairwise methods [21].
In spectral graph based algorithms, one first computes the pair-
wise similarity or dissimilarity between samples to form the
similarity or dissimilarity matrix, and then perform subsequent
operations on it. On the other hand, in class pairwise meth-
ods, e.g. class pairwise feature selection [21], one takes the
subsets of features which are the most effective in discriminat-
ing between all possible pairs of classes. Apparently, both are
very different from the pairwise constraints mentioned in this
paper.

In this paper, we propose to use pairwise constraints for
feature selection. To the best of our knowledge, we have not
noticed any similar work on this topic before. We devise two
novel score functions based on pairwise constraints to evaluate
the feature goodness and name the corresponding algorithms as
Constraint Score. Experiments are carried out on several high-
dimensional UCI and face data sets to compare the proposed
algorithm with established feature selection methods such as
Fisher Score [9] and Laplacian Score [7], etc. Experimental
results show that, with a few pairwise constraints, Constraint
Score achieves similar or even higher performance than Fisher
Score with full class labels on the whole training data, and
significantly outperforms Laplacian Score.

The rest of this paper is organized as follows. Section 2 first
introduces the background of this paper and briefly shows sev-
eral existing score functions used in supervised and unsuper-
vised feature selection. Then we present the Constraint Score
algorithm in Section 3. Section 4 reports on the experimental
results. Finally, Section 5 concludes this paper with some fu-
ture work.

2. Background

In this section, we briefly introduce several score functions
popularly used in feature selection methods, including Variance
[9], Laplacian Score [7] and Fisher Score [9]. Among them,
Variance and Laplacian Score are unsupervised, while Fisher
Score is supervised.

Variance might be the simplest unsupervised evaluation of
the features. It uses the variance along a dimension to reflect
its representative power and those features with the maximum
variance are selected. Let fri denote the rth feature of the ith
sample xi , i = 1, . . . , m; r = 1, . . . , n. Define �r = 1

m

∑
i fri .

Then, the Variance score of the rth feature Vr , which should be
maximized, is computed as follows [9]:

Vr = 1

m

m∑
i=1

(fri − �r )
2. (1)

Another unsupervised feature selection method, i.e. Laplacian
Score, makes a further step on Variance. It not only prefers
to those features with larger variances which have more rep-
resentative power, but also prefers to selecting features with
stronger locality preserving ability. A key assumption in Lapla-
cian Score is that data from the same class are close to each
other. The Laplacian score of the rth feature Lr , which should
be minimized, is computed as follows [7]:

Lr =
∑

i,j (fri − frj )
2Sij∑

i (fri − �r )
2Dii

, (2)

where D is a diagonal matrix with Dii = ∑
j Sij , and Sij

is defined by the neighborhood relationship between samples
xi (i = 1, . . . , m) as follows:

Sij =
{

e− ‖xi−xj ‖2

t if xi and xj are neighbors,

0 otherwise,
(3)

where t is a constant to be set, and ‘xi and xj are neighbors’
means that either xi is among k nearest neighbors of xj , or xj

is among k nearest neighbors of xi .
In contrast to Variance and Laplacian Score, Fisher Score

is supervised with class labels and it seeks features with best
discriminant ability. Let ni denote the number of samples in
class i. Let �i

r and (�i
r )

2 be the mean and variance of class i,
i =1, . . . , c, corresponding to the rth feature. The Fisher Score
of the rth feature Fr , which should be maximized, is computed
as follows [9]:

Fr =
∑c

i=1 ni(�i
r − �r )

2∑c
i=1 ni(�i

r )
2

. (4)

3. Constraint Score

In this paper, we formulate the pairwise constraints
guided feature selection as follows: Given a set of data
samples X = [x1, x2, . . . , xm], and some supervision in-
formation in the form of pairwise must-link constraints
M={(xi , xj )|xi and xj belong to the same class} and pairwise
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cannot-link constraints C = {(xi , xj )|xi and xj belong to diff-
erent classes}, use the supervision information in pairwise con-
straints in M and C to find the most relevant feature subsets
from the original n features of X.

