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Abstract

Face Representation (FR) plays a typically important role in face recognition and
methods such as Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) have been received wide attention recently. However, despite of
the achieved successes, these FR methods will inevitably lead to poor classification
performance in case of great facial variations such as expression, lighting, occlusion
and so on, due to the fact that the image gray value matrices on which they ma-
nipulate are very sensitive to these facial variations. In this paper, we take notice of
the facts that every image matrix can always have the well-known Singular Value
Decomposition (SVD) and can be regarded as a composition of a set of base images
generated by SVD, and we further point out that the leading base images (those
corresponding to large singular values) on one hand are sensitive to the aforemen-
tioned facial variations and on the other hand dominate the composition of the face
image. Then based on these observations, we subtly deflate the weights of the facial
variation sensitive base images by a parameter α and propose a novel Fractional
order Singular Value Decomposition Representation (FSVDR) to alleviate facial
variations for face recognition. Finally, our experimental results show that FSVDR
can: 1) effectively alleviate facial variations; and 2) form an intermediate represen-
tation for many FR methods such as PCA and LDA to significantly improve their
classification performance in case of great facial variations.
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1 Introduction

Although we human beings can easily detect and identify faces in a scene, it

is very challenging for an automated system to achieve such objectives. The

challenges become more profound when large variations exist in the face im-

ages at hand, e.g., variations in illumination conditions, viewing directions or

poses, facial expression, aging, and disguises such as facial hair, glasses, cos-

metics and scarves. Despite of these challenges, face recognition has drawn

wide attention from researchers in areas of machine learning, computer vision,

pattern recognition, neural networks, and so on, thanks to the great need for

face recognition in areas of access control, information security, law enforce-

ment and surveillance, smart cards and so on [3,6,21,45].

Over the past decades, geometric feature-based methods [4,8,14,15,18,17,39]

and appearance-based methods [31,38,44,46] are the two mainly employed

face recognition methods. Geometric feature-based methods extract the rela-

tive position and other parameters of distinctive features such as eyes, mouth,

nose, and chin as features, while appearance-based methods directly manip-

ulate on the gray level values of the image pixels (e.g., a face image pattern

is represented as an r × c matrix A, where r and c are respectively the num-

bers of rows and columns) and employ statistical tools to extract features

for subsequent classification. Recently, it has been witnessed a strong trend

away from geometry towards statistical and appearance-based models for face

recognition [22], and this trend is supported by psychological, physiological,

and biological studies dealing with vision in humans and animals [11,22,36].

A typical appearance-based face recognition scheme is given in Fig. 1, where

the input is a face gray value matrix and the output is the given face’s class

label. Generally speaking, this recognition scheme can be divided into two

sequential stages: Face Representation (FR) and face classification. FR (illus-

trated between the two vertical dashed lines in Fig. 1) plays a key role in face
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Fig. 1. Illustration of the appearance-based face recognition.

recognition, impacts the classification performance to a large extent and as a

result has always been a hot topic in face recognition.

A natural choice for FR is the Original Gray Value Matrix (OGVM), whose

classification scheme is depicted in route a in Fig. 1. Although OGVM is sim-

ple, it will encounter the following two problems: 1) the dimensionality of

OGVM is much higher than the number of training samples (e.g., the dimen-

sionality of a 100 × 100 image matrix is 10000, while the number of training

samples is often quite less) which leads to the so-called curse of dimensionality

and consequently depresses the generalization ability of the correspondingly

trained classifier; and 2) OGVM is very sensitive to facial variations such as

expression, lighting, occlusion, etc, and thus will obtain poor classification

performance in case of the aforementioned facial variations.

To obtain a good representation for face images, researchers have proposed

many renowned Dimensionality Reduction (DR) methods that directly manip-

ulate on OGVM (illustrated in route b in Fig. 1). The two most well-known

DR methods are Principal Component Analysis (PCA) [20,38] and Linear

Discriminant Analysis (LDA) [10,13].

Kirby and Sirovich [20] showed that any particular face can be 1) economically

represented along the eigenpictures coordinate space, and 2) approximately re-

constructed using just a small collection of eigenpictures and their correspond-

ing projections (’coefficients’). Turk and Pentland [38] applied PCA technique

to face recognition, and proposed the well-known Eigenfaces method. A recent

major improvement on PCA is to directly manipulate on two-dimensional ma-

trices (not one-dimensional vectors as in traditional PCA), e.g., Two-dimensional

PCA (2DPCA) [40], Generalized Low Rank Approximation of Matrices [41],
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Non-iterative Generalized Low Rank Approximation of Matrices (NIGLRAM)

[28] and so on. The advantages of manipulating on two-dimensional matrices

rather than one-dimensional vectors are:[40] 1) it is simpler and straightfor-

ward to use for image feature extraction; 2) it is better in terms of classifi-

cation performance; and 3) it is computationally more efficient. Based on the

viewpoint of minimizing reconstruction error, the above PCA-based methods

[28,38,40,41] are unsupervised methods that do not take the class labels into

consideration.

Taking the class labels into consideration, LDA aims at projecting face sam-

ples to a subspace where the samples belonging to the same class are compact

while those belonging to different classes are far away from each other. The

major problem in applying LDA to face recognition is the so-called Small

Sample Size (SSS) problem (namely, the number of samples is far less than

sample dimensionality), which leads to the singularities of the within-class

and between-class scatter matrices. Recently, researchers have exerted great

endeavor to deal with this problem. In [1,34], a PCA procedure was applied

prior to the LDA procedure, which led to the well-known PCA+LDA or Fish-

erfaces method. In [5,27], samples were first projected to the null space of the

within-class scatter matrix and then LDA was applied in this null space to

yield the optimal (infinite) value of the Fisher’s Linear Discriminant criterion,

which led to the so-called Discriminant Common Vectors (DCV) method. In

[26,42], LDA was applied in the range space of the between-class scatter matrix

to deal with the SSS problem, which led to the Linear Discriminant Analysis

via QR decomposition (LDA/QR) method.

