
Matrix-pattern-oriented least squares support vector classifier

with AdaBoost

Zhe Wang Songcan Chen*

Dept of Computer Science & Engineering

Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

Abstract: Matrix-pattern-oriented Least Squares Support Vector Classifier (MatLSSVC) can

directly classify matrix patterns and has a superior classification performance than its vector version

Least Squares Support Vector Classifier (LSSVC) especially for images. However, it can be found

that the classification performance of MatLSSVC is matrixization-dependent, i.e. heavily relying on

the reshaping ways from the original (vector or matrix) pattern to (another) matrix. Thus, it is difficult

to determine which reshaping way is fittest to classification. On the other hand, the changeable and

different reshaping ways can naturally give birth to a set of MatLSSVCs with diversity and it is the

diversity that provides a means to build an ensemble of classifiers. In this paper, we exactly exploit

the diversity of the changeable reshaping ways and borrow AdaBoost to construct an

AdaBoost-MatLSSVC ensemble named AdaMatLSSVC. Our contributions are that: 1) the proposed

AdaMatLSSVC can greatly avoid the matrixization-dependent problem on single MatLSSVC; 2)

different from the ensemble principle of the original AdaBoost that uses a single type of classifiers as

its base components, the proposed AdaMatLSSVC is on top of multiple types of MatLSSVCs in

different reshapings; 3) since AdaMatLSSVC adopts multiple matrix representations of the same

pattern, it can provide a complementarity among different (matrix) representation spaces; 4)

AdaMatLSSVC mitigates the selection of the regularization parameter, which are all validated in the

experiments here.

Keywords: Vector pattern; Matrix pattern; Least squares support vector classifier (LSSVC);

Matrix-pattern-oriented least squares support vector classifier (MatLSSVC); AdaBoost-MatLSSVC

ensemble (AdaMatLSSVC); Classifier design; Ensemble system; Pattern recognition.

* Corresponding author: Tel: +86-25-84896481-12106, Fax: +86-25-84498069. Email: s.chen@nuaa.edu.cn (S.C. Chen)

1. Introduction

In statistical pattern recognition learning, the classifier design is one of basic research topics.

Generally, the existing classifier designs base on the vector pattern. Therefore, when a pattern under

consideration is non-vector, for instance, an image matrix, the matrix first has to be vectorized by

concatenating its pixels in some way (Beymer and Poggio, 1996). The vector-pattern-oriented

classifier designs indeed bring some convenience for dealing with problems. However, No Free

Lunch Theorem (NFL) (Duda et al., 2001) has indicated that it can not be said that one classifier

design is always better than another if no prior knowledge can be incorporated, so it is not always

effective for the classifier design based on the vector pattern. Especially for images, the vectorization

usually leads to a high dimensional image vector space, increases computational complexity (Chen et

al., 2000), and even may break down some implicit structural or locally-spatial information among

elements of the image (Wang and Ahuja, 2005).

Recently several researchers have paid attention to the problems with the vectorization and

independently proposed a technique which can directly operate on matrix pattern without the

vectorization preprocessing. Two-dimensional principal component analysis (2DPCA) (Yang et al.,

2004) can extract features directly from image matrices, and is shown to be better than classical PCA

in favor of both image classification performance and the reduction of computational complexity for

feature extraction. Two-dimensional linear discriminant analysis (2DLDA) (Li and Yuan, 2005) also

bases on image matrices, overcomes the singularity problem implicitly in classical LDA, and achieves

the competitive recognition accuracy on face identification. Further, since both 2DPCA and 2DLDA

extract features only from the row direction of image matrices, (2D)2PCA (Zhang and Zhou, 2005),

(2D)2FLD (Nagabhushan et al., 2006), Generalized Low Rank Approximations of Matrices (GLRAM)

(Ye, 2005) and Non-iterative Generalized Low Rank Approximations of Matrices (NIGLRAM) (Liu

and Chen, et al., 2006) were respectively proposed to simultaneously extract features from both the

row and column directions of image matrices, and have been proved to improve the performance on

both classification and computation. Chen et al. (2005) went further and developed a more general

method, called MatPCA and MatFLDA. Compared with the conventional methods such as PCA and

LDA, Chen et al.'s method first matrixizes a one-dimensional-vector or image-matrix pattern into its

corresponding new matrix pattern before extracting features. In this way, due to that the newly-formed

matrix pattern still retains all the original components, the original information generally seems not to

be lost. Further, some new implicit structural or contextual information can likely be additionally

introduced in an implicit way.

It has been validated (Chen et al., 2005; Liu and Chen, 2006) that the subsequent classifiers based

on the features extracted by the matrixized approaches above, have superior or comparable

classification performance to the counterparts designed on the basis of the features obtained by the

vector-pattern extractors. But the classifier designs following the matrixized feature extractors still

resort to the traditional vector-based technique, that is, the operating pattern of the classifier itself is

still of vector representation rather than matrix representation as shown in Figure.1_a. To a certain

extent, although the matrix-pattern-oriented feature extraction indeed helps reduce the computational

complexity and avoids the possible loss of the information, the vector-pattern-oriented classifier

design still needs to vectorize the extracted features that may still have high dimensionality and

contain implicit structural or locally-spatial information. The re-vectorization for the extracted

features still fails avoiding the high computational complexity and the loss of information possibly.