Let fri denote the rth feature of the ith sample xi , i =
1, . . . , m; r = 1, . . . , n. To evaluate the score of the rth fea-
ture using the pairwise constraints in C and M, we define two
different score functions by minimizing C1

r and C2
r :

C1
r =

∑
(xi ,xj )∈M(fri − frj )

2∑
(xi ,xj )∈C(fri − frj )

2
, (5)

C2
r =

∑
(xi ,xj )∈M

(fri − frj )
2 − �

∑
(xi ,xj )∈C

(fri − frj )
2. (6)

The intuition of Eqs. (5) and (6) is simple and natural. That
is, we want to select features with the best constraint preserving
ability. More concrete, if there is a must-link constraint between
two data samples, a ‘good’ feature should be the one on which
those two samples are close to each other; on the other hand,
if there is a cannot-link constraint between two data samples, a
‘good’ feature should be the one on which those two samples
are far away from each other. Both Eqs. (5) and (6) realize
feature selection according to features’ constraint preserving
ability. In Eq. (6), there is a regularization coefficient �, whose
function is to balance the contributions of the two terms in
Eq. (6). Since the distance between samples in the same class
is typically smaller than that in different classes, we set � < 1
in this paper.

In the rest of this paper, we call feature selection algorithms
based on the score functions in Eqs. (5) and (6) as Constraint
Score. To be specific, we denote algorithm using Eq. (5) as
Constraint Score-1, and denote algorithm using Eq. (6) as Con-
straint Score-2. The whole procedure of the proposed Con-
straint Score algorithm is summarized in Algorithm 1 as below.

Algorithm 1: Constraint Score
Input: Data set X, pairwise constraints set M and C, �
(for Constraint Score-2 only)
Output: The ranked feature list
Step 1: For each of the n features, compute its constraint
score using Eq. (5) (for Constraint Score-1) or Eq. (6)
(for Constraint Score-2);
Step 2: Rank the features according to their constraint
scores in ascending order.

We can also give an alternative explanation on the constraint
score functions in Eqs. (5) and (6) from the spectral graph
theory [22]. First, we construct two graphs GM and GC both
with m nodes, using the pairwise constraints in M and C, re-
spectively. In both graphs, the ith node corresponds to the ith
sample xi . For graph GM , we put an edge between node i and
j if there is a must-link constraint between samples xi and xj

in M. Similarly, for graph GC , we put an edge between node
i and j if there is a cannot-link constraint between samples xi

and xj in C. Once the graphs GM and GC are constructed, their
weight matrices, denoted by SM and SC , respectively, can be

defined as

SM
ij =

{
1 if (xi , xj ) ∈ M or (xj , xi ) ∈ M,

0 otherwise,
(7)

SC
ij =

{
1 if (xi , xj ) ∈ C or (xj , xi ) ∈ C.

0 otherwise.
(8)

Define fr = [fr1, fr2, . . . , frm]T, and let DM and DC be
diagonal matrices with DM

ii =∑
j SM

ij and DC
ii =∑

j SC
ij . Then,

compute the Laplacian matrices [22] as LM = DM − SM and
LC = DC − SC . According to Eqs. (7) and (8), we get∑
(xi ,xj )∈M

(fri − frj )
2 =

∑
i,j

(fri − frj )
2SM

ij

=
∑
i,j

(f 2
ri + f 2

rj − 2frifrj )
2SM

ij

=
∑
i,j

f 2
riS

M
ij +

∑
i,j

f 2
rj S

M
ij

− 2
∑
i,j

friS
M
ij frj

= 2fT
r DM fr − 2fT

r SM fr
= 2fT

r LM fr . (9)

Similarly, we have∑
(xi ,xj )∈C

(fri − frj )
2 =

∑
i,j

(fri − frj )
2SC

ij = 2fT
r LCfr . (10)

From Eqs. (9) and (10), neglecting the constant 2, Eqs. (5) and
(6) change into:

C1
r = fT

r LM fr
fT
r LCfr

, (11)

C2
r = fT

r LM fr − �fT
r LCfr . (12)

The detailed procedure of the spectral graph based Constraint
Score algorithm is summarized in Algorithm 2 as below.