These DR methods have been proven to effectively lower the dimensionality

of OGVM. Furthermore, in face recognition, PCA and LDA have become de-

facto baseline approaches. However, despite of the achieved successes, these

FR methods will inevitably lead to poor classification performance in case of

great facial variations such as expression, lighting, occlusion and so on, due

to the fact that the OGVM A on which they manipulate is very sensitive

to these facial variations. To mitigate this problem, in this paper, we pro-

pose a novel Fractional order Singular Value Decomposition Representation

(FSVDR), which acts as an Intermediate Representation (IR) between OGVM

and DR (see route c in Fig. 1) for face recognition.
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In literature, there have been a number of approaches that form an IR between

OGVM and DR for face recognition. In [24,25], the authors first obtained the

Gabor wavelet representation for face images and then utilized it as an IR

for subsequent DR utilizing the enhanced Fisher Linear Discriminant Model

[23] or Independent Component Analysis [9]. The Gabor wavelet representa-

tion was reported to capture local structure corresponding to spatial frequency

(scale), spatial localization, and orientation selectivity. Besides Gabor wavelet,

Er et al.[12] employed Discrete Cosine Transform (DCT) as an IR and then

applied LDA subsequently for DR. It was reported that the low-frequency

DCT coefficients accounted for a large area nonuniform illumination varia-

tions, and consequently the nonuniform illumination effect can be reduced by

discarding several low-frequency DCT coefficients. Our FSVDR distinguishes

from Gabor wavelet and DCT in that 1) FSVDR employs the well-known

SVD, not Gabor wavelet or DCT and 2) FSVDR needs to tune a parameter

α to yield an IR and the choice of the parameter is both database and DR

method dependent, while neither Gabor wavelet nor DCT has such parameter

to be tuned. Besides, it is worthwhile to point out that, since FSVDR is still

human face like (see Section 2.2), it can be applied prior to Gobor wavelet or

DCT for forming an new IR for face recognition.

Furthermore, in face recognition, there have been studies of employing SVD

to obtain representation for face images. Hong [19] proposed to apply SVD to

each OGVM to obtain Singular Values(SVs) to represent this face image, and

then to perform classification based on these SVs. Cheng et al.[7] made use of

the SVs as an IR, and then employed an optimal discriminant transformation

to transform the SVs into a new space for subsequent classification. Although

good classification performance was reported in [7], Tian et al.[37] pointed

out that the SVs contained little useful information for face recognition and

attributed the good performance reported in [7] to the small testing database.

Comparing FSVDR with SVs [7,19], it is clear that the two methods are

quite different. More specifically, the representation by SVs only employs the

singular values, while our FSVDR utilizes not only the singular values, the

left and right transformation matrices but also a parameter α to yield the

so-needed Intermediate Representation (IR). Besides SVs, SVD was utilized

to generate multiple virtual samples for face recognition with one sample per

class in [43], which is a non-parametric method and is different from FSVDR.
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Now, it is worthwhile to summarize our contributions in this paper as follows:

1) We take notice of the fact that every image matrix has the well-known

Singular Value Decomposition (SVD) and point out both theoretically and

experimentally that, for any given single face matrix A, its leading base images

(those corresponding to large singular values) are sensitive to facial variations

such as illumination, occlusions, etc. Meanwhile, we show experimentally that

these leading base images in fact dominate the composition of A.

2) Based on the observations made in 1), our proposed FSVDR subtly deflates

the weights of the facial variation sensitive base images by introducing a pa-

rameter α and effectively alleviates the influence of the facial variations on

face recognition. Furthermore, the relationship between FSVDR and OGVM

is theoretically studied.

3) We employ FSVDR as an Intermediate Representation (IR) for many well-

known DR methods such as PCA, 2DPCA, NIGLRAM, PCA+LDA, DCV and

LDA/QR. And the experimental results show that, by employing FSVDR as

an IR, the classification performance of these methods can be significantly

improved in case of great facial variations.

4) Our FSVDR offers a both database and DR method dependent IR, namely

for different methods and different databases, the optimal value for parameter

α should be different. This is a very important characteristic of FSVDR, and

is in accord with the main argument made in [31,32] that the DR methods can

only obtain good performance under certain conditions. Further, based on our

previous work in [27], we offer a heuristic criterion for choosing the parameter

α for the LDA-based methods.

In what follows, we present our proposed FSVDR in detail in Section 2, carry

out extensive experiments to verify the effectiveness of the proposed FSVDR

in Section 3, and draw an conclusion to this paper in Section 4.

2 Fractional order Singular Value Decomposition Representation

We will first analyze the SVD on each face image matrix pattern A in Section

2.1, and propose FSVDR in Section 2.2.
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2.1 Singular Value Decomposition

Mathematically, every r × c (r ≥ c without loss of generality) OGVM A can

always have the Singular Value Decomposition (SVD) [16] as

A = Ũ S̃Ṽ T , (1)

where Ũ = [u1, u2, ..., ur], Ṽ = [v1, v2, ..., vc], S̃ = (D 0)T , D = diag(λ1, λ2, ..., λc),

0 is a c×(r − c) zero matrix and λi’s are the singular values in a non-increasing

order.

Further, assuming the rank of A to be k, we have

A = USV T =
k∑

i=1

λiuiv
T
i , (2)

where S = diag(λ1, λ2, ..., λk), U = [u1, u2, ..., uk] and V = [v1, v2, ..., vk].

We have the following five properties for the SVD applied to A.

Property 1 Denote A as

A = [a1, a2, . . . , ar]
T , (3)

where aT
i is a 1× c row vector that represents the i-th row of image matrix A,

and we have

V T CrowV = S2, (4)

where

Crow = AT A =
r∑

i=1

aia
T
i . (5)

That is to say, vj is the eigenvector of the covariance matrix Crow correspond-

ing to eigenvalue λ2
j , j = 1, 2, . . . , k.

Property 2 Denote A as

A = [a1, a2, . . . , ac], (6)

where ai is an r × 1 column vector that represents the i-th column of image

matrix A, and we have

UT CcolU = S2, (7)
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where

Ccol = AAT =
c∑

i=1

aia
T
i , (8)

namely, uj is the eigenvector of the covariance matrix Ccol corresponding to

eigenvalue λ2
j , j = 1, 2, . . . , k.