Further, we also expect that the excellent classification performance can be achieved if omitting the

feature extraction phase and directly classifying the matrixized pattern. Therefore in doing so, we

intentionally evade the feature extraction phase and directly implement the matrix-pattern-oriented

classifier design as shown in Figure.1_(b). In practice, we selected least squares support vector

classifier (LSSVC) established by Suykens and Vandewalle (1999) as a matrixized paradigm to

develop a matrix-pattern-oriented LSSVC version named MatLSSVC (Wang and Chen, 2007). The

experiments (Wang and Chen, 2007) verify that the new design is feasible and has the comparable

performance to its vector version.

Figure 1.(a) Matrix-pattern-oriented feature extraction + Vector-pattern-oriented classifier;

(b) Matrix-pattern-oriented classifier without feature extraction.

However, it can be found that the classification performance of MatLSSVC is

matrixization-dependent, i.e. heavily relying on the different reshaping ways from the original (vector

or matrix) pattern to another matrix pattern. In the process of matrixizing an original one-dimensional

or image-matrix pattern, there are different reshaping ways that lead to the matrix pattern with

different sizes. Now for convenience, we confine a reshaping mode without overlapping among the

components of the pattern, that is, 1) first to partition the vector pattern1 or image-matrix pattern into

the equally-size sub-vectors with one fixed size; 2) then to arrange the generated sub-vectors into the

corresponding matrix pattern column-by-column; 3) to repeat 1) and 2) with another size. For

example, a vector pattern A=[1,2,3,4,5,6,7,8]t can be reshaped into two matrix patterns with different

sizes:
1 3 5 7
2 4 6 8
⎡ ⎤
⎢ ⎥
⎣ ⎦

and
1 2 3 4
5 6 7 8

t
⎡ ⎤
⎢ ⎥
⎣ ⎦

. In doing so, different matrix representations of the same

pattern result in different classification performances. In MatLSSVC (Wang and Chen, 2007), cross

validation (CV) is used to choose the fittest matrix pattern representation corresponding to the best

classification performance, which causes a large computational complexity. On the other hand, such

flexible reshaping ways can exactly give birth to a set of MatLSSVCs with the diversity from the

different modes. As a result, in this case, there will be two key problems to be raised: 1) how to deal

with the matrixization-dependent problem; 2) how to utilize the diversity simultaneously. In this paper,

we try to solve both.

It is well known that the diversity of the component classifiers in an ensemble of classifiers is

crucial to boost generalization performance (Dietterich, 2002; Cunningham and Carney, 2000; Krogh

and Vedelsby, 1995; Lam, 2000; Littlewood and Miller, 2000; Rosen, 1996). An ensemble of

classifiers works by running the base classifier in multiple times, and forming a final decision through

combining the component results produced by the base learners. Further, Dietterich (2002) thinks that

there are two main approaches for designing an ensemble of classifiers. The first approach is that each

component classifier is independently constructed in such a way that their results are accurate and

diverse. Typical examples include Bagging (Breiman, 1996), the ensemble of neural networks

(Cherkauer, 1996), the combining classifier based on error-correcting output coding (Dietterich and

Bakiri, 1995), the random subspace method (Ho, 1998) and so on. The second approach such as

AdaBoost (Freund and Schapire, 1996; Freund and Schapire, 1997) is that each component classifier

is constructed in a coupled fashion so that the final weighted vote of the classifiers can give a good

1 If the original pattern is one-dimension (1D), the vector pattern is exactly the original pattern. If the original pattern is 2D,
the vector pattern is exactly the one transformed or vectorized from the original 2D pattern in some ways. In this paper, for a
2D pattern, we concatenate its columns one by one.

performance. It is natural to integrate both of the approaches for the better performance. It can be

found that MatLSSVCs handling different matrices have both sufficient accuracy and diversity to

large extent. By “diversity” here, we mean that for different reshaping ways from an original (vector

or matrix) pattern to another matrix, MatLSSVCs have reasonably low but different prediction errors

for new samples. Hereby, we try to explore the way of directly integrating different MatLSSVCs into

the ensemble designed by the second approach. Since AdaBoost ensemble has been proven excellent

and simple (Freund and Schapire, 1996), thus we follow its design principle to construct an

AdaBoost-MatLSSVC ensemble (AdaMatLSSVC). However, unlike its original principle that

repeatedly runs a single base classifier on various distributions over the training set and then combines

the component results produced by the base learner into an ensemble, AdaMatLSSVC is based on

multiple kinds of MatLSSVCs generated from different reshaping ways rather than the single kind of

MatLSSVC as the base classifiers. According to the combination, we do not have to consider which

reshaping way is the fittest for the original pattern. Consequently, to some extent, AdaMatLSSVC

mitigates the matrixization-dependent problem on the single MatLSSVC and simultaneously enforces

the diversity. Thus it basically overcomes the two key problems raised above.

