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Tri-Subject Kinship Verification: Understanding
the Core of A Family
Xiaoqian Qin, Xiaoyang Tan, and Songcan Chen

Abstract—One major challenge in computer vision is to go
beyond the modeling of individual objects and to investigate the
bi- (one-versus-one) or tri- (one-versus-two) relationship among
multiple visual entities, answering such questions as whether a
child in a photo belongs to the given parents. The child-parents
relationship plays a core role in a family, and understanding such
kin relationship would have a fundamental impact on the behavior
of an artificial intelligent agent working in the human world. In
this work, we tackle the problem of one-versus-two (tri-subject)
kinship verification and our contributions are threefold: 1) a novel
relative symmetric bilinear model (RSBM) is introduced to model
the similarity between the child and the parents, by incorporating
the prior knowledge that a child may resemble one particular
parent more than the other; 2) a spatially voted method for feature
selection, which jointly selects the most discriminative features for
the child-parents pair, while taking local spatial information into
account; and 3) a large-scale tri-subject kinship database charac-
terized by over 1,000 child-parents families. Extensive experiments
on KinFaceW, Family101, and our newly released kinship data-
base show that the proposed method outperforms several previous
state of the art methods, while could also be used to significantly
boost the performance of one-versus-one kinship verification when
the information about both parents are available.
Index Terms—Feature selection, kinship verification, tri-subject

relationship.

I. INTRODUCTION

K INSHIP verification from facial images is an emerging
problem in computer vision. Froman aspect of face recog-

nition, kinship provides us with a valuable and operational op-
portunity to construct useful relationship between persons based
on their visual signals, thus deepening our understanding on their
semantics. Applications of kin relationships include face image
retrieval [1]–[3]/annotation [4], [5]/organization, increasing face
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recognition rates [6], [7], social media analysis [8], [9], finding
of missing children, children adoptions [10], and so on.
Besides its wide applications, kinship learning is also moti-

vated by the long-term goal of computer vision to go beyond
the understanding of a single visual entity (e.g., “whose face is
this?”) and to investigate the bi- or tri- relationship among mul-
tiple visual entities, e.g., answering such questions as whether
a child in a photo belongs to given parents. Actually, recent re-
search has demonstrated that computer vision algorithms have
been able to understand individual face image fairly well - the
best result on the challenging LFW (labeled face in the wild)
face verification database has reached an accuracy as high as
99.15% [11] - even better than what can be done by a human
being. However, extending those techniques to characterise the
complex relationship among multiple entities is not trivial. One
major reason is due to the fact the appearance gap encountered
in a kinship problem is much larger than that in a conventional
face recognition setting (e.g, given two face images with dif-
ferent sex and different ages, verify whether those two subjects
are father and daughter).
In this sense, kinship learning is a step towards such a trend

to capture mutual information among different visual entities,
particularly multiple face images. Most of current researches
[12]–[17], however, mainly focus on the kinship involving
only two subjects (one-versus-one) such as father-son or
mother-daughter, while in practice, kin relationship involving
more subjects are desirable, for example, in the problem of
finding missing children, usually we have the photos of both
parents, and there is no reason preventing us from using images
of both parents at the same time for more effective kinship ver-
ification. As another application scenario of law enforcement,
it would be beneficial to match the image of a criminal suspect
with those of his/her parents to improve the performance of
suspect searching. Motivated by this, [18] assembled a family
database containing 45 families with an average of 120 near
frontal facial samples per family. Fang et al. [19] collected the
Family101 kinship dataset, containing 14,816 face images from
206 nuclear families. Both [18] and [19] ask questions con-
cerning more general family membership (one-versus-multi)
beyond father and son.
In this paper we focus on the problem of tri-subject (one-

versus-two) kinship learning (i.e., son-parents and daughter-
parents). This is an important special case of the more ambi-
tious one-versus-multi verification and is largely overlooked in
literatures. The child-parents is the core and the most basic unit
formed in a family and understanding such kind of kin relation-
ship would have fundamental impact on the behavior of an arti-
ficial intelligent agent working in a human world. Furthermore,
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compared to the problem of one-versus-multi kinship verifica-
tion, the one-vs-two verification is a more convenient and more
practical choice - not only because its scope is more control-
lable, but also because the problem by itself is easier to define
since otherwise it could be difficult to determine kinship rela-
tions in a big family genetically and without ambiguity, espe-
cially for those people among whom the kinship ties are weak.
To address this problem of tri-subject kinship verification,

the key idea of our method is to fully exploit the dependence
structure between child and parents in a few aspects: similarity
measure, feature selection and classifier design. This is based on
the observation that compared to the case with only one image
from one of the parents, images from both parents could provide
richer information about the kinship relation regards to a child,
due to the genetic overlapping between a pair of parents and their
child. To this end, our contributions are three folds. First, we use
a bilinear function to model the similarity between the parents
and the child, with the dependence between them captured by a
covariance-like matrix learnt from the data. To make this more
robust, we introduce a novel relative bilinear similarity model
which effectively incorporates the prior knowledge [20] that
children may resemble a particular parent more than another.
Second, we propose a spatially voted method for feature se-

lection, which jointly selects the most discriminative features
for the child-parents pair, while taking local spatial information
into account. Compared to traditional group-based feature se-
lection methods such as group lasso, we essentially allow the
features in a whole image to compete with each other and then
select the group in which higher portion of individual features in
the corresponding local region win. By contrast, in group lasso,
features are teamed together beforehand and have to compete
with others as a group. Our method is more flexible than the
latter in the sense that it permits fine-grained control over the
contribution of each feature to the establishment of one-vs-two
kin relationships.
Finally, we release a new face database specific to the tri-sub-

ject kinship problem, characterized by over 1,000 child-parents
groups. State-of-the-art results are achieved using our method.
Interestingly, our experimental results also show that the accu-
racy of one-vs-one bi-kinship verification benefits a lot by re-
formulating it as a specific case of one-vs-two tri-kinship verifi-
cation when the information about a second parent is available.
This journal paper builds on the earlier conference work [21].