Property 3 uiv
T
j , i = 1, 2, . . . , r, j = 1, 2, . . . , c form a set of orthonormal

base matrices for the space Rr×c and can be termed as base images.

Property 4 When projecting A to the base images uiv
T
j , i = 1, 2, . . . , r, j =

1, 2, . . . , c, we have: 1) the coefficients are all nonnegative; 2) the coefficients

are λi’s in the base images uiv
T
i , i = 1, 2, . . . , k; and 3) the coefficients are

zeros in the base images complement to those in 2).

Property 5 When A is regarded as the composition of uvT like bases, where

u and v are r× 1 and c× 1 column vectors respectively, then the least number

of such bases is k and uiv
T
i , i = 1, 2, . . . , k provide a solution.

The proofs of these properties are simple and omitted here. Property 1 and

2 reveal that: 1) ui’s corresponding to large λi’s capture the great horizontal

variances among the column vectors of A, and 2) vi’s corresponding to large

λi’s capture the great vertical variances among the row vectors of A. Property

3 defines the concept of base images, and it is easy to conclude from property

1-3 that the leading base images (those corresponding to leading singular

values) capture the great variances in the face image A itself. Property 4 and 5

further offer some characteristics of these base images. Now, we experimentally

demonstrate two important properties of the leading base images as follows:

2.1.1 Leading base images being sensitive to facial variations

We choose six images (under distinct facial variations) from the well-known

AR face database [30] and show the original face images and the corresponding

three leading base images in Fig. 2, from which we can clearly observe that

the first base image u1v
T
1 well captures: 1) the light condition (left light on or

right light on) of the face images; and 2) the horizontal position of eyebrows,

mouth (if not masked) and occlusions such as wearing glasses and wearing

scarves. The reason behind these phenomena is as described in property 1 and

2, namely u1 and v1 respectively capture the greatest variance of the column
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Fig. 2. An illustration of three leading base images of six face images under different
facial conditions. The first row: left light on, right light on; The second row: left
light on & wearing glasses, right light on & wearing glasses; The third row: left light
on & wearing scarves, right light on & wearing scarves.

and row vectors of the face images and u1v
T
1 captures the greatest variance

among A itself. Theoretically, u2v
T
2 and u3v

T
3 also capture the great variances

(although less than those by u1v
T
1 ) among the face image itself, but they are

less obvious than u1v
T
1 in vision which may attribute to the fact that our eyes

are good at detecting some larger variations (as in u1v
T
1 ) while not for some

smaller variations (as in u2v
T
2 and u3v

T
3 ). Moreover, a thorough look at the

second row of Fig. 2 show that u2v
T
2 does reveal the two reflected light spots

on the black glasses. Finally, due to the fact that the leading base images

capture the great variances within the face image itself, they are naturally

more sensitive to facial variations such as expression, lighting, occlusion and

so on, which can be typically read from u1v
T
1 in Fig. 2.

2.1.2 Leading base images dominating the composition of face image

The leading base images contribute a great deal to the composition of A, for

which sake we define the cumulative energy contained in these leading images

as

ei =

∑i
j=1 ||λiujv

T
j ||2F

||A||2F
, (9)

where ||.||2F is the squared Frobenius norm. We plot the cumulative energy

ei in Fig. 3, where the six face images are just the corresponding six face

images shown in Fig. 2. From Fig. 3, one can easily read: 1) the first base

images of the six face images here all possess an energy of over 85%; 2) the
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Fig. 3. Cumulative energy of the base images for the six images in Fig. 2.

first few leading base images (e.g., 10) almost occupy all the energy (e.g., the

cumulative energy e10 > 99%) contained in A. As a result, the leading base

images dominate the composition of face image.

From the discussion in Section 2.1.1 and 2.1.2, we know that if we handle the

facial variation sensitive leading base images nicely, the great facial variations

within each face image can be effectively alleviated, which will be discussed

in our proposed FSVDR in the next subsection.

2.2 Fractional order Singular Value Decomposition Representation

To alleviate the facial variations on face images, we propose a novel Fractional

order Singular Value Decomposition Representation (RSVDR), whose under-

lying ideas are that 1) the weights of the leading base images uiv
T
i should be

deflated, since they are very sensitive to the great facial variations within the

image matrix A itself; 2) the weights of base images uiv
T
i corresponding to

relatively small λi’s should be inflated, since they may be less sensitive to the

facial variations within A, which can be read from Property 1 and 2; and 3)

the order of the weights of the base images uiv
T
i in formulating the new repre-

sentation B should be retained. More specifically, for each face image matrix
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A which has the SVD in (2), its FSVDR B is defined as:

B = USαV T (10)

where U , S and V are the corresponding matrices in equation (2), and in

order to achieve the above underlying ideas, α is a fractional parameter that

satisfies:

0 ≤ α ≤ 1 (11)

It is easy to obtain the following properties with regard to FSVDR:

Property 6 The rank of FSVDR B is k, i.e., identical to the rank of A.

Property 7 uiv
T
i , i = 1, 2, . . . , k form a set of uvT like base images for the

FSVDR B.

Property 8 When 0 < α ≤ 1, the transformation of A to B is a bijection;

when α = 0, the transformation of A to B is not a bijection, but a surjection.

Property 9 Let β = (α − 1)/2 and define (V T SV )β = V T SβV , then we

have B = A(AT A)β, namely the FSVDR B utilizes some cross product infor-

mation contained in A, which has somewhat flavor of employing high-order

information.

Property 6 shows that an intrinsic characteristic of A, the rank, is retained in

the FSVDR B. From Property 7 and Property 5, we know that the FSVDR

B in fact has the same uvT like base images as A, and considering the fact

that these base images are the components to compose A and B, we can say

that the information in A is passed to B nicely. Property 8 further shows the

close relationship between the FSVDR B and the original representation A.

Property 9 says that the FSVDR B utilizes some cross product information

contained in OGVM A.