Algorithm 2: Constraint Score (spectral graph ver-
sion)
Input: Data set X, pairwise constraints set M and C, �
(for Constraint Score-2 only)
Output: The ranked feature list
Step 1: Construct the graphs GM and GC from M and C
respectively;
Step 2: Calculate the weight matrices SM and SC using
Eqs. (7) and (8), and compute the Laplacian matrices LM

and LC ;
Step 3: Compute the constraint score of the r-th feature
using Eq. (11) (for Constraint Score-1) or Eq. (12) (for
Constraint Score-2);
Step 4: Rank the features according to their constraint
scores in ascending order.

It is noteworthy that although Algorithm 2 outputs the same
result as Algorithm 1, introducing the spectral graph theory can
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bring some additional advantages. First, it brings us a unified
framework from which we can connect Constraint Score with
other feature selection methods, e.g. Laplacian Score. Second,
we can easily extend Algorithm 2 for semi-supervised feature
selection which uses unlabeled data together with pairwise con-
straints for feature selection, by defining appropriate graphs and
corresponding weight matrices in Algorithm 2. The detailed de-
scription regarding semi-supervised feature selection is beyond
the scope of this paper and we will discuss it in another paper.

Now we analyze the time complexity of both Algorithm 1
and Algorithm 2. First, we assume the number of pairwise
constraints used in Constraint Score is l, which is bounded by
0 < l < O(m2). Algorithm 1 has two parts: (1) Step 1 evalu-
ates the n features needing O(nl) operations; (2) Step 2 ranks
n features needing O(n log n) operations. Hence, the overall
time complexity of Algorithm 1 is O(n max(l, log n)). Algo-
rithm 2 has three parts: (1) Steps 1 and 2 build the graph ma-
trices using pairwise constraints, requiring O(m2) operations;
(2) Step 3 evaluates the n features based on the graphs, requir-
ing O(nm2) operations; (3) Step 4 ranks features in ascending
order in terms of constraint scores, requiring O(n log n) op-
erations. Thus, the overall time complexity of Algorithm 2 is
O(n max(m2, log n)). When the number of constraints is very
large, i.e. l = O(m2), both algorithms have the same time com-
plexity. However, in practice, usually only a few constraints are
sufficient, i.e. l>O(m2), then Algorithm 1 will be more effi-
cient than Algorithm 2.

4. Experiments

In this section, we evaluate the performance of our proposed
Constraint Score algorithms on several high-dimensional UCI
repository of machine learning databases [23] including Ionosh-
pere, Sonar, Soybean and Wine, and on two well-known face
databases: ORL [24] and YaleB [25]. For each data set, we
choose the first half of samples from each class as the training
data, and the remaining data for testing. In our experiments,
we simulated the generation of pairwise constraints as follows:
We randomly select pairs of samples from the training data
and create must-link or cannot-link constraints depending on
whether the underlying classes of the two samples are the same
or different. The results of Constraint Score are averaged over
100 runs with different generation of constraints. Algorithm 1
is adopted to compute the constraint score. The parameter in
Constraint Score-2 is always set to � = 0.1 if without extra
explanations. We empirically find that under that value, Con-
straint Score-2 can achieve satisfying performance in most data
sets used in this paper.

We compare Constraint Score-1 and Constraint Score-2 with
existing unsupervised feature selection methods Variance and
Laplacian Score, as well as supervised feature selection method
Fisher Score. Note that Variance and Laplacian Score learn the
feature scores without using the class labels of training data,
while Fisher Score use the full class labels on training data.
As a comparison, Constraint Score is between Laplacian Score
and Fisher Score. That is, it use supervision information a bit
more than Laplacian Score, but much fewer than Fisher Score.