In what follows we briefly review some of the related work in
Section II, and detail our proposed method in Section III. Our
new kinship database is described in Section IV and experi-
mental results are given in Section V. We conclude this paper
in Section VI.

II. RELATED WORK

The aim of bi-subject (one-versus-one) kinship verification
through computer vision is predicting whether a given pair of
images has kin relation. The research in the field of human visual
signal processing [22], [23] has provided strong evidence that
facial appearance is a useful cue for genetic similarity, since
children look more similar to their parents than other adults of
the same gender. To find such distinguishable cues from facial
appearance, in an early attempt, Fang et al. [12] used various

features including the skin, hair and eye color, facial structure
measures and local/holistic texture.
Later, researchers evaluated various types of feature descrip-

tors for kinship verification. In [10], the DAISY descriptors
are adopted to facilitate local facial patches matching for
eyes, mouth and nose with spatial Gaussian kernels. In [24], a
spatial pyramid learning-based feature descriptor is utilized to
represent kinship faces. In [25], a gated autoencoder method
is used to encode the resemblance between a parent and a
child, which is trained through minimizing the reconstruction
error given a set of randomly sampled local patches. In [7],
dense stereo matching is used to determine kinship similarity.
Other feature sets for kinship verification include Gradient
Orientation Pyramid (GGOP) [8], Self Similarity Represen-
tation (SSR) [26] and prototype-based discriminative feature
learning (PDFL) method [27]. Since semantic-related feature
sets such as attributes usually show more tolerance to appear-
ance changes, they are naturally used for kinship verification
[14]. Based on the idea that people look more like their parents
when they smile, [16] proposes to describe facial dynamics
and spatio-temporal appearance over smile expression and uses
these to improve the kinship verification rate.
In [15] the authors show that combining several types of

middle-level features is useful. For that purpose, they intro-
duced a multiview neighborhood repulsed metric learning
method (MNRML) by learning a distance metric under which
the samples with a kinship relation are pulled close and those
without a kinship relation are pushed away. [17] and [28] extract
multiple features to characterize face images and maximize
the correlation of different features to exploit complementary
information for kinship verification. Another way to reduce
the appearance similarity gap is to use intermediate samples
which bridge the two sides with large divergence. In [13], [29],
[30] and [31], such a bridge is constructed by facial images of
parents at the similar ages of their children. However, it is not
easy to collect such an image set in practice.
While most of the above works focus on the bi-subject (one-

versus-one) kinship verification, [18] and [19] deal with the
one-versus-multi kinship relation. Particularly Ghahramani et
al. [18] addresses the problem of family verification, i.e., pre-
dicting whether a query face image has kin relation with mul-
tiple family members, by fusing similarity of each member’s
facial image segments. Fang et al. [19] tackle the more general
familymembership classification, i.e., given a query face image,
asking which family it belongs to, and they do this with a min-
imum sparse reconstruction method. Despite the partial success
of these methods, we argue that in general it is difficult to es-
tablish the relationship between a subject and some members
of his/her family through the face appearance if the kinship ties
between them is weak.1 Instead we focus on the verification of
the most basic unit that forms a family, that is, the child-parents
(one-versus-two) relationship. We call this tri-subject kinship
verification. The methods developed here can be potentially ex-
tended to handle more complex relationship by treating a family
tree as an ensemble of tri-relationships.

1For example, it makes no sense to reconstruct a man’s face image using his
father-in-law’s.



QIN et al.: TRI-SUBJECT KINSHIP VERIFICATION: UNDERSTANDING THE CORE OF A FAMILY 1857

Fig. 1. Overall architecture of the proposed method.

III. TRI-SUBJECT KINSHIP VERIFICATION

In this section, we present our method for tri-subject kinship
verification. Assume that we are given a set of training sam-
ples , where respec-
tively denotes the -th sample of a father, a mother and a child,
is the dimension of the feature representation of a sample, and

indicates whether this child has a valid kinship
relation with the corresponding two parents. Here by kinship
relation we mean a very close family type relation, that is, the
child is produced by the two parents.
Our goal is to learn a function

from the training data to check whether such a kinship could be
established for three previously never seen images
of a couple and a child. For simplicity we assume that the gender
of both parents images are known and that they indeed
genetically produce some children, but we do not know whether

is one of them. We also assume that the gender of the test
image of the child is known.

A. Two Bilinear Models for Kinship Verification

The overall architecture of the proposed method is shown in
Fig. 1, which can be roughly divided into three stages. Particu-
larly, in the first stage, we partition an image into overlapping
patches and extract a middle-level feature descriptor (e.g., 128-
dimensional SIFT features) from each patch (location), which
are then concatenated into a feature vector as the input to the next
stage. In the second stage we use a spatially voted feature selec-
tionmethod to select themost discriminative local facial patches
to improve the robustness. Finally in the third stage, we learn
the similarity between parents and child using bilinear models,
based on which the final kinship verification is made.
In this work, we explore two ways to encode the similarity

between parents and a child. The first one is to decompose the
triples of into two pairs and , and
the pairwise similarity between them is respectively

(1)

where , and the transformation matrix
essentially encodes the “covariance” relationship

between a parent and a child, to be learnt from the training data.
Since both are matrix and the similarity func-

tion is a bilinear function, we call this Symmetric BilinearModel
(SBM). The bilinear model has many advantages compared to
the simple Euclidean-based model: 1) it is a natural choice to
model the similarity between two subjects; and 2) it is also a
much richer model than a traditional linear model–actually the
bilinear model is related to theMahalanobis distance (especially
when the energy of each feature vector is fixed) and hence it
can effectively capture the correlation between any two feature
variables. However, the bilinear model is different from theMa-
halanobis distance in that its parameter matrix is not neces-
sarily a positive definite matrix, which not only indicates that it
could be more flexible than a traditional metric learning-based
method, but also means that what a bilinear model learns is not a
metric but a classifier. But this is exactly what we need–a model
to predict directly whether a given pair of subjects has some kind
of kinship, rather than the metric between them.
We further denote the probability that a child belongs to

a pair of parents as , and it is
linked to our verification function through a sig-
moid function, i.e.