Now, we illustrate some FSVDR face images under different α in Fig. 4, from

which we can observe that:

1) The FSVDR B is still like human face;

2) The FSVDR deflates the lighting condition in vision. Taking the two face

images in the first row for example, when α is set to 0.4 and 0.1, from the
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1 0.7 0.4 0.1 1 0.7 0.4 0.1

1 0.7 0.4 0.1 1 0.7 0.4 0.1

1 0.7 0.4 0.1 1 0.7 0.4 0.1

Fig. 4. An illustration of six face images under different facial conditions employing
FSVDR, where α = 1 is just the OGVM.

FSVDR B alone, one can hardly tell whether the original face image matrix

A is of left light on or right light on;

3) The FSVDR B reveals some facial details. In the original face images A

presented in the first row, neither the right eyeball of the left face image nor

the left eyeball of the right face image is visible, however, when setting α to 0.4

and 0.1 in FSVDR, the eyeballs become visible. Moreover, the jowls become

more obvious in the FSVDR, as revealed in the face images of the first and

the second rows;

4) The FSVDR B can not remove the occlusions such as glasses and scarves,

due to the fact that it shares the same base images as the OGVM A. However,

we can see from the second and third rows that the contrast between the face

images and the occlusions decreases. As a result, in the FSVDR, the occluded

images will be nearer to the faces without occlusions compared to those in the

OGVM A.

The most important characteristic of the FSVDR lies in that it can form an

Intermediate Representation (IR) for many DR methods such as PCA, LDA

and so on (illustrated in route c of Fig. 1). Furthermore, when employing

FSVDR as an IR for DR methods, the time complexities in training and test-

ing are almost the same as the original DR methods. To elaborate this, we take

DCV as an example in the following analysis. According to [5,27], the time

complexity for training N samples with dimensionality d = rc is O(N2d), and
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the time complexity in testing any given unknown sample is O(dC), where

C is the number of classes. For DCV based on FSVDR, on one hand, it con-

sumes additional O(Nd max(r, c)) in computing the FSVDR for N samples,

where max(r, c) is usually smaller than N , and thus the time complexity in

training is still O(N2d), the same as original DCV; on the other hand, for any

unknown sample, it takes additional O(max(r, c)d) in computing its FSVDR,

and thus the time complexity in testing is also O(dC) since max(r, c) is usually

comparable to or less than C. And we will verify the effectiveness of FSVDR

in the next section.

3 Experiments

In this section, we carry out extensive experiments to show that: 1) when

directly applied to face recognition, FSVDR can yield significantly better

classification performance than OGVM and the SVs (see Section 3.2); and

2) as an Intermediate Representation (IR), the FSVDR can significantly im-

prove the classification performance of quite a few DR methods such as PCA,

PCA+LDA, LDA/QR, DCV, 2DPCA and NIGLRAM (see Section 3.3). Fur-

thermore, we will experimentally visualize the samples by the FSVDR and

OGVM to show the benefit brought by FSVDR in Section 3.4 and dwell on

the problem of parameter choice in Section 3.5. Before reporting the experi-

mental results, we first describe the database and the experimental setting in

Section 3.1.

3.1 Database and experimental setting

3.1.1 Database description

We carry out experiments on three renowned face databases: AR [30], FERET

[33] and YALE [1].

The AR database consists of over 4000 color images of 126 person’s faces (70

men and 56 women). Each person has 26 different images which were grabbed

in two different sessions separated by two weeks, and 13 images in each session

were recorded. The 13 images are respectively of neutral expression, smile,

13



Table 1
Data partition on AR face database

Category Training Testing

AR1 a, b, c, d, e, f, g n, o, p, q, r, s, t

AR2 a, b, c, d, e, f, g h, i, j

AR3 a, b, c, d, e, f, g k, l, m

AR4 a, b, c, d, e, f, g, h, i, j, k, l, m n, o, p, q, r, s, t, u, v, w, x, y, z

anger, scream, left light on, right light on, both light on, occlusion by glasses

& left light on, occlusions by glasses & right light on, occlusions by glasses

& both light on, occlusion by scarves & left light on, occlusions by scarves

& right light on, occlusions by scarves & both light on. Fig. 5 illustrates the

26 image faces under different facial variations from one subject in AR face

database. In our experiments here, we use a subset of the AR face database

provided and preprocessed by Martinez [30]. This subset contains 2600 image

faces corresponding to 100 person (50 men and 50 women), where each person

has 26 different images under the aforesaid conditions. The original resolution

of these image faces is 165 × 120. Here, for computational convenience, we

resize them to 66× 48, and the gray level values are rescaled to [0 1]. As can

been seen from Fig. 5, the AR face database is very challenging. Here, we

carry out four independent experiments, AR1, AR2, AR3 and AR4, where the

training and testing samples are listed in Table 1. From Table 1 and Fig. 5, we

can observe that: AR1 evaluates the classification performance over time with

variations in expression and lighting conditions; AR2 tests the classification

performance in case of occlusions by wearing glasses; AR3 evaluates the the

classification performance in case of occlusions by wearing scarves; AR4 tests

the classification performance over time with great variations in expression,

lighting conditions and occlusions such as wearing glasses and scarves.

The FERET database is one of the most well-known face recognition bench-

marks. The Colour FERET database contains a total of 11338 facial images

corresponding to 994 subjects, and the Grey FERET contains a total of 14051

greyscale images corresponding to 1209 subjects. Here, we carry out experi-

ments on the hardest subset of FERET Tests September 1996, whose testing

samples have great facial variations in illumination. More specifically, we em-

ploy the gallery set that contains 1196 face images as training set and the fafc
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Fig. 5. An illustration of 26 images of one subject from AR face database.

set that has 194 face images as testing set. The face images are preprocessed

according to the CSU Face Identification Evaluation System [2] with a resolu-

tion of 75× 65. The challenges of this FERET subset are: 1) a large number

of subjects (1196) in the training set, 2) one training sample per class and 3)

great illumination variations in the testing set. Due to difficulty of this subset,

we follow the CSU Face Identification Evaluation System [2] to report the

Rank k classification, where the testing sample is considered to be correctly

classified so long as it belongs to the same class as one of its k nearest neighbor

samples in the training set.