Table 1
Statistics of the UCI data sets

Data sets Size Dimension # of classes

Ionosphere 351 34 2
Sonar 208 60 2
Soybean 47 35 4
Wine 178 13 3

The performances of all algorithms are measured by the classi-
fication accuracy using selected features on testing data. In all
experiments, the nearest neighborhood (1-NN) classifier with
Euclidean distance is employed for classification, after feature
selection with the above algorithms. In our experiments, fea-
ture selection is performed by selecting the first d features from
the ranking list of features generated by different algorithms,
where d is the desired number of selected features specified by
user.

4.1. Results on UCI data sets

First, we test the five algorithms on the four UCI data sets,
whose statistics are given in Table 1. Fig. 1 shows the plots for
accuracy vs. different numbers of selected features. For each
data set, a total of 10 pairwise constraints including 5 must-link
and 5 cannot-link constraints are used in both Constraint Score-
1 and Constraint Score-2. This amount of constraints is very
small compared with the total amount of possible constraints
that can be generated from training data. Taking Ionosphere as
an example, there are over 10,000 possible pairwise constraints
that can be generated from training data, while our algorithms
only use 10 constraints to learn the feature scores. The other
three algorithms evaluate features using the whole training data,
which is computationally more expensive than our algorithms.

Fig. 1 indicates that, in most cases, the performances of
Constraint Score-1 and Constraint Score-2 are comparable to
Fisher Score, both significantly better than that of Variance and
Laplacian Score. This verifies that supervision information is
very useful in learning feature scores. Table 2 compares the
averaged accuracy under different number of selected features.
Here the values after the symbol ‘±’ denote the standard de-
viation. From Table 2 and Fig. 1 we can find that, the perfor-
mance of Constraint Score-2 is almost always better than that of
Constraint Score-1 and is comparable with Fisher Score. More
specifically, Constraint Score-2 is superior to Fisher Score on
Soybean and Wine, and is inferior on Ionosphere and Sonar. It
is surprising to see that on Wine, as the number of selected fea-
tures increases, Constraint Score-2 achieves significantly better
performance than other algorithms.

To uncover the underlying reason, we reinvestigate the Wine
data carefully. As shown in Table 1, the Wine data have 13 di-
mensions, and a further observation is that each sample has a
much larger value on the 13th dimension (feature) than on other
dimensions (features). For example, the first sample of the Wine
data is [14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,
3.92,1065]. Since we adopt the 1-NN classifier with Euclidean
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Fig. 1. Accuracy vs. different number of selected features on four UCI data sets: (a) on Ionosphere; (b) on Sonar; (c) on Soybean; (d) on Wine.

Table 2
Averaged accuracy of different algorithms on UCI data sets

Data sets Variance Laplacian Score Fisher Score Constraint Score-1 Constraint Score-2

Ionosphere 82.2 ± 3.8 82.6 ± 3.6 86.3 ± 2.5 85.1 ± 2.9 85.4 ± 3.8
Sonar 79.3 ± 6.3 79.5 ± 7.2 86.4 ± 6.9 80.7 ± 7.8 82.5 ± 6.9
Soybean 88.9 ± 12.7 79.4 ± 28.4 94.5 ± 12.1 93.5 ± 11.6 96.7 ± 9.7
Wine 71.1 ± 1.9 71.1 ± 1.9 73.2 ± 1.6 73.5 ± 4.6 78.2 ± 9.2

distance, if the 13th feature and the other features are simulta-
neously selected, the final result will be dominated by the 13th
feature. So the key is its order appearing in the ranking list
of features. We find that Variance, Laplacian Score and Fisher
Score always rank the 13th feature at the head place, while
Constraint Score-2 nearly always ranks the 13th feature at the
rear place. That is, the 13th feature is nearly always selected by
Variance, Laplacian Score and Fisher Score no matter what the

desired number of selected features is, while it is selected by
Constraint Score-2 only when the desired number of selected
features is near to the number of dimensions of the data. This
partially explains the results shown in Fig. 1(d).