(2)

where sigmoid function is defined to be .
The verification function is modeled as the linear
combination of two pieces of evidence, i.e., the similarity of
to and , respectively

(3)

where the combination coefficients and are two scalars
and is the similarity threshold term. To learn these parame-
ters, we maximize the conditional likelihood defined by (2) by
plugging (1) into it, with regularization added. How to learn
the pairwise similarity (1) will be detailed in the next section.
Alternatively, one can treat the parents and the child as sam-

ples from two domains. Let us denote the parents domain as ,
with data points , and
the child domain as , with data points . With
these notations, one can model the similarity between a child
and his/her parents as

(4)

where is a matrix. This model is called Asymmetric
Bilinear Model (ABM) in what follows.
For the ABM model, our verifier is defined as follows:

(5)

where is the sigmoid function. The parameters
are learnt using the following regularized logistic regression
objective:

(6)
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where is the threshold, and is the trace norm, defined
as (the are the singular values of ).
With appropriate parameter , the trace norm shall force a solu-
tion with many singular values of being exactly zero. This
allows a more compact representation of the data, thus being
useful especially when the original feature space is high-dimen-
sional. Equation6 is a nonsmooth convex objective and one can
use proximal methods to solved it, where at each step the sin-
gular values of the standard gradient update are replaced by their
soft-threshold versions. See [32] for details on an efficient im-
plementation of this.
Comparing the SBM model and the ABM model, the SBM

learns two simple models first (i.e., by learning two
parameter matrices , separately) and then combines
them with coefficients and , while the ABM learns a
bigger model at one time (a parameter matrix ). In
other words, the SBM essentially combines two sub-modules
(one does the father-child kinship verification and the other for
the mother-child relation), which not only makes the learning
task easier, but also provides further flexibility to calibrate the
outputs of the two sub-modules such that the final prediction
(father/mother-child) is as accurate as possible. By contrast,
the ABM model tries to do this in one big step, which is much
harder especially when the size of dataset is relatively small
(less than images for training in our case) for a
matrix (for , the total number of parameters would be

).

B. Learning A Relative Pairwise Similarity Measure

Note that the SBM model introduced in (1) is a pair-
wise similarity model without exploiting the dependence struc-
ture among parents and child, which can be considered as a
limitation. In fact, one can interpret the SBM as a likelihood
model, while to better model the similarity between a father
and a son for example, one should put it under the context of
three subjects - i.e., instead of modeling the marginal pairwise
similarity [e.g., (father is similar to son)], modeling its con-
ditional version [e.g., (father is similar to son|father, mother,
and son)]. One major advantage of this is to allow us to embed
various prior knowledge concerning tri-subject groups into the
similarity model. In this work, we are particularly interested
in the prior knowledge that children may resemble a particular
parent more than another [20] - “Jack looks more like his fa-
ther than his mother” or “John has similar appearance with her
mother”.
Let us denote the probability that a child looks more like

his/her father or his/her mother as and respectively, i.e.,
‘ ‘ means that a child looks more like his father than
his mother. Taking the parents as references, the child is either
more like his/her father or more like his/her mother, so we have

. We therefore define the two probabilities using
the softmax function, based on the pairwise similarity model de-
fined in (1)

(7)

Incorporating these into the SBM model, we obtain the fol-
lowing relative symmetric bilinear model (RSBM)

(8)
One remaining problem is how to determine these priors. Equa-
tion (7) shows that they depend on the parameters and ,
which suggests a natural iterative procedure - initialize and

first, then optimize and in a supervised manner, fi-
nally update and again. In this work, we learn and

separately using the same trace-norm regularized logistic
regression model as that shown in (6).
However, updating and is somewhat subtle - the

range of the sigmoid function of (7) is in [0,1], meaning that
when one of , reaches 1 the other one must be nearly 0.
This is risky, since for the one with 0 probability, the contribu-
tion of its corresponding similarity could be cancelled out. To
prevent this from happening, we update the new using
a stabilizing term, as follows:

(9)

where is a trade-off parameter, and the stabilizing
terms , are initialized to be 0.5 for each sample, and

, are priors calculated according to the or
values estimated in the current iteration. In other words, we
choose not to trust the currently-estimated similarity prior too
much and always regularize it with some fixed stabilizing value.
Principally one can optimize the value of by plugging (9)
into the corresponding regularized logistic regression objective
function while treating or as a constant, but in our im-
plementation we set it using a cross validation strategy.2
The proposed RSBM algorithm is summarized in Algo-

rithm 1.

Algorithm 1 Solving the Relative Symmetric Bilinear Model
(RSBM)

Input:
Training images: ;
Parameters: regularization term , iteration number T,
and trade-off parameter

Output:
Symmetric transformation matrix , ;

1: Initialization:
2: Decompose S into two sets

and ;
3: Set ;
4: For do
5: Estimate and by solving regularized logistic

regression objective [c.f., (6)];
6: Update the pairwise similarity with (8);
7: Estimate using (7);
8: Update by using (9);
9: Set ; ;
10: end for
11: Output Symmetric transformation and .

2In practice, a small value of usually works well.
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Fig. 2. Patch selection using (a) the group lasso and (b) the proposed feature
selection method. Here, for illustration purpose, the face image in the middle is
partitioned into 49 overlapping patches. For (a), the group lasso method directly
selects the most discriminative patches by imposing group competition, and the
selected groups (patches) are indicated on the right with blue bars, while the
corresponding weights of each feature vector in a group is shown in the left his-
togram; for (b), the discriminative power of each feature (i.e., the weight vector
, see text for details) is first estimated and is shown in the left histogram, while

the histogram on the right shows for each patch how many votes it receives, and
the first patches receiving the highest number of votes will be selected.