The YALE face database contains 165 gray level face images of 15 persons.

There are 11 images per subject, and these 11 images are respectively under

the following different facial expression or configuration: center-light, wearing

glasses, happy, left-light, wearing no glasses, normal, right-light, sad, sleepy,

surprised, and wink. In our experiment, the images are cropped to a size of

50 × 50, and the gray level values of all images are rescaled to [0 1]. Fig. 6

shows the eleven images of one person from this database. On YALE face

database, we perform two different experiments, YALE1 and YALE2, where

the training and testing samples are given in Table 2. From Table 2 and Fig.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 6. An illustration of 11 images of one subject from YALE face database

Table 2
Data partition on YALE face database

Category Training Testing

YALE1 c, f, h, i, j, k a, b, d, e, g

YALE2 a, b, e, f, i, k c, d, g, h, j

6, we know that: YALE1 evaluates the classification performance in case of

different lighting conditions and wearing glasses; and YALE2 evaluates the

classification performance in case of some distinct expressions and lighting

conditions.

3.1.2 Experimental setting

In DR methods such as PCA+LDA, DCV and LDA/QR, they can achieve at

most C − 1 projection vectors, thus the reduced dimensionality is usually set

to C − 1. For the unsupervised method such as PCA, 2DPCA, NIGLRAM,

how to choose an adequate number of projection vectors in order to yield

the optimal generalization ability (or classification performance on unknown

samples) is still an open problem. Here, without loss of generality, we set the

reduced dimensionality for PCA employing two ways : 1) PCA1, where the

dimensionality is set to C−1; and 2) PCA2, where the dimensionality is chosen

such that 90% information in the sense of reconstruction are retained. We set

the parameter l to 10 in 2DPCA, and set the parameters l1 and l2 both to 20

in NIGLRAM.

When the features are extracted, we employ a Nearest Neighbor (NN) classifier

for reporting the classification performance, where the underlying distance

metric is the standard Euclidian distance.
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Fig. 7. Classification performance comparison between employing FSVDR and
OGVM directly for face recognition on AR face database.

In our proposed FSVDR, one key problem is to choose the adequate value

for α. Instead of tackling this problem from the very beginning, we just let α

change from 0 to 1 incremented by 0.05, and as a result, we will get a total of

21 classification results for a given method and a given experiment.

3.2 Comparison with OGVM and SVs for classification

In this subsection, we first compare the classification performance of FSVDR

(illustrated in route d of Fig. 1, where the IR is FSVDR) and OGVM (illus-

trated in route a of Fig. 1) and report the experimental results in Fig. 7 and

Fig. 8. Moreover, for illustration convenience, we list the best classification

accuracies of FSVDR as a column in Table 3 with the name NN.

From Fig. 7, Fig. 8 and Table 3 we can observe that the classification ac-

curacies under FSVDR are significantly higher than those by OGVM. More

specifically: 1) on AR1, the classification accuracy based on OGVM is 78.3%,
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Fig. 8. Classification performance comparison between employing FSVDR and
OGVM directly for face recognition on FERET and YALE face database.

and FSVDR achieves a best classification accuracy of 88.4%, an improvement

of 10.1%, which attributes to that FSVDR can alleviate the variations caused

by expression, lighting and time duration; 2) on AR2, OGVM can only achieve

a classification accuracy of 56.7% which attributes to the occlusions by wear-

ing glasses. However, the best classification accuracy for FSVDR is 89.7%,

33% higher than that of OGVM, which clearly shows that FSVDR can alle-

viate the occlusions caused by wearing glasses; 3) on AR3, OGVM can only

achieve a classification accuracy of 11.0% which attributes to the occlusions

by wearing scarves. For FSVDR, it can achieve a best classification accuracy

of 82.3%, an improvement of 71.3%. And the reason behind the classification

improvements is due to that FSVDR can effectively alleviate the occlusions

caused by wearing scarves. Furthermore, comparing the classification perfor-

mance (of either OGVM or FSVDR) on AR2 and AR3, we can see that in face

recognition, the occlusion caused by wearing scarves is much more harder than

that by wearing glasses, which is in accord with the argument made in [29,35];
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4) on AR4, FSVDR achieves a best classification accuracy of 81.0%, a signif-

icant improvement of 18.8% compared to OGVM’s 62.2%, which attributes

to FSVDR’s alleviation of the facial variations in expression, lighting condi-

tions, and occlusions on wearing glasses and scarves; 5) on FERET, OGVM

operates very poorly, with Rank 1, 11 and 21 classification accuracies only

being 8.2%, 28.9% and 38.1%. This is due to a large number (1196) of distinct

subjects in the training set and the great illumination variation in the testing

samples. Favored by the proposed FSVDR, the best Rank 1 classification is

42.3%, which is higher than the Rank 21 classification of OGVM. Meanwhile,

the best Rank 11 and 21 classification accuracies of FSVDR are significantly

higher than those of OGVM; 6) on YALE1, OGVM achieves a classification

accuracy of 52.0%, 28% lower than FSVDR’s best classification accuracy of

80.0%, which again verifies that FSVDR can alleviate such facial variations

caused by lighting and wearing glasses; 7) on YALE2, FSVDR achieves a

best accuracy of 85.3%, 12% higher than OGVM’s 73.3%, which attributes

to FSVDR’s ability to alleviate the distinct expression variations and lighting

changes.

Finally, the classification accuracies by directly applying SVs for classifica-

tion on AR1, AR2, AR3, AR4, FERET, YALE1 and YALE2 are respectively

11.6%, 1.7%, 1.7%, 9.6%, 0.5%, 27.3% and 44.0%, which is in accord with the

argument in [37] that the SVs contain little information for classification. Ob-

viously, our FSVDR can achieve significantly better classification performance

than FR by SVs.

3.3 An intermediate stage for several renowned DR methods

After verifying that FSVDR can yield significantly better classification per-

formance compared to OGVM and SVs, we now move on to show that the

FSVDR can improve the classification performance of two categories of renowned

DR methods: LDA-based methods and PCA-based methods. More specifically,

we will carry out experiments on the LDA-based methods such as PCA+LDA,

DCV and LDA/QR in Section 3.3.1 and the PCA-based methods such as PCA,

2DPCA and NIGLRAM in Section 3.3.2.