Further, it can be found that single MatLSSVC can only deal with one matrix representation of the

given pattern. One matrix representation corresponds to one representing structural space of the given

pattern. Since the proposed AdaMatLSSVC considers multiple different representations of the same

pattern, it can provide a complementarity for all the adopted matrix representing structural spaces and

lead to a better classification performance than single MatLSSVC, which is validated in our

experiments.

The rest of this paper is organized as follows. We review the architecture of MatLSSVC in Section

2. Section 3 gives the proposed AdaMatLSSVC in detail. In Section 4 we present the experimental

results and some discussion. Finally, we give the conclusion.

2. Matrix-pattern-oriented classifier design (MatLSSVC)

Given a training set 1{ , }l
i i iV x y == with the input patterns n

ix R∈ and the output values

{ 1, 1}iy ∈ + − indicating the class label, the decision function of LSSVC is given by:

() ()tf x w g x b= + , (1)

where g(.) is a linear or nonlinear function which maps x into the feature space, w is a weight vector

and b is a bias. In this paper, g(.) is only taken as the linear form and thus (1) can be rewritten as:

() tf x w x b= + , (2)

which is a linear decision function directly acting on the vector pattern x.

Then, we attempt to develop a decision function directly operating matrix pattern. Given another

training set 1{ , }l
i i iM A y == with the input patterns 1 2d d

iA R ×∈ and the output values

{ 1, 1}iy ∈ + − indicating the class labels, the decision function of MatLSSVC is designed as:

() tf A u Av b= + , (3)

where A is a d1-by-d2 matrix pattern, u is a d1-dimensional (left) weight vector, v is a d2-dimensioanal

(right) weight vector and b is a bias. It is required that for a given pattern Ai, the following condition

must be satisfied to the greatest degree:

1, if 1;

() 1,..., .
1, if 1;

it
i i

i

y
f A u Av b i l

y
≥ =⎧

= + =⎨≤ − = −⎩
 (4)

Then u, v and b can be got by optimizing the following objective function (Wang and Chen, 2007)

,
22

1min
1

2

,,, ∑
=

+
l

i
i

t

bvu

Cuu ξ
ξ

 (5)

subject to the following equality constraints:

 ,,...,1,1)(libvAuy ii
t

i =−=+ ξ (6)

where C is a regularization constant and iξ is the slack variable. The detailed description about

MatLSSVC can be found in the literature (Wang and Chen, 2007).

3. The proposed AdaMatLSSVC

There are different reshaping ways that lead to different matrix patterns. For an original

one-dimensional or 2D pattern x, MatLSSVC first vectorizes it into ' nx R∈ , then partitions 'x into

certain equality-size sub-columns, and column-by-column concatenates the sub-columns into the

corresponding matrix 1 2d dA R ×∈ as shown in Figure 2. There will be different As corresponding to

different blocks with different sizes in Figure 2 as long as the condition 1 2n d d== × is satisfied.

Consequently, MatLSSVCs on different matrix patterns will induce different classification

performances. In other words, the changeable reshaping ways can give rise to a set of MatLSSVCs

with the diversity, i.e., patterns can be represented by different matrices. In order to mitigate the

matrixization-dependence and utilize the diversity, we here use AdaBoost (Freund and Schapire, 1996;

Freund and Schapire, 1997) to construct an ensemble (AdaMatLSSVC), which is based on

MatLSSVCs in different reshaping ways.

Figure 2: (a) reshaping one image matrix to another; (b) reshaping one original vector to a matrix. (The i-th block here

denotes a column vector)

 Analogously to AdaBoost, our AdaMatLSSVC repeatedly calls the base classifiers in a series of

rounds t=1,…,T , where the weight of the distribution on the training sample i on the round t is

denoted by Dt(i). However, unlike AdaBoost that only uses a single base classifier, AdaMatLSSVC

uses different MatLSSVCs in different reshaping ways as the base classifiers. The description of

AdaMatLSSVC is given in Figure 3. Given 1{ , }l
i i iV x y == with n

ix R∈ and { 1, 1}iy Y∈ = + − , the

initial distribution D1 is uniform over V so D1(i)=1/l for all i and the number of the different reshaping

ways 1{ }m
j jS s == is m, where js represents the jth reshaping way with its corresponding matrix size

written as () ()
1 2

j jd d× and the value of () ()
1 2

j jd d× is equal to n. On the round t, we make the index

equal to mod(t, m)+1 and choose the current reshaping way js , where mod(t, m) denotes the modulus

after t divided by m; j is made equal to the index; and the index ranges in the interval [1, m]. By js , we

transform 1{ , }l
i i iV x y == into ()

1{ , }j l
t i i iM A y == , where n

ix R∈ and
() ()
1 2

j jd d
iA R ×∈ .