C. Spatially Voting for Feature Selection

The total number of parameters (i.e., , and ) for
our kinship verification model grows quadratically with the di-
mensions of input features, hence performing feature selection
is needed. It can be observed that some important genetic char-
acteristics for a kinship relationship are distributed locally in
face images, and it is better to learn them by finding the most
discriminative local facial regions (patches) with some super-
vised information. Furthermore, we want to select those most
discriminative patches from both parents and the child images
simultaneously such that good generalization can be obtained.
One simple way for this is to treat each patch in an image as

a group and use existing techniques such as group lasso [33] to
select a few groups (patches) such that they give the best predic-
tion accuracy, see Fig. 2(a) or illustration. However, one draw-
back of this method is that the feature selection is performed at
the level of groups (patches), i.e., the features have to be teamed
together before competition and this may hurt the flexibility
of feature selection. To overcome this, we adopt an alternative
strategy - competition before grouping. That is, all features ex-
tracted at each location in a given image (c.f., Section III-A on
how we extract features) are allowed to freely compete with
each other and then select the groups (local regions) in which
higher portion of individual features win. Hence our method
works in a finer granularity than that of the group lasso. The
process of our vote-based feature selection method and group
lasso is shown in Fig. 2.
Particularly, our algorithm has two steps. In the first step, we

evaluate the discriminative power of each feature of a parent
regard to the given child. For this we decompose the triple of

into two pairs of and . Then for a
pair of father-child features , we first concatenate them
into a -dimension vector denoted as , and learn a weight
vector with the same dimension using the following sparse
regularized logistic regression objective

(10)

Fig. 3. Some family image groups of our TSKinFace database, where each
group consists of a family triple of a father, a mother, and a child. The first row
shows three father-mother-daughter (FM-D) relation families, respectively,
and the second row are three father-mother-son (FM-S) relation families,
accordingly.

where if the pair is a positive sample and other-
wise. Solving this will give us a -dimension vector with
its first half and the second half respectively representing the
importance of each feature of the father and the child. The same
procedure is repeated for the mother-child pairs and yields a
vector .
Now, instead of performing feature selection directly using

the information contained in , we use this to vote the patches
of face images and select those patches receiving high votes for
face representation. Particularly, after solving the L1 logistic re-
gression, we calculate separately for the parent and child how
many votes per patch received from . Intuitively, the more
votes a patch receives, the more important it is.
Fig. 2(b) illustrates this procedure. Since we know the map-

ping structure between each feature and each patch beforehand,
the votes received by the -th patch can be simply calcu-
lated as the sum of weights of corresponding to this patch, i.e.,

, where denotes the -th element of vector
corresponding to patch . Note that for a patch of the child

image, it would receive votes from the corresponding features
of both and , while for a father or a mother patch, its vote
comes merely from or accordingly. After voting, we se-
lect the first patches with the highest value for parent and
child respectively, where is set using cross validation over a
validation set in our implementation (the best value is usually
between 20 and 30 with 49 patches per face.).
As mentioned previously, after patch selection, we collect

for each image the selected patches and encode them with
SIFT descriptor, which are further concatenated to form a fea-
ture vector for that face.

IV. THE TSKINFACE DATABASE AND EVALUATION PROTOCOL
To analyze the behavior of the proposed algorithm for tri-sub-

ject kinship verification, we constructed a new kinship face data-
base named TSKinFace (Tri-Subject Kinship Face Database).
All images in the database are harvested from the internet based
on knowledge of public figures family and photo-sharing so-
cial network such as flickr.com. During images collecting, we
impose no restrictions in terms of pose, lighting, expression,
background, race, image quality, etc. Fig. 3 shows some image
groups of child-parents pair from our TSKinFace database. This
database will be made publicly available online3 to advance the
research and applications related to this topic.
Table I gives a comparison between our TSKinFace database

and other existing kinship databases of human faces. It can be
seen that our database is characterized by the largest number of

3[Online]. Available: http://parnec.nuaa.edu.cn/xtan/data/TSKinFace.html
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TABLE I
COMPARISON OF OUR TSKINFACE DATABASE AND SOME EXISTING KINSHIP

DATABASES OF HUMAN FACES, WHERE “#GROUPS” REFERS TO THE
NUMBER OF KINSHIP RELATION GROUPS (BLOOD-RELATION FAMILY)

IN THE DATABASE, AND “FAMILY STRUCTURE” REFERS TO THE
EXISTENCE OF FAMILY RELATIONSHIP IN THE DATABASE

TABLE II
FACE NUMBER INDEX OF EACH FOLD OF THE TSKINFACE DATABASE

people and families. Specifically, the number of families con-
tained in our database is over 20 times more than that of [18] and
about 5 times more than that of the Family101 database. These
features make our dataset particularly suitable for one-vs-two
type kinship verification.
In particular, we are interested in three kinds of child-parents

families in real life, i.e., Father-Mother-Daughter (FM-D),
Father-Mother-Son (FM-S) and Father-Mother-Son-Daughter
(FM-SD). For each type, we collected 274, 285 and 228 family
photos respectively, with one photo per family. Using these,
we constructed two kinds of family-based kinship relations
in the TSKinFace database: Father-Mother-Son(FM-S) and
Father-Mother-Daughter(FM-D). The FM-S and the FM-D
contain 513 and 502 groups of tri-subject kinship relations (c.f.,
Fig. 3), respectively. Hence we have 1015 tri-subject groups in
our database totally. The families included in our database are
diverse in terms of races as well. For FM-S relation, there are
343 and 170 groups of tri-subject kinship relations for Asian and
non-Asian, respectively. And for FM-D relation, the numbers
for Asian and non-Asian groups are respectively 331 and 171.
Preprocessing: All downloaded images undergo the same

geometric normalization prior to analysis: face detected and
cropped using our own implemented Viola-Jones detector,
rigid scaling and image rotation to place the centers of the two
eyes at fixed positions, using the eye coordinates output from
an eye localizer [35]; image cropping to pixels and
conversion to 8 bit gray-scale images. In our experiments, each
face image was divided into overlapping patches and the
size of each patch is . For each patch, we extracted a
128-dimensional SIFT feature. Except mentioned otherwise,
for all experiments described in this work, the SIFT is adopted
as our default feature descriptor.
Evaluation Protocol: We design a verification protocol for

our database following [13] and [15]: the database is equally
divided into five folds such that each fold contains nearly the
same number of face groups with kinship relation, which facil-
itates five-fold cross validation experiments. Table II lists the
face number index for the five folds of our TSKinFace data-
base. For face images in each fold, we consider all groups of

face images with kinship relation as positive samples, while the
negative samples are a random combination with a child image
and two parents images subjected to the constraint that the child
was not produced by them. In general, the number of negative
samples is much more than that of the positive samples. In our
experiments, each couple and child images appeared only once
in the negative samples. Hence, the number of positive groups
and negative groups are the same.