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
76

78

80

82

84

86

88

90

92

alpha value

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

AR1

DCV
LDA/QR
PCA+LDA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

85

90

alpha value

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

AR2

DCV
LDA/QR
PCA+LDA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
35

40

45

50

55

60

65

70

75

80

85

alpha value

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

AR3

DCV
LDA/QR
PCA+LDA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
66

68

70

72

74

76

78

80

82

84

alpha value

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

AR4

DCV
LDA/QR
PCA+LDA

Fig. 9. FSVDR as an IR for LDA-based methods on AR face database.
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Fig. 10. FSVDR as an IR for LDA-based methods on YALE face database.

3.3.1 LDA-based methods

We report the experimental results of employing FSVDR as an IR for LDA-

based methods in Fig. 9 and Fig. 10. For illustration convenience, we list the

best classification accuracies of FSVDR under optimal parameter α in Table

3, Fig. 13 and Fig. 14. Firstly, from Table 3, Fig. 13 and Fig. 14, we can

observe that, when performing the LDA-based methods based on OGVM for
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face recognition, they can generally yield significantly better classification ac-

curacies compared to those obtained on OGVM. For example, on AR3, the

classification accuracy based on OGVM is only 11.0%, but DCV, LDA/QR

and PCA+LDA-based on OGVM respectively yield classification accuracies

of 46.7%, 38.7% and 52.0%, or improvements of 35.7%, 27.7% and 41.0%.

However, due to the great facial variations, the LDA-based methods based

on OGVM can not achieve a satisfactory classification performance on AR3.

Secondly, from Fig. 9, Fig. 10, Table 3, Fig. 13 and Fig. 14, we can ob-

serve that when employing FSVDR as an intermediate representation, DCV,

LDA/QR and PCA+LDA can achieve significantly higher classification accu-

racies than those based on OGVM. More specifically, 1) on AR1, AR4, and

YALE2, the LDA-based methods utilizing FSVDR as an IR almost achieve

5.0% improvement in classification accuracies than the LDA-based methods

based on OGVM; 2) on AR2 and YALE1, the LDA-based methods employ-

ing FSVDR as IR witness over 20.0% improvement in classification accuracies

compared to those based on OGVM; 3) on AR3, the classification accuracies

of the LDA-based methods using FSVDR as IR are more than 30.0% higher

than those based on OGVM.

As a result, the LDA-based methods can benefit from FSVDR, which acts

as an IR to effectively alleviate facial variations such as expression, lighting,

occlusions on wearing glasses and scarves and so on.

3.3.2 PCA-based methods

After verifying that the FSVDR can improve the classification performance of

the LDA-based methods, we move on to show that the PCA-based methods

can benefit from FSVDR, which acts as an IR. The experimental results under

different α’s are reported in Fig. 11 and Fig. 12, and the best classification

accuracies based on the FSVDR are reported in Table 3, Fig. 13 and Fig. 14.

From these results, we can clearly see that the classification performance of the

PCA-based methods employing FSVDR as an IR is significantly better than

that of the PCA-based methods based on OGVM. More specifically, on one

hand, from the results reported on AR2, we can get that, the best classification

accuracies based on FSVDR for PCA1, PCA2, 2DPCA and NIGLRAM are

respectively 88.0%, 90.0%, 91.3% and 91.0%, which are 37.3%, 43.7%, 42.3%

and 38.3% higher than those based on OGVM. On the other hand, the most
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Fig. 11. FSVDR as an IR for PCA-based methods on AR face database.
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Fig. 12. FSVDR as an IR for PCA-based methods on YALE face database.

significant improvement of classification performance can be typically drawn

from the experiments on AR3, where PCA1, PCA2, 2DPCA and NIGLRAM

based on FSVDR are respectively 44.7%, 60.6%, 58.3% and 59.6% higher than

those based on OGVM.

As a result, from the results presented above, it is easy to conclude that when

employing FSVDR as IR, the classification performance of the DR methods
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Fig. 13. A comparison of the best classification performance of the proposed FSVDR
and OGVM utilizing different methods on AR face database. Left bar: the best
classification accuracy by FSVDR, right bar: the classification accuracy by OGVM.
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Fig. 14. A comparison of the best classification performance of the proposed FSVDR
and OGVM utilizing different methods on YALE face database. Left bar: the best
classification accuracy by FSVDR, right bar: the classification accuracy by OGVM.
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Table 3
The best classification accuracy (%) of the proposed FSVDR on the six independent
experiments and by all the methods. B: FSVDR and A: OGVM

Dataset NN DCV LDA/QR PCA+LDA PCA1 PCA2 2DPCA NIGLRAM

AR1
B 88.4 88.9 88.6 91.4 81.6 87.0 84.1 86.9

A 78.3 83.6 85.7 84.9 74.1 72.9 74.7 76.6

AR2
B 89.7 89.3 88.0 87.3 88.0 90.0 91.3 91.0

A 56.7 64.3 67.3 56.0 50.7 46.3 49.0 52.7

AR3
B 82.3 78.3 73.3 83.0 54.7 78.3 68.3 69.3

A 11.0 46.7 38.7 52.0 10.0 8.7 10.0 9.7

AR4
B 81.0 81.2 79.9 82.7 68.1 79.5 72.2 76.5

A 62.2 71.4 70.8 74.2 59.4 56.5 60.0 61.2

YALE1
B 80.0 82.7 84.0 85.3 61.3 69.3 76.0 81.3

A 52.0 52.0 49.3 58.7 50.7 50.7 49.3 52.0

YALE2
B 85.3 94.7 86.7 92.0 73.3 77.3 85.3 85.3

A 73.3 81.3 78.7 81.3 68.0 68.0 73.3 73.3

can be significantly improved.