To investigate the influence of the numbers of constraints
on the performances of the algorithms, we replace the 10 con-
straints in Constraint Score-1 and Constraint Score-2 with 4
constraints and 40 constraints, respectively, and the results are
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Fig. 2. Accuracy vs. different number of selected features and different levels of constraints on four UCI data sets: (a) on Ionosphere; (b) on Sonar; (c) on
Soybean; (d) on Wine.

Table 3
Averaged accuracy of Constraint Score with different number of constraints on UCI data sets

Data sets Constraint Score-1 Constraint Score-2

4 constraints 10 constraints 40 constraints 4 constraints 10 constraints 40 constraints

Ionosphere 84.8 ± 2.8 85.1 ± 2.9 86.0 ± 2.7 84.8 ± 3.3 85.4 ± 3.8 86.0 ± 4.7
Sonar 81.1 ± 7.3 80.7 ± 7.8 80.7 ± 8.1 82.2 ± 6.9 82.5 ± 6.9 82.6 ± 6.7
Soybean 91.9 ± 11.7 93.5 ± 11.6 94.4 ± 11.5 96.3 ± 8.6 96.7 ± 9.7 97.0 ± 10.5
Wine 73.4 ± 5.5 73.5 ± 4.6 73.8 ± 3.7 77.7 ± 7.2 78.2 ± 9.2 80.8 ± 13.0

plotted in Fig. 2. As shown in the figure, generally, increas-
ing the number of constraints improves the accuracy. But the
performances of both algorithms do not drop rapidly when re-
ducing the number of constraints. It is impressive to see from
Fig. 2 that both algorithms can still remain a good accuracy
with only 4 constraints. Fig. 2 also shows that under the same

number of constraints, Constraint Score-2 is superior to Con-
straint Score-1. The averaged accuracy under different number
of selected features of Constraint Score with different numbers
of constraints is summarized in Table 3.

Then, we compare the performances of Constraint Score-
1 and Constraint Score-2 with that of Fisher Score when
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Fig. 3. Accuracy vs. different number of labeled data (for Fisher Score) or pairwise constraints (for Constraint Score) on four UCI data sets: (a) on Ionosphere;
(b) on Sonar; (c) on Soybean; (d) on Wine.

different levels of supervision are used. Fig. 3 shows the plots
for accuracy under desired number of selected features vs. dif-
ferent numbers of labeled data (for Fisher Score) or pairwise
constraints (for Constraint Score) on the 4 UCI data sets. Here
the desired number of selected features is chosen as half of the
original dimension of samples. For Fisher Score with a cer-
tain number of labeled data, we randomly sample the training
data and the results are averaged over 100 runs. As shown in
Fig. 3, except on Sonar, Constraint Score-2 is much better
than the other two algorithms especially when only a few
labeled data or constraints are used. Constraint Score-1 is su-
perior to Fisher score on Ionosphere and Soybean. On Sonar,
both Constraint Score-1 and Constraint Score-2 are inferior to
Fisher Score. A closer study in Fig. 3 reveals that, generally,
the accuracy of Constraint Score-2 (and partially Constraint
Socre-1) increases fast in the beginning (with few constraints)
and slows down at the end (with relatively more constraints).
It implies that too many constraints would not help too much

to further boost the accuracy, and only a few constraints are
required in Constraint Score. While Fisher Score typically
requires relatively more labeled data to obtain a satisfying
accuracy, as is shown in Fig. 3.