V. EXPERIMENTS

A. The Tri-Subject Kinship Verification

To the best of our knowledge, there are very few works that
tackle the tri-subject kinship verification problem, and it is very
difficult to find an existing method directly comparable to ours.
We therefore design a naive baseline by concatenating the fea-
ture vectors of three visual entities and learning a linear SVM for
verification. We denote this method as ‘concatenated+SVM’.
Alternatively, one can use any existing state-of-the-art bi-sub-

ject kinship verification model to score the similarity between a
child and his/her parents separately, and then train a linear SVM
over these to make the final prediction [c.f., (3)]. Here two best
performers (on the KinFaceW dataset) on bi-subject kinship
learning, i.e., neighborhood repulsed metric learning (NRML)
[15], and gated autoencoder [25] are adopted as our basemodels.
Furthermore, considering that the similarity modeling is related
to metric learning, we also include two classical metric learning
algorithms, i.e., Information-theoretic metric learning (ITML)
[36] and large margin nearest neighbor classification (LMNN)
[37] as the base models.
Although they deal with different problem, the image set

based face verification bears some similarities to the problem of
tri-subject kinship verification from the respect of methodology,
i.e., both involve similarity matching between multiple faces.
Hence in this work, we also adopt one of the best performers on
the YouTube Face database, i.e., DDML (Discriminative Deep
Metric Learning) [38], to score the pairwise similarity between
a child and his/her parents, and then train a SVM over these to
make the final prediction. Particularly, we train a deep metric
learning network with three layers using our own implementa-
tion, with the threshold , the learning rate and regularization
parameter set to be , respectively.
Our method is also closely related to Fang et al. [19] in that

both deal with the family structure. However, since their method
is mainly designed for kinship classification, it is not directly
comparable to ours. But we follow their ideas to build a linear
SVM-based kinship verifier to make the comparison feasible.
Particularly, we construct a reconstruction errors-based repre-
sentation (at the patch level) for each face using sparse group
lasso [19], by treating images belonging to the same family as
a group.
Finally, we compare several variants of the proposed method

in our experiments, as follows.
• With/without feature selection (FS): To investigate the ef-
fectiveness of the proposed vote-based feature selection
method, for both SBM and ABMmodels, we evaluate their
with/without feature selection versions.
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Fig. 4. ROC curves of different methods obtained on the TSKinFace dataset.

TABLE III
CORRECT VERIFICATION RATES (%) FOR DIFFERENT METHODS
ON THE TSKINFACE DATABASE (WHERE “FM-S”,’FM-D”
DENOTE “FATHER-MOTHER AND SON”, “FATHER-MOTHER

AND DAUGHTER,” RESPECTIVELY)

• Working at the block level: The proposed method can also
be applied at the level of blocks (patches), i.e., selecting
the most discriminative patches first, then learning the “co-
variance” relationship and making verification predictions
based on each selected patches, and finally aggregating
these meta-decisions through linear SVM for the final ver-
ification judgement.

In what follows, a notation like ‘RSBM-block-FS’ means
a Relative Symmetric Bilinear Model (RSBM) with spatially
voted feature selection (FS), working at the block level.
Unless otherwise noted, in all experiments we use the fol-

lowing default parameter settings: in (6) (but change to
0.1 if working at the block level); in (10); in
(9); and the iteration number in Algorithm 1 is empirically set
to be 5. The influence of some parameters will be investigated
in details below, but the exact setting of these parameters is not
critical: the method gives similar results over a broad range of
settings.
Comparison With the State of the Art Methods: Fig. 4 gives

the ROC (Receiver Operating Characteristic) curves of different
methods and Table III summarizes the results. One can see from
the table that the performance of the baseline SVM algorithm
gives an average accuracy of 53.4%, indicating that the one-
vs-two type tri-subject kinship verification is a very challenging
problem. However, our proposed RSBM model working at the
patch level improves this by over 30%, being the best performer
among all the compared methods. The closest competitor of our

Fig. 5. Comparison of FM-S performance of SBM and RSBM, under different
number of patches.

method is the DDML [38], which gives an average accuracy of
81.0% - similar to our method of ‘SBM-FS’, but with the prior
information exploited, our ‘RSBM-block-FS’ performs better.
Our method also significantly works better than the sparse

group lasso based method proposed in Fang et al. [19] - one
possible explanation is that for a core family group involved
only three subjects, the assumption made in [19] that an image
of a child should be best reconstructed by face images in his/her
own family is too strong, although it is reasonable under their
situation where dozens of face images per family are available.
Thirdly, we see that simply adopting state of the art metric

learning methods for tri-subject kinship verification is not a
good choice. This is partly due to the fact that these methods fail
to model the dependence structure among the three visual enti-
ties. By contrast, the proposed RSBMmodel effectively exploits
such priors during several stages of the verification pipeline
(e.g.,similarity modeling, feature selection) and achieves the
best verification performance.
Last but not least, it is interesting to note that the gender

plays a significant role in kinship verification - in all the cases
tested, the verification rates on “FM-S” are consistently higher
than those on “FM-D”. One possible reason is that the appear-
ance variations appeared in a female subject (daughter) are more
complex than those in a male subject (son). This seems to be in
accordance with earlier psychological research results [39] that
the kin recognition signal is less evident from daughters than
from sons.
The Importance of Prior Knowledge: Fig. 5 compares in de-