Consequently, AadMatLSSVC provides the base MatLSSVC with the current matrix patterns in

()j
tM and the distribution Dt over the whole training set ()j

tM (V). In response, the base MatLSSVC

computes a classifier (): j
t th M R→ which should correctly classify a fraction of the training set that

has the large probability with respect to Dt. That is, given ()j
tM , the current base MatLSSVC aims to

find an ht which minimizes the training error ~Pr [()]
tt i D t i ih x yε = ≠ . This error is measured with

respect to the distribution Dt that is provided to the base classifier. This process continues for T rounds.

At last, the final classifier hfin is a weight vote of the base classifiers h1,…,hT. However, a given

instance nz R∈ to be classified should be first similarly transformed into the corresponding matrix

pattern
() ()
1 2

j jd d
tz R ×∈ as ()j

tM for each base classifier th .

Figure 3: The algorithm AdaMatLSSVC.

Like AdaBoost, the manner, in which Dt is computed on each round and how hfin is computed in

AdaMatLSSVC, may have different ways. We use a similar way like that in (Freund and Schapire,

1996). The details have also been described in Figure 3.

 One important theoretical property about AdaBoost is stated in the following theorem. This

theorem shows that if the base classifiers consistently have accuracies only slightly better than 1/2,

then the training error of the final classifier hfin drops to zero exponentially fast. AdaMatLSSVC only

changes the base classifier in the reshaping way and the experiments here indicate that the errors of

MatLSSVCs with differently reshaped matrix patterns are less than 1/2 in classification performance.

As a result, our AdaMatLSSVC can inherit this original property well.

Theorem 1 (Freund and Schapire, 1997) Suppose the base learning algorithm BaseLearn, when

called by AdaBoost (AdaMatLSSVC), generates classifiers with errors 1,... ...,t Tε ε ε , where tε is as

defined in Figure 3. Assume each 1/ 2tε ≤ , and let 1/ 2t tγ ε= − . Then the following upper bound

holds on the error of the final classifier hfin:

{ } 2 2

11

: ()
1 4 exp(2)

T Tfin i i
t t

tt

i h x y

l
γ γ

==

≠
≤ − ≤ − ∑∏ .

4. Experiments

In this section we first explore the diversity of the matrixization on a dataset, then experimentally

demonstrate that AdaMatLSSVC can mitigate the matrixization-dependent problem.

4.1. Description of experimental datasets

These experiments are conducted on the benchmark datasets including both those in a matrix

representation, for example, the ORL face database and the Letter text-base2, and those in a vector

representation: Waveform (21 attributes/3 classes/1500 data)3 , Wine dataset (12/3/178) that is

generated through the last one attribute of the original Wine4 with 13 attributes being omitted (by us)

mainly for producing more assembling matrix patterns, Water-treatment (denoted Water-T.)

(38/2/116)4, Sonar (60/2/208)4, Musk Clean2 (denoted M.C.2) (166/2/6598)4 and M.C.2 (160/2/6598)

that is just the dataset in M.C.2 (166 attributes) with the last six dimensions of each pattern being also

omitted (by us) mainly for generating more assembling matrix patterns. ORL faces base contains 400

grey human face images of 40 persons, 10 different images each person and each image size is

normalized to 28×23. Letter dataset contains 10 text classes consisting of the digits 0-9 with each

2 available at http://sun16.cecs.missouri.edu/pgader/CECS477/NNdigits.zip
3 available at http://www.ics.uci.edu/~mlearn/MLRository.html
4 available at ftp://ftp.cs.cmu.edu/afs/cs/project/connect/bench/.

class having 50 samples and each sample is a 24×18 matrix pattern.

Table 1: Benchmark data specification

Data
(attributes;classes)

Training
set

Test
set

T

ORL(28×23;40） 200 200 40

Letter(24×18;10) 250 250 50

Sonar(60;2) 100 108 100

Water-T.(38;2) 50 66 50

M.C.2(166;2) 1000 5598 100

M.C.2(160;2) 1000 5598 100

Waveform(21;3) 750 750 100

Wine(12;3) 48 130 48

4.2. Setting of experiments

In all experiments, each dataset is randomly divided into the two no-overlapping parts with the one for

training and the other one for testing. The sizes of both the training and the test sets for all datasets are

shown in Table 1. For each classification problem, 10 independent runs are performed on the above

partitions and then their classification accuracies on the test sets are averaged and reported. Table 2

shows the abbreviations and explanations of all algorithms that are implemented in our experiments.

In addition, the regularization constant C between LSSVC and MatLSSVC, is determined by

searching from 2-6 through 210 with each step by multiplying 2. For MatLSSVC, v0 is initialized to

[11,…,1d2]t; the learning rateη is selected from {1, 10, 100, 1000}; the maximal iterative count

maxIter is set to 5000 and theε is set to 10-3. At the same time, the kernel functions corresponding to

LSSVC and AdaLSSVC are the linear kernel, i.e. g(x)=x. For AdaLSSVC, AdaMatLSSVC and the

other ensembles of MatLSSVCs, the regularization constant C is given by the prior knowledge and

experience, and the other parameters are given the same as above.