3.4 Visualization of samples under the FSVDR

In this subsection, we will experimentally visualize the distribution of the

training and testing samples in the reduced space to show the benefits brought

by FSVDR. For this sake, we choose PCA+LDA as feature extraction method

which can project the data from C classes to a reduced C − 1 dimensional

space. We carry out two independent experiments: 1) in Fig. 15 (a) and (b),

the 30 samples corresponding to 3 randomly chosen classes are from AR2,

namely, samples (a-g) (see Fig. 5) are used for training and samples (h-j) are

utilized for testing; and 2) in Fig. 15 (c) and (d), the 30 samples corresponding

to 3 randomly chosen classes are from AR3, namely, samples (a-g) are used

for training and samples (k-m) are utilized for testing.
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Fig. 15. Visualization of samples from three classes projected by PCA+LDA. In (a)
and (c), OGVM is utilized; in (b) and (d), FSVDR is employed, with α = 0.1. (a)
and (b) use the same training and testing samples, and so for (c) and (d).

Firstly, we look at the training samples presented in Fig. 15 (a), from which we

can see that, when employing OGVM (or setting α to 1 in the FSVDR), the

samples from the same class are not compact, and the samples from different

class are not far away. More specifically, on on hand, the four training samples

from # 1 (denoted by square) are around (-4.8,4.4), but the other three train-

ing samples from # 1 are far away from (-4.8,4.4) and locate at (-4.7,10.4),

(-4.7,-10.4) and (-4.8,-3.5) respectively. Tracing the experimental results, we

know that the four training samples from # 1 that locate compactly around

(-4.8,4.4) are samples (a-d), while the other three samples are samples (e-g)

respectively. Similar observations can also be obtained from the training sam-

ples from # 2 and # 3. On the other hand, the Euclidean distance between

(-4.7,10.4) from # 1 to (0.8, 10.5) from # 2 is about 5.5, quite less than 20.8,

the Euclidean distance between (-4.7,10.4) from # 1 and (-4.7,-10.4) from the
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same class # 1. Obviously, the above given experimental results show that,

when performing PCA+LDA on OGVM, we can not come to the objective

that the samples from the same class are compact and meanwhile the samples

from different classes are far away in case of great facial variations.

Secondly, we look at the testing samples presented in Fig. 15 (a), from which

we can clearly see that the testing samples from the same class are not com-

pact too and meanwhile the samples from different classes are not far away.

Moreover, the testing samples (of the three classes) corresponding to (h) are

around a horizontal line y = 2.7, those corresponding to (i) around a hori-

zontal line y = 6.0 and those corresponding to (j) around a horizontal line

y = −7.0. The Euclidean distance between (-2.5,6.8) from # 1 and (-1.1,6.8)

from # 2 is 1.4, quite less than 14, the Euclidean distance between (-2.5,6.8)

from # 1 and (-2.9,-7.2) from the same class # 1.

The results presented in Fig. 15 (c) witness similar phenomenon as Fig. 15

(a). The reason behind the phenomena in Fig. 15 (a) and (c) is: when based

on OGVM, the PCA+LDA is unable to compactly cluster the same class

samples, which are under severe facial variations such as lighting, expression

and occlusions.

Finally, we turn to the experimental results with FSVDR as an intermediate

representation (α is set to 0.1) in Fig. 15 (b) and (d), from which we can

clearly see that: 1) the training samples belonging to the same class become

very compact; 2) the training samples belonging to different classes are well

separated from each other; 3) the testing samples from the same class are

compact with each other; 4) generally speaking, these testing samples do not

locate very near to the training with the same classes, which attributes to

the fact that our proposed FSVDR does not remove the occlusions such as

glasses and scarves, and on the contrary it just alleviates the influence of such

occlusions; 5) despite that the testing samples do not locate very near to the

training samples in the same classes, the testing samples can all be correctly

classified, which attributes to the fact that the testing samples are farther

away from the training samples of different classes compared to those of the

same class.

Comparing the results presented in Fig. 15 (a) and (c) with those in (b) and

(d), we can clearly see that, FSVDR’s alleviation of the facial variations can
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help PCA+LDA achieve its objective (namely, samples from the same class

are compact and samples from different classes are far away) and as a result

can help improve the classification performance.

3.5 The parameter α

In FSVDR, α is a key parameter that should be tuned. From Fig. 7, 8, 9,

10, 11 and 12, we can observe that the classification accuracy curves are ap-

proximately unimodal and that there are many α’s that can achieve superior

performance to OGVM. Further, in our experiments, α = 0.1 seems to be a

good choice for NN and the PCA-based methods, and α = 0.4 seems to a nice

choice for the LDA-based methods.

Generally speaking, in designing automatic criterion for choosing adequate

parameter α, one should consider the following factors: 1) the smaller α is,

the more the leading base images (which are sensitive to facial variations) are

deflated but meanwhile the discriminant information contained in the leading

base images may be deflated too; 2) some face images have great facial vari-

ations (e.g., Fig. 5 (h-m, u-z)) and are perhaps in favor of smaller α’s, while

some face images have slight facial variations (e.g., Fig. 5 (a, n)) and might

be in favor of larger α’s; 3) the α learned from the training set is a tradeoff

among all the training samples and thus is only applicable to the unknown

sample from the similar distribution; and 4) each DR method has its specific

application scope, which leads to the difficulty in designing a unique α selec-

tion criterion for all the DR methods. As a result, the criterion for automatic

choosing α should be dependent on the training samples, the given testing

sample and the specific DR method.