tail the FM-S performance of the SBM model with/without ex-
ploiting the prior knowledge about the relative difference of a
child to his/her parents, as a function of the number of patches
selected for each face. One can see that when the number of
patches selected for verification is relatively small, the RSBM
method significantly performs better than the SBMmethod. For
example, using only 20 patches, the accuracy of RSBM reaches
an verification accuracy of 86.4%, 3.7% higher than that of
the SBM model. This highlights the benefits of exploiting prior
knowledge for complex kinship verification. To further illustrate
this, we visualize the prior knowledge learned by multiplying it
elementwise by the image: see Fig. 6 for an example. We can
observe that some children do look more like his/her father than
mother, or vice versa, and such information is effectively cap-
tured and utilized by our model.
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Fig. 6. Illustration of the learned prior knowledge for four families. In each
family, the image on the left is the input child image, and the two rows of im-
ages on the right are the parents images multiplied by the respective learnt prior
density in 10 iterations (progressively from left to right)—the higher the prob-
ability the lighter the pixel value.

Fig. 7. Average performance of “RSBM-block-FS” as a function of the amount
of stabilization .

Fig. 8. Average verification accuracy of “RSBM-block-FS” as a function of
the number of iteration T.

Fig. 7 shows the average verification accuracy of our RSBM
model as a function of the stabilizing term [c.f., (9)]. We can
see that the RSBM model obtains the best performance when

for both FM-S and FM-D. In general, good performance
could be obtained by setting the value of between 0.05 and
0.3.
Fig. 8 shows the performance curve of the RSBM model as

a function of the number of iterations. We can see that the per-
formance of the RSBM model boosts to its highest value only
after a few iterations. In practice we would recommend to set

to avoid overfitting.
Effectiveness of Spatially Voting for Feature Selection: To

verify this, we compare our feature selection scheme with group
lasso (GL) - both aim to automatically figure out a set of patches

Fig. 9. Correct verification rates (%) for different feature selection methods on
the TSKinFace database (,“FS” denotes our vote based feature selectionmethod,
“L1” denotes lasso, and “GL” denotes group lasso).

Fig. 10. Influence of the number of patches K selected on the verification rates.

from face images for kinship verification. Particularly, we for-
mulate the problem as the sparse group lasso penalized logistic
regression in which the groups are defined as the patches. For
a fair comparison, we set the parameter that controls the group
weights as 0.88 for FM-D and 0.85 for FM-S, obtaining the same
number of selected patches as that in our vote-based feature se-
lection method. As the baseline we select the norm lasso al-
gorithm, which performs the feature selection without using any
spatial information.
Fig. 9 gives the results. One can see that the proposed

spatially voted feature selection scheme (“FS”) performs better
than the group lasso “GL”, on average improving the perfor-
mance by about 2.3% and 0.4%, respectively on both tasks,
while the simple lasso method performs the worst.
To answer the question of howmany patches it needs to be se-

lected, we investigate the effect of the parameter (the number
of patches selected) on the performance. Fig. 10 shows verifi-
cation rate as a function of the number of patches selected for
each face, with the ABM model as the verifier. One can see that
the performance boots from about 60.0% to over 73.0% with
only 5 patches. The performance increases with more patches
added until 20 patches are selected, and the improvement is not
evident after that for the FM-S verification. While for the FM-D
verification, the number of selected patches is better to be kept
less than 20 so as to reduce the possible influence of noise.
Influence of Randomness in Negative Sample Generations:

In the previous experiments the negative samples are randomly
generated by combining child and parents from different fami-
lies but there is only one for each.We now investigate the impact
of such randomness. Particularly, we first randomly generate



QIN et al.: TRI-SUBJECT KINSHIP VERIFICATION: UNDERSTANDING THE CORE OF A FAMILY 1863

Fig. 11. Illustration of some samples in the easy negative set (the top two rows)
and the hard negative set (the bottom two rows).

TABLE IV
CORRECT VERIFICATION RATES (%) FOR DIFFERENT METHODS ON THE 5TH
FOLD OF TSKINFACE DATABASE WITH 10 DIFFERENT NEGATIVE SAMPLES

SETS, WHERE “EASY” REPRESENTS THOSE SAMPLES WHICH ARE
CLASSIFIED BY “LMNN” CORRECTLY AND “HARD” DENOTES

THOSE SAMPLES WHICH ARE CLASSIFIED BY
“LMNN” INCORRECTLY

a large negative samples pool containing both the FM-D and
the FM-S negative relationship. Although there are many ways
to distinguish less distinct negative samples (i.e., hard samples
with features of child and parents not very different) from those
very distinct negative samples (i.e, easy ones with features of
child and parents quite different), for example, by simply mea-
suring the similarity between the child and parents, we choose
the “LMNN” method [37] here. That is, those samples correctly
classified by the “LMNN” method as negative are categorized
as “easy” ones, otherwise as “hard”. We use this criterion to
randomly select 2,000 samples from the negative pool, with
1,000 each for the “easy” and the “hard” category respectively.
Some of these samples are illustrated in Fig. 11. For experiment
we equally split those samples into 10 sets, and run the model
trained on the fifth fold of our TSKinFace database over them.
Table IV gives the results. One can see that all the methods

investigated here work consistently and significantly better on
the easy set than on the hard set, indicating that it makes sense
to distinguish the two sets based on the outputs of the “LMNN”
method, while our “RSBM-block-FS” method demonstrates the
highest robustness against this random confusion. The table also
reveals that although some of the methods work well on the
easy negative samples, the performance on the hard ones are not
satisfactory in general (with accuracy less than 70.0%), showing
that further research is needed on this topic.
Computational Complexity: We now briefly analyze the

computational complexity of the RSBM method, which in-
volves T iterations. In each iteration we solve a regularized
logistic regression problem and make the estimation of the
weights of and . To solve the regularized logistic

Fig. 12. When the images of a second parent is available, the traditional one-
versus-one type bi-subject kin verification problem can be reformulated as a
one-versus-two one. In this example, once the father/mother-daughter (FM-D)
relationship is established for the three subjects shown on the right, one can
safely infer that the mother-daughter (MD) kinship is validated for the subjects
shown on the left.

regression problem, we use a fast implementation [32] with its
computational complexity , where is the iteration
counter, while the computational complexity of the estimating
part is . Hence the total computational complexity of our
proposed RSBM is .