Due to using the AdaBoost technique in AdaLSSVC, E.I.MatLSSVC and AdaMatLSSVC, we

choose a set of examples from the original training set at random according to the weight distribution

Dt with replacement on each round t, and set the round number T for each dataset as shown in Table 1.

Here, it is worth being emphasized that for all the patterns on both ORL and Letter datasets that are

2D matrix themselves, we can still reshape them to another corresponding matrix patterns in different

ways. As for the original vector patterns, we can also matrixize them to different matrix patterns in

different reshaping ways.

Table 2: The abbreviations and explanations of all algorithms that are implemented in our experiments

Abbreviations Explanations
LSSVC least squares support vector classifier

MatLSSVC the matrixized version of LSSVC
AdaLSSVC the ensemble that AdaBoost uses LSSVC as the base classifier

M.V.MatLSSVC the ensemble which combines MatLSSVCs based on different
reshaping ways using the majority voting technique

E.I.MatLSSVC the ensemble that AdaBoost uses individual MatLSSVC in the
same reshaping way as the base classifier

AdaMatLSSVC the ensemble that AdaBoost uses MatLSSVCs in different
reshaping ways as the base classifiers

4.3. Results discussion

Table 3 reports the classification accuracies of LSSVC, MatLSSVC, AdaLSSVC, AdaMatLSSVC and

M.V.MatLSSVC on different datasets under the above experimental conditions. Both AdaMatLSSVC

and M.V.MatLSSVC use those matrix patterns that are written in the third column of Table 3 as

combination. In this table, all results are presented in percentages in the columns. For each dataset in

Table 3, the best, the second best and the third best results are bolded, underlined and undee-lined,

respectively. The regularization constant Cs of both LSSVC and MatLSSVC are given, by which the

best generalization is achieved. For AdaLSSVC, the C is equal to that of LSSVC. For AdaMatLSSVC

and M.V.MatLSSVC, the Cs are equal to those of MatLSSVC. Several observations can be made

based on this table.

4.3.1. Discussion between MatLSSVC and LSSVC

First of all, MatLSSVC improves the classification performance from slight to distinct, at least for one

matrix pattern compared with LSSVC on the four datasets (Letter, Sonar, Water-T., Waveform) and

whereas on the other four datasets (ORL, M.C.2(166), M.C.2(160), Wine), the results are opposite. On

the whole, compared with LSSVC, MatLSSVC improves performance on 4 out of 8 datasets and

especially distinct on Water-T. (achieving about 4%) and on the other hand, on those datasets where

MatLSSVC’s performance is degraded, the matrixized LSSVC achieves about 2.5% decrease on Wine

in the worst case but only slight on the rest. MatLSSVC is competitive with LSSVC in terms of

classification performance.

Table 3: Classification accuracy comparison among LSSVC, MatLSSVC, AdaLSSVC, AdaMatLSSVC and M.V.MatLSSVC.
The best, the second best and the third best results are bolded, underlined and undee-lined, respectively. The regularization
constant Cs of both LSSVC and MatLSSVC are given where the best generalization is achieved. For AdaLSSVC, the C is
equal to that of LSSVC. For AdaMatLSSVC and M.V.MatLSSVC, the Cs are equal to that of MatLSSVC. All these different
matrix patterns that MatLSSVC and the ensembles of MatLSSVCs use on each dataset are written in the bracket of the third
column.

Classifiers Datasets

(attributes) LSSVC

(%)

MatLSSVC

(%)

AdaMatLSSVC

(%)

M.V.

MatLSSVC

(%)

AdaLSSVC

(%)

ORL

(28×23)

96.40(C=25) 95.30(C=25;28×23)

93.50(C=2-5;161×4)

94.00 (C=20;92×7)

94.20(C=2-1;46×14)

96.50 94.10 96.50(C=25)

Letter

(24×18)

92.28 (C=2) 92.55(C=2-3;2×216)

91.40(C=2-3;4×108)

87.90(C=2-3;12×36)

89.40(C=2-6;24×18)

92.96 91.76 92.60(C=2)

Sonar

(60)

75.74(C=2) 75.83(C=2-2;2×30)

74.35(C=2-1;3×20)

75.46(C=2-1;6×10)

79.26 73.70 78.70(C=2)

Water-T.

(38)

94.85(C=2-6) 96.21(C=28;19×2)

98.33(C=22;2×19)

98.79 93.48 97.42(C=2-6)

M.C.2

(166)

87.78(C=24) 87.22(C=26;83×2)

86.85(C=2-5;2×83)

87.98 86.99 88.33(C=24)

M.C.2

(160)

88.31(C=2-2) 88.29(C=2-4;80×2)

87.00(C=2-5;2×80)

84.47(C=2-4;16×10)

82.31(C=20;10×16)

88.71 81.81 88.81(C=2-2)

Waveform

(21)

86.01(C=24) 86.05(C=2-1;3×7)

85.20(C=2;7×3)

86.53 85.33 86.37(C=24)

Wine

(12)