4.2. Results on face databases

In this section, we test the proposed Constraint Score algo-
rithms on face databases with huge number of features, usually
over 1,000 features. Specifically, we do experiments on two
well-known face databases, ORL [24] and YaleB [25]. The ORL
database contains images from 40 individuals, each providing
10 different images. The YaleB database contains a total of 640
images including 64 frontal pose images of 10 different sub-
jects. We crop the original images of ORL and YaleB to the size
of 64 × 64 and 32 × 32, respectively. We use the original pixel
intensity values as the features, so a face in ORL and YaleB
databases is, respectively, represented by a 4096-dimensional
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Fig. 4. Accuracy vs. different number of selected features on ORL (a) and on YaleB (b) face databases.

Table 4
Averaged accuracy of different algorithms on face databases

Data sets Variance Laplacian Score Fisher Score Constraint Score-1 Constraint Score-2

ORL 67.9 ± 9.9 72.8 ± 7.6 80.4 ± 8.9 80.2 ± 5.2 79.0 ± 6.9
YaleB 48.8 ± 2.9 48.0 ± 2.0 57.1 ± 2.5 54.2 ± 0.8 57.0 ± 2.1
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Fig. 5. Accuracy vs. different number of selected features and different levels of constraints on ORL (a) and on YaleB (b) face databases.

and a 1024-dimensional feature vector. Also, we use a total of
10 pairwise constraints including 5 must-link and 5 cannot-link
constraints in both Constraint Score-1 and Constraint Score-2.

Fig. 4 shows the plots for accuracy vs. different numbers
of selected features on ORL and on YaleB face databases.
Table 4 gives the averaged accuracy under different numbers of
selected features of different algorithms on face databases. As
shown in Fig. 4 and Table 4, Constraint Score-2 and Constraint

Score-1 have approximate performance to Fisher Score and
both significantly outperform Variance and Laplacian Score.
That verifies again the usefulness of supervision information in
feature selection.

Fig. 5 shows the plots for accuracy vs. different numbers
of selected features and different levels of constraints on ORL
and on YaleB face databases. Table 5 summarizes the aver-
aged accuracy under different number of selected features of
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Table 5
Averaged accuracy of Constraint Score with different number of constraints on face databases

Data sets Constraint Score-1 Constraint Score-2

4 constraints 10 constraints 40 constraints 4 constraints 10 constraints 40 constraints

ORL 79.3 ± 4.1 80.2 ± 5.2 81.3 ± 6.5 75.7 ± 8.1 79.0 ± 6.9 81.6 ± 6.9
YaleB 53.6 ± 1.8 54.2 ± 0.8 56.5 ± 1.4 54.2 ± 2.1 57.0 ± 2.1 60.2 ± 2.8
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Fig. 6. Accuracy vs. different number of selected features on four normalized UCI data sets: (a) on Ionosphere; (b) on Sonar; (c) on Soybean; (d) on Wine.

Constraint Score with different numbers of constraints. Like
before, there are three levels of constraints, i.e. 4 constraints,
10 constraints and 40 constraints. Comparing Fig. 5 with
Fig. 2, we notice the same tendency in two figures. That is,
increasing the number of constraints improves the accuracy
and vice versa, which is more apparent on YaleB than on ORL.
Fig. 5 also shows that no matter under what number of con-
straints, Constraint Score-2 is always superior to Constraint
Score-1 on YaleB. But on ORL, it is inferior to Constraint

Score-1 when there are only a few constraints, but outperform
the latter when the number of constraints increases.

4.3. Further discussion

In this section, we discuss some properties of Constraint
Score-1 and Constraint Score-2 further with respect to feature
normalization, unbalanced number of constraints and parameter
selection.
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First, we study the influence of feature normalization on
feature selection algorithms. In previous experiments we have
shown the performances of different algorithms on the original
data sets without normalization, e.g. in Figs. 1 and 4. For com-
parison, Fig. 6 presents the plots for accuracy vs. the number
of selected features of different algorithms on four normalized
UCI data sets. Here the ‘normalization’ is performed through
dividing each feature value by the maximum value of all sam-
ples on that feature. Comparing Fig. 6 with Fig. 1, we can see
that when differences between scales of feature values are large
(e.g. on Wine), normalization significantly improves most al-
gorithms’ accuracies. On the other hand, when feature values
have similar scales, the differences between algorithms with and