B. Enhancing Bi-Subject Kinship Verification

Intuitively, having more information about one’s parents is
potentially useful to improve the performance of bi-subject kin-
ship verification. In order to verify this hypothesis, another se-
ries of experiments are conducted. This is similar to the tradi-
tional bi-subject verification in that four types of kinship rela-
tions will be evaluated, i.e., Father-Son(FS), Father-Daughter
(FD), Mother-Son (MS), and Mother-Daughter (MD). How-
ever, the key difference lies in that we are now given a triple
including two parents and a child as a test sample. In other
words, we are interested in, for example, whether the informa-
tion about one’s father is useful to verify the Mother-Daughter
(MD) relation.
One simple way for this is to reformulate the bi-subject kin-

ship verification problem as a tri-subject problem, since once a
FM-D relationship is established, a FD and a MD relationship
must be established as well, see Fig. 12 for an example. For
a bi-subject verification problem shown in Fig. 12(a), one can
treat it as a tri-subject problem shown in Fig. 12(b) when the
father’s information is available, and use that result to answer
the question of one-vs-one kinship verification.
Table V compares the results of these two approaches for

bi-subject kinship verification. One can see that exploiting more
information about one’s parents is indeed beneficial. Particu-
larly, the performance of the mother-son (MS) verification is
improved significantly from 72.2% to 77.0% using the SVM-
based NRML baseline method, while that of the father-daughter
(FD) verification is improved from 80.5% to 84.4% using our
RSBM model, and -test analysis shows that this improvement
is statistically significant. Particularly, the stars in Table V in-
dicate whether the improvement of performance for triple in-
puts is significant compared to that when only two subjects are
available. For example, the accuracy of ‘SBM-block-FS’ for fa-
ther-son verification (FS) is 83.0%, but if the information about
the mother is known, this improves to 85.2% (as shown in the
column of ‘FM-S’), which is significantly better than that of FS
according to the t-Test and hence a star is marked, otherwise
there is no star.
It is well known that a problem like MS or FD verification is

quite difficult due to the different genders of two subjects to be
verified. Our method essentially provides a new solution to this,
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TABLE V
CORRECT RATES (%) OF DIFFERENT METHODS FOR BI-SUBJECT KINSHIP VERIFICATION WITH TRIPLE INPUTS (COLUMN 2 AND 5) AND PAIR INPUTS
(COLUMN 3, 4, 6, AND 7, “ ” DENOTES THAT THE RESULT (P-VALUES) OF TEST FOR THE PERFORMANCE COMPARISON BETWEEN PAIR INPUTS

AND TRIPLE INPUTS VERIFICATION IS LESS THAN 0.05).

TABLE VI
CORRECT RATES (%) OF HUMAN BEINGS AND OUR METHOD

ON THE FM-S SUBSET OF THE TSKINFACE DATABASE

TABLE VII
CORRECT RATES (%) OF HUMAN BEINGS AND OUR METHOD

ON THE FM-D SUBSET OF THE TSKINFACE DATABASE

and we consider it as one of the major motivations to study the
tri-subject kinship verification problem.

C. Comparisons With Human Beings in Kinship Verification
To investigate human beings’ performance on the kinship ver-

ification problem, we randomly selected 100 groups of cropped
grayscale face samples, including 50 positive groups and 50
negative ones. Then we presented these to 10 human observers
with ages of 20 to 40 years old to ask their opinions about the
kinship relation. These human observers did not receive any
training on how to verify kinship from facial images before the
experiment, and will completely rely on their own knowledge
accumulated to answer the questions.
Particularly, we conduct two parts of tests on kinship veri-

fication. For the first part, 100 child-parent pairs (one-vs-one)
are shown to human observers (“A”), and for the second part,
100 child-parents groups (one-vs-two) are presented to these ob-
servers (“B”). Obviously, these two types of testing are respec-
tively corresponding to the problem of bi-subject and tri-sub-
ject kinship verification. We repeated this procedure two times,
one for the FM-S subset and other for the FM-D subset, both
from our TSKinFace database. We also run the same experi-
ments using our SBM method for comparison.
Tables VI and VII give the results. One can see that “B” can

obtain better performance than “A” on the two subsets, which
indicates that human beings are able to combine the informa-
tion from both parents to make better kinship judgement. For
example, the performance of the mother-son (MS) verification
is 74.2%, but if the face image of one’s father is also available,

Fig. 13. Illustration of the construction of a new test dataset with different
lighting conditions using the face images from the Family101 database. For each
family, there are several face images per subject (upper row: parents; lower row:
two children). We randomly select one image from two parents and one child to
construct a triple-item group, such that all the images from the same group do
not come from the same photo.

Fig. 14. Correct verification rates (%) for different methods on the Family101
subset database.

the performance increases to 79.9%. Moreover, it is worth men-
tioning that our proposed SBM methods achieve higher verifi-
cation accuracies than “B”.