96.98(C=2-3) 94.26(C=22;6×2)

90.00(C=2-1;2×6)

89.25(C=2-2;4×3)

90.00(C=2-2;3×4)

96.23 91.04 97.17(C=2-3)

Further, from the experimental results, it can be also found that for the same dataset, the

differently-reshaped matrices result in the different classification performance. For example, by

reshaping the original size 24×18 matrix of Letter to the new 2×216 matrix, MatLSSVC gets the

better classification performance on the 2×216 matrix. Before exploration, we first reformulate the

discrimination function (3) of the matrix-pattern-oriented classifier (MatLSSVC) and let B=Atu, then

(3) can be rewritten as f(B)=Btv+b=vtB+b. Formally, f(B) is a similar form as (2) that of the

vector-pattern-oriented classifier (LSSVC) in which the B is an input to the vector-pattern-oriented

classifier (LSSVC). We decompose B in terms of

2 21 1[,...,] [,...,]t t t t t
d dB A u a a u a u a u= = = , (7)

where
2 1 21 1 2 1 2[,..., ,...,], [,...,] , 1,2,... ; [,..., ,...,] , , 1,2,..., .t t t

i d i i d i j d j jA a a a a a a i d B b b b b a u j d= = = = = = Thus,

all the components of each column of the original matrix A are linearly combined to each component

of the new input B, implying that it integrates global information in each column (coined

column-global information) and thus de-emphasizes local information in each column (coined

column-local information). Instead, if we make r smaller than d1, reshape the original pattern A with

dimension d1×d2 to a new matrix pattern C with dimension r×c, and then still let B=Ctu, similarly to

the above analysis, all the components of each column of C linearly are combined to each component

of the B. Now due to that r is smaller than d1, in this case, each column of the C is a sub-column of the

original pattern A, and thus all the components of a sub-column of A are linearly combined to each

component of the B, implying that it just integrates column-local information rather than

column-global information and thus emphasizes local information in each column. Consequently, we

can obtain the fact that the reshaping from one matrix pattern to another may destroy the whole or

global structure in each column of the original pattern, but partial or local structure or column-local

information can likely be kept and emphasized contrarily, which could be more useful for

discrimination (Maree et al., 2005). Such a fact is the possible reason of yielding the above

phenomenon in image recognition. In a word, compared with the vector-pattern-oriented one

(LSSVC), the matrix-pattern-oriented classifier (MatLSSVC) may get the guide by a priori knowledge

of the specific problem but in an implicit way. And the matrix-pattern-oriented classifier (MatLSSVC)

becomes more flexible and effective for classification due to the incorporation of both the

matrixization and the reshaping to vector and image-matrix patterns.

4.3.2. Comparison among MatLSSVC, AdaLSSVC, AdaMatLSSVC and M.V.MatLSSVC

From the different performance exhibitions for different matrix patterns on the same dataset, the

performance of MatLSSVC is matrixization-dependent, i.e., heavily relying on the reshaping ways

from an original (vector or matrix) pattern to another matrix one. On the other hand, due to utilizing

the diversity of the matrixization, it can be found that compared with MatLSSVC, our AdaMatLSSVC

outperforms all MatLSSVCs with these different matrix patterns on all datasets, which exactly

validates the complementarity induced by multiple matrix representations of the same pattern. One

matrix representation only describes one structural space for a given pattern. Since the proposed

AdaMatLSSVC considers multiple structural spaces of the same pattern, it can provide a

complementarity for each space and have a superior classification performance to MatLSSVC that

only considers one structural space.

Finally, in order to further investigate the performance of AdaMatLSSVC, it is also compared with

both AdaLSSVC and M.V.MatLSSVC. According to Table 3, the classification accuracies of

AdaMatLSSVC are distinctly better than those of M.V.MatLSSVC on all the datasets. Compared with

AdaLSSVC, the accuracies of AdaMatLSSVC are better on the four datasets (Letter, Sonar, Water-T.,

Waveform), comparable on the ORL dataset, worse on the three remaining datasets (M.C.2(166),

M.C.2(160), Wine). AdaMatLSSVC is also competitive with AdaLSSVC like the relationship between

LSSVC and MatLSSVC.

4.4. Further exploration of AdaMatLSSVC

As the above section describes, AdaMatLSSVC can mitigate the matrixization-dependent problem

with MatLSSVC. The reason behind possibly attributes to that AdaMatLSSVC bears the other two

important factors besides MatLSSVC itself: the one is the AdaBoost technique and the other is the

diversity induced by the different reshaping ways. We have found that AdaMatLSSVC distinctly

outperforms M.V.MatLSSVC with the same diversity, which demonstrates that AdaBoost technique

plays an important role in improving the performance of AdaMatLSSVC. Further, we need to explore

the role of the diversity in improving the performance of AdaMatLSSVC and so implement

E.I.MatLSSVC that uses MatLSSVC only in a single reshaping way as the base classifier. Here, there

are two kinds of E.I.MatLSSVCs in the corresponding reshaping ways for each dataset: the one uses

the reshaping way that has the best classification accuracy in MatLSSVC on each dataset and the

other uses the one that has the worst in MatLSSVC.