without normalization are not so much, as shown in Fig. 6(a–c).
For ORL and YaleB face data sets, because all feature values
are with the same scale, i.e., pixel gray intensity from 0 to 255,
normalization is not needed. Fig. 6 also indicates that no matter
without or with feature normalization, both Constraint Score-
1 and Constraint Score-2 achieve competitive performances in
most cases. Generally, in contrast to other methods, Constraint
Score is more robust to the difference in the scale of features.

Then, we study the influence of unbalanced number of con-
straints, i.e., the number of must-link constraints is not equal
to the number of cannot-link constraints, on the performances
of Constraint Score-1 and Constraint Score-2. Fig. 7 shows
a typical result on Ionosphere. Specifically, Fig. 7 (a) plots
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the accuracy vs. different number of cannot-link constraints
(from 5 to 50) with fixed number of must-link constraints (5),
while Fig. 7(b) plots the accuracy vs. different number of must-
link constraints (from 5 to 50) with fixed number of cannot-
link constraints (5). We also show the accuracies of Constraint
Score-1 and Constraint Score-2 with both 50 must-link con-
straints and 50 cannot-link constraints for reference. Fig. 7(a)
shows that with fixed number of must-link constraints, in-
creasing the number of cannot-link constraints only could not
improve the accuracies of both Constraint Score-1 and Con-
straint Score-2. On the other hand, Fig. 7(b) indicates that
with fixed number of cannot-link constraints, increasing the
number of must-link constraints only could not improve ac-
curacy of Constraint Score-1 but could improve accuracy of
Constraint Score-2. This suggests that for Constraint Score-
2, must-link constraints are more important than cannot-link
constraints.

Finally, we study the influence of the value of the parameter
� on the performance of Constraint Score-2. In previous exper-
iments, � is always set to 0.1 for simplicity. Under that value,
Constraint Score-2 has shown competitive performance in most
cases. However, it is expected that an appropriate choice of
� can further improve the performance of Constraint Score-2.
Fig. 8 plots the accuracy vs. � values on Ionosphere and ORL
data sets. As what was expected, � = 0.1 is not the optimal
value. For example, Fig. 8(b) shows that for Constraint Score-2
with 10 constraints, more than 5% increase on accuracy could
be achieved if some other settings such as � = 0.01 is adopted.
However, choosing the appropriate values for � is in general
difficult, as it depends on not only the data set but also the
number of constraints, as revealed by Fig. 8.

5. Conclusion

In this paper, we propose a new filter method for feature
selection based on pairwise constraints. To the best of our
knowledge, this may be the first work to introduce pairwise con-
straints for feature selection. Two new score functions are pro-
posed to evaluate features based on their constraints preserving
power. Experimental results on four UCI data sets and two face
databases show that with only a small number of constraints,
both proposed algorithms achieve approximate performances
to Fisher Score using full labeled data, and significantly outper-
forms Laplacian Score. Also, the proposed algorithms do not
have to access the whole training data and have computational
advantage on large-size data sets. Finally, because in many real
applications obtaining pairwise constraints is much easier than
obtaining class labels, our algorithms may have great potentials
in those applications.

The main concern of this paper is to investigate the useful-
ness of pairwise constraints in feature selection. At the current
stage, we learn feature scores using only the constraints. It is
interesting to see whether we can further improve accuracy by
introducing unlabeled data, similar as in semi-supervised fea-
ture selection where both labeled and unlabeled data are used
for feature selection. In our experiments, the pairwise con-
straints are randomly generated from training data and have no

contradiction, so investigating actively obtaining more infor-
mative constraints and testing our algorithms with inconsistent
constraints are also interesting future work.
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