In the following, instead of aiming at finding an automatic criterion that is

applicable to all methods and databases, we try to look for an automatic

criterion for the LDA-based methods. Furthermore, in order to ensure that the

learned α on the training set is applicable to the testing set, we only consider

the case that the testing set has similar distribution as the training set (In

fact, this is also almost a basic and common assumption of statistical learning

theory, and one can easily get that AR1 and AR4 satisfy this condition, while

others not).
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Firstly, we introduce a Mean Square Variance (MSV) criterion defined in [27]:

MSV =
1

C

C∑

i=1

SVi, (12)

where SVi is the standard variance of the i-th class defined as

SVi =
1

d

d∑

k=1

√√√√√ 1

Ni − 1

Ni∑

j=1

(xi
jk −mik)2, (13)

where xi
jk and mik respectively denote the k-th element of the d-dimensional

samples xi
j and class mean mi, C is the number of classes, and Ni is the

number of training samples contained in the i-th class. In [27], we argued that

when MSV is relatively small, LDA-based methods such as DCV will operate

well, and on the contrary, when the MSV value is relatively high, LDA-based

methods such as DCV will operate poorly. A justification for this criterion is

given as follows: 1) the smaller MSV is, the compact the same class samples

are, and on the contrary, the bigger MSV is, the looser the same class samples

are; 2) when the same class samples are very loose, these samples will lead

to biased estimation of the class mean, within-class and between-class scatter

matrices, while on the contrary, when the same class samples are compact, the

estimation of the class mean, within-class and between-class variance matrices

may be much more reliable; 3) when the same class samples are compact, it

is more likely that these samples can nicely depict the Gaussian distribution

from which they are generated; and 4) considering the fact that LDA is a

special case of the Bayesian decision theory [10] under the assumption that

the C classes samples are respectively from C Gaussian distributions with

equal covariance, then it is essential for the same class samples to be compact,

namely MSV to be small in the LDA-based methods.

Based on the above argument, we give a heuristic criterion to automatically

choose an adequate α for the LDA-based methods

αopt = arg min
α

MSV (α) (14)

where MSV (α) is the Mean Square Variance of the training samples xi
j =

vec(Bi
j), j = 1, 2, . . . , Ni, i = 1, 2, . . . , C, Bi

j is the FSVDR of the face image

samples Ai
j under parameter α and Ai

j denotes the j-th face image from the

i-th class.
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Fig. 16. Values of MSV under different α’s on AR1 and AR4.

We report the experimental results on AR1 and AR4 in Fig. 16, from which

we can see that, on AR1 and AR4, when α is set to 0.4, MSV (0.4) achieves

the optimal value. Turning to the results presented in Fig. 9, we can clearly

see that, when α is set to 0.4, the LDA methods (such as DCV, LDA/QR and

PCA+LDA) based on FSVDR can yield near optimal classification perfor-

mance that is significantly higher than those based on the OGVM. To further

verify that the learned α from a distribution is applicable to the testing sam-

ples from the similar distribution, we carry out the following five experiments

by utilizing the same testing samples as AR1 and the first p face images of

each person for training, where p changes from 3 to 7 incremented by 1. We

employ the learned α = 0.4 on AR1 for FSVDR in the five experiments and

present the results in Fig. 17, from which we can see that: 1) the learned

α = 0.4 on AR1 is effective on the five experiments and the LDA methods

based on FSVDR can obtain significantly superior performance to those based

on OGVM. The underlying reason might be that the testing samples in the

five experiments are from the similar distribution as the training samples in

AR1 and thus the learned α = 0.4 on AR1 is applicable to them; and 2) both

FSVDR and OGVM can benefit from more training samples per class.

Finally, the experimental results on YALE1 and YALE2 show that, MSV (0.6)

achieves the optimal value in terms of (14). However, from Fig. 10, we can

observe that, when α is set to 0.6, although the LDA methods (such as DCV,

LDA/QR and PCA+LDA) based on FSVDR can yield better performance

than the LDA methods based on OGVM, they are inferior to the optimal

ones, which might attribute to the fact that the testing samples are quite

different from the training samples, and thus the α learned on the training
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Fig. 17. Performance under different number of training samples per class with
α = 0.4 on AR1

set is not well-tuned for the testing samples. To deal with this problem, the

testing sample should be taken into consideration in designing criterion for α,

which is worthy of our future study.

4 Conclusion

In this paper, we show that the face image matrix A can be viewed as a compo-

sition of a set of base images generated by their SVD per se, where the leading

base images on one hand dominate the composition of A and on the other hand

are sensitive to the great facial variations within the image matrix A. Based

on these observations, we propose a novel FSVDR B, which is a transformed

version of OGVM A by SVD and the fractional parameter α and can alle-

viate facial variations for face recognition. The effectiveness of the proposed

FSVDR is verified by extensive experiments conducted on AR, FERET and

YALE face databases. More specifically, 1) when directly employing FSVDR
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for classification, it can yield significantly higher classification accuracies than

both OGVM and SVs; and 2) as an intermediate representation, the FSVDR

can significantly improve the classification performance of two important cat-

egories of DR methods: a) the LDA-based methods such as PCA+LDA, DCV

and LDA/QR, and b) the PCA-based methods such as PCA, 2DPCA and

NIGLRAM.

In order to show the benefits brought by FSVDR, we select PCA+LDA as

a representative, visualize the distribution of both the training and testing

samples in the space projected by PCA+LDA to show that, based on the

FSVDR, PCA+LDA can cluster the same class samples compact and mean-

while can make the samples from different class far away from each other while

PCA+LDA based on OGVM can not. And as a result, FSVDR can improve

the classification performance of the LDA-based methods such as PCA+LDA.

Generally speaking, it is both database and method dependent to choose the

appropriate value for the parameter α in the FSVDR. Based on our previous

work in [27], we give a heuristic criterion in (14) for choosing the appropriate

α value for the LDA-based methods such as DCV, LDA/QR and PCA+LDA.

And the experimental results show that this criterion can operate well when

the testing sample are from the similar distribution as the training samples.

In our viewpoint, there are the following aspects that are worthy of further

studies: 1) come up with criteria that can automatically set α adequate values

for PCA-based methods such as PCA, 2DPCA and NIGLRAM; 2) modify the

MSV criterion to take the testing sample into consideration so that it can be

applicable to the case that the testing sample differs from the training samples

to a large extent (e.g., AR2, AR3, FERET, YALE1 and YALE2); 3) carry out

research to set sample dependent parameter α, since different face samples

are affected by facial variations differently (note that, in our FSVDR, we set a

universal value for all the face samples); 4) set different α values for different

singular values in order to better suppress noise and meanwhile retain dis-

criminant information; 5) compare FSVDR with intermediate representations

such as Gabor wavelet and DCT for face recognition; and 6) combine FSVDR

and Gabor wavelet or DCT to form a new intermediate representation for face

recognition.
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