Table 4 reports these classification accuracies of MatLSSVC, AdaMatLSSVC and E.I.MatLSSVC on

all datasets. Like Table 3, AdaMatLSSVC uses the matrix patterns that are written in the second

column of Table 4 as combination. For each dataset, the best, second best and third best results are

still bolded, underlined and undee-lined, respectively. First, we set the Cs in both AdaMatLSSVC

(thethird column) and E.I.MatLSSVC to equal that of MatLSSVC. Clearly, AdaMatLSSVC distinctly

outperforms E.I.MatLSSVC on all the datasets: both ORL and M.C.2 (166) increasing in performance

by more than 2%, the other datasets increasing in performance by nearly 1~2%. Further, compared

Table 4: Classification accuracy comparison among MatLSSVC, AdaMatLSSVC and E.I.MatLSSVC. The best, the second
best and the third best results are bolded, underlined and undee-lined, respectively. The regularization constant C of
MatLSSVC is given where the best generalization is obtained. There are two AdaMatLSSVCs that use different Cs. The one
uses the C that is equal to that of MatLSSVC. The other one uses the C that is set to the prior value 2-3. For E.I.MatLSSVC,
the C is equal to that of MatLSSVC. All these different matrix patterns that MatLSSVC and AdaMatLSSVC use on each
dataset are written in the bracket of the second column.

Classifiers Datasets

(attributes) MatLSSVC

(%)

Ada-

MatLSSVC

(%)

E.I.MatLSSVC

(%)

Ada-

MatLSSVC

(C=2-3;%)

ORL

(28×23)

95.30(C=25;28×23)

93.50(C=2-5;161×4)

94.00 (C=20;92×7)

94.20(C=2-1;46×14)

96.50 93.60(C=25;28×23)

93.05(C=2-5;161×4)

96.00

Letter

(24×18)

92.55(C=2-3;2×216)

89.40(C=2-6;24×18)

91.40(C=2-3;4×108)

87.90(C=2-3;12×36)

92.96 92.04(C=2-3;2×216)

91.20(C=2-6;24×18)

92.84

Sonar

(60)

75.83(C=2-2;2×30)

74.35(C=2-1;3×20)

75.46(C=2-1;6×10)

79.26 77.78(C=2-2;2×30)

75.93(C=2-1;3×20)

77.04

Water-T.

(38)

96.21(C=28;19×2)

98.33(C=22;2×19)

98.79 97.42(C=28;19×2)

98.64(C=22;2×19)

98.64

M.C.2

(166)

87.22(C=26;83×2)

86.85(C=2-5;2×83)

87.98 85.22(C=26;83×2)

85.49(C=2-5;2×83)

87.56

M.C.2

(160)

88.29(C=2-4;80×2)

82.31(C=20;10×16)

87.00(C=2-5;2×80)

84.47(C=2-4;16×10)

88.71 87.17 (C=2-4;80×2)

87.62(C=20;10×16)

88.30

Waveform

(21)

86.05(C=2-1;3×7)

85.20(C=2;7×3)

86.53 85.73(C=2-1;3×7)

85.12(C=2;7×3)

86.27

Wine

(12)

94.26(C=22;6×2)

89.25(C=2-2;4×3)

90.00(C=2-1;2×6)

90.00(C=2-2;3×4)

96.23 94.81(C=22;6×2)

94.43(C=2-2;4×3)

95.28

with MatLSSVC, E.I.MatLSSVC wins only on the three datasets (Sonar, Water-T., Wine) but loses on

the five datasets (ORL, Letter, M.C.2(166), M.C.2(160), Waveform). Consequently, the diversity in

AdaMatLSSVC also plays a greatly important role in improving the performance. Because setting the

same C in both AdaMatLSSVC and MatLSSVC results in more time cost, thus instead, we directly set

the C of AdaMatLSSVC to the prior value 2-3. Although AdaMatLSSVC with (arbitrarily set) C=2-3

has worse performance than that with the C value optimally searched in a given range, it still

outperforms single MatLSSVC with optimal parameters. Thus the proposed AdaMatLSSVC seems

not relatively sensitive to the regularization parameter C than MatLSSVC.

5. Conclusions

We have shown that MatLSSVC, as a matrixized LSSVC version, has the comparable classification

performance to LSSVC. However, MatLSSVC’s classification performance depends on the different

reshaping ways for each pattern of each dataset. The different reshaping ways lead to the diversity of

the designed classifiers. Thus through using the AdaBoost technique and the diversity, we develop

AdaMatLSSVC that is an ensemble constructed by MatLSSVCs in different reshaping ways as the

base classifiers. The experimental results demonstrate that 1) AdaMatLSSVC can largely bypass the

matrixization-dependent problem in MatLSSVC; 2) AdaMatLSSVC can provide a complementarity

among different reshapings and have a relatively superior classification performance to MatLSSVC; 3)

AdaMatLSSVC relaxes the selection of the regularization parameter. Furthermore, according to these

results, it can also be observed that both the AdaBoost technique and the diversity of the reshaping

ways play their corresponding important roles in improving classification performance.

References

Beymer D., Poggio T., 1996. Image representations for visual learning. Science 272, 1905-1909.

Breiman L., 1996. Bagging predictor. Machine Learning 24, 123-140.

Chen L.F., Liao H.Y.M., Ko M.T., Lin J.C., Yu, G.J., 2000. A new LDA-based face recognition system which

can solve the small sample size problem. Pattern Recognition 33, 1713-1726.

Chen S.C., Zhu Y.L., Zhang D.Q., Yang J., 2005. Feature extraction approaches based on matrix pattern:

MatPCA and MatFLDA. Pattern Recognition Letters 26, 1157-1167.

Cherkauer K.J., 1996. Human expert-level performance on a scientific image analysis task by a system using

combined artificial neural networks. In Working Notes of the AAAI Workshop on Integrating Multiple

Learned Modes, (P. Chan, Ed.), Menlo Park: AAAI Press, 15-21.

Cristianini N., Shawe-Taylor J., 2000. An Introduction to Support Vector Machines and other kernel-based

learning methods. Cambridge University Press, Cambridge.

Cunningham P., Carney J., 2000. Diversity versus quality in classification ensembles based on feature selection.

Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin.

Dietterich T.G., 2002. Ensemble learning. In The Handbook of Brain Theory and Neural Networks, second

edition.

Dietterich T.G.., Bakiri G., 1995. Solving multiclass learning problems via error-correcting output codes. Journal

of Artificial Intelligence Research 2, 263-286.

Duda R.O., Hart P.E., Stock D.G., 2001. Pattern Classification, 2nd Edition. New York: John Wiley and Sons,

Inc.

Freund Y., Schapire R.E., 1996. Experiments with a new boosting algorithm. In Machine Learning: Proceedings

of the Thirteenth International Conference, 148-156.

Freund Y., Schapire R.E., 1997. A decision-theoretic generalization of on-line learning and an application to

boosting, Journal of Computer and System Sciences 55(1), 119-139.

Graham A., 1981. Kronecker Products and Matrix Calculus: with Applications. Halsted Press, John Wiley and

Sons, NY.

Ho T.K., 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern

Analysis and Machine Intelligence 20, 832-844.

Krogh A., Vedelsby J., 1995. Neural network ensembles, cross validation and active learning. In G. Tesauro, D.

Touretzky, T. Leens (Eds.), Advances in neural information processing systems, Cambridge, MA: MIT Press,

7, 231-238.

Lam L., 2000. Classifier combinations: Implementations and theoretical issues. In J. Kittler and F. Roli (Eds.),

Multiple classifier systems, Vol. 1857 of Lecture Notes in Computer Science, Cagliari, Italy, Springer, 78-86.

Li M., Yuan B., 2005. 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition

Letters 26, 527-532.

Littlewood B., Miller D., 2000. Conceptual modeling of coincident failures in multiversion software. IEEE

Transactions on Software Engineering 15(12), 1596-1614.

Liu J., Chen S.C., 2006. Non-iterative generalized low rank approximation of matrices. Pattern Recognition

Letters 27(9), 1002-1008

Maree R., Geurts P., Piater J., Wehenkel L., 2005. Random subwindows for robust image classification. In: Proc.

Of IEEE Conf. on Computer Vision and Pattern Recognition.

Nagabhushan P., Guru D.S., Shekar B.H., 2006. (2D)2FLD: An efficient approach for appearance based object

recognition. Neurocomputing 69, 934-940.

Rosen B., 1996. Ensemble learning using decorrelated neural networks. Connection Science 8(3/4), 373-383.

Suykens J.A.K., Vandewalle J., 1999. Least Squares Support Vector Machine Classifiers. Neural Processing

Letters 9, 293-300.

Vapnik V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York.

Vapnik V., 1998. Statistical learning theory. John Wiley, New York.

Vapnik V., 1998. The support vector method of function estimation. In J.A.K. Suykens and J. Vandewalle (Eds)

Nonlinear Modeling: Advanced Black-Box Techniques, Kluwer Academic Publishers, Boston, 55-85.

Wang H., Ahuja N., 2005. Rank-R Approximation of Tensors: Using Image-as-Matrix Representation. IEEE

Conf. on Computer Vision and Pattern Recognition.

Wang Z., Chen S.C., 2007. New Least Squares Support Vector Machines Based on Matrix Patterns. Neural

Processing Letters 26:41–56.

Yang J., Zhang D., Frangi A.F., Yang J.U., 2004. Two-Dimension PCA: A New Approach to Appearance-Based

Face Representation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1),

131-137.

Ye J., 2005. Generalized low rank approximation of matrices. Machine Learning 61(1-3): 167-191.

Zhang D.Q., Zhou Z.H., 2005. (2D)2PCA: Two-directional two-dimensional PCA for efficient face

representation and recognition. Neurocomputing 69, 224-231.