D. Robustness Under Different Lighting Conditions
Since all the face images in a family in our database are ex-

tracted from the same photo, it could introduce unnecessary bias
in learning. In order to investigate the behavior of our algorithm
when encounters face images from completely different lighting
conditions, we construct a new dataset based on the Family101
[19].
Particularly, we manually selected 48 families from 206

nuclear families of Family101, with the following conditions:
1) each family contains four members, i.e., father, mother and
two children, and 2) at least 3 face images exist for each family
member. We then cropped these images to pixels and
converted them to 8 bit gray-scale, divided them into
overlapping patches and extracted SIFT features. Fig. 13 gives
some examples of the preprocessed images.
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TABLE VIII
CORRECT VERIFICATION RATES (%) FOR DIFFERENT METHODS ON THE TSKINFACE DATABASE (WHERE “FS-M”, “MS-F”, “FD-M”,

AND “MD-F” DENOTE “FATHER-SON AND MOTHER”, “MOTHER-SON AND FATHER”, “FATHER-DAUGHTER AND MOTHER”,
AND “MOTHER-DAUGHTER AND FATHER”, RESPECTIVELY)

Then, to construct tri-subject groups for our tri-subject kin-
ship verification, we do the following iterations for each of the
selected family:
1) select one image among 3 images from the father’s;
2) select one image among 3 images from the mother’s; and
3) select one image among 6 images from the two children’s.
This will give us different groups per family.

In the experiments, we follows the four-fold cross validation
protocol, which means that for each round of evaluation, 36
families will be used for training while the remaining 12 for
testing. In other words, in training we will have 36 families

groups/family groups in total. And no any three
face images in each group appear in one photos before. This
will suppress the bias for the positive samples to have similar
lighting conditions as much as possible.
Fig. 14 gives the results. One can see that all the methods are

influenced by the illumination changes introduced in the dataset.
However, the proposed ‘RSBM-block-FS’ performs the best
among the compared ones, about 18.2% higher than the base-
line algorithm in terms of accuracy. The table also reveals that
by replacing the pairwise bilinear similarity with the proposed
relative similarity measure, one can improve the performance
from 68.7% (‘SBM-block-FS’) to 69.6% (‘RSBM-block-FS’).

E. Other Forms of Tri-Subject Kinship Verification

In previous sections we focus on the child-parents type
tri-subject kinship verificaiton, but the same method could also
be applied to verify other types of tri-subject kin relations,
i.e., Father/Son-Mother (FS-M), Mother/Son-Father (MS-F),
Father/Daughter-Mother (FD-M), Mother/Daughter-Father
(MD-F). For example, the task of FS-M is to verify whether a
valid kin relation could be established between a mother and a
father-son pair, given their face images.
For this series of experiments, we adopt the same 5 cross-

validation evaluation protocol introduced in Section 4 for each
type of verification, with the only exception that images in each
fold are partitioned according to the type of kinship of interest.
We use SIFT features for face representation and follows the
same parameter settings as previous experiments.
Table VIII gives results. It can be seen that the performance

obtained here for different methods generally decreases by
about 2-3% compared to that in the child-parents verification
(c.f., Table III). One possible explanation could be this: for
a mixed one-vs-two relation, taking the FS-M relation for

TABLE IX
MEAN ACCURACY (%) UNDER IMAGE-RESTRICTED

SETTING ON THE KINFACEW-I DATASET

example, one has to decompose the triples of into
two pairs of and , and learn the pairwise
similarity respectively. But the appearance similarity between a
father and a mother is more difficult to learn, compared to that
between a child and a mother. However, even under such a sce-
nario, it can be seen that our proposed method (SBM-block-FS)
obtains the best verification performance.
One interesting question naturally arises here is whether the

appearance between a father and a mother is really similar to
each other? Possibly not, because a father and a mother have
different gender and have no blood relationship. But a positive
father-mother pair is actually spouses who have lived together
under the same living environment for a period of time, which,
according to some research [40], could make their appearance
look more similar to each other than to others. While the size of
our database is still not big enough to support this, it deserves
more attention in our future research.

F. The Bi-Subject Kinship Verification
In the final series of experiments, we briefly evaluate the per-

formance of the proposed method on the task of the bi-sub-
ject kinship verification. Particularly, we do this on two largest
datasets for bi-subject verification: KinFaceW-I [15] and Kin-
FaceW-II [15]. The KinFaceW-I database consists of 156 FS
(Father-Son), 134 FD (Father-Daughter), 116MS (Mother-Son)
and 127 MD (Mother-Daughter) pairs, while the KinFaceW-II
contains 250 pairs of these bi-subject kin relations each. The
major difference between KinFaceW-I and KinFaceW-II lies in
that each pair of faces in KinFaceW-I comes from the same
photo while from different photos in KinFaceW-II. Hence the
latter one is easier than the former.
We follow the evaluation protocol as proposed in [41].

Table IX and Table X give the baseline and other latest
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TABLE X
MEAN ACCURACY (%) UNDER IMAGE-RESTRICTED

SETTING ON THE KINFACEW-II DATASET

state-of-the-art results, where the performance of the methods
are directly cited from the corresponding paper. It can be seen
that our original method (i.e., “NUAA”) obtains rank 3 with
a simple bilinear model and without using any other features
except SIFT (while both the top two methods combine several
kinds of features).
It can be conjectured that combining multiple feature in-

formation could be beneficial to the performance. Hence in
the next round of experiments we add two other features (i.e.,
the C-SVDD features [42] and TPLBP [43]) and fuse them
at the decision level. This multiple feature version is denoted
as “M-NUAA” in Table IX and Table X. One can see that the
improved “M-NUAA” method achieves results better than or
comparable to the state of the art methods on both bi-kinship
datasets, in terms of average performance (last column in both
tables). Note that our algorithm is the first one designed for
handle the one-vs-two tri-kinship problem and others do not,
which is actually the main advantage of the proposed method:
it can be thought of as a framework which can encompass
any algorithm of bi-subject kinship verification for tri-subject
kinship verification, while effectively incorporating useful
prior knowledge.

VI. CONCLUSION

In this work, we made the first attempt to investigate the
tri-subject kinship verification problem extensively. Instead of
using information from a single parent, we exploit informa-
tion from both parents to learn the kinship relationship between
them and their child, which is arguably one of the most impor-
tant relationships formed in a family. For this we proposed a
novel relative symmetric bilinear model (RSBM) and a spatially
voted feature selection method, both incorporate prior knowl-
edge about the dependence structure between a child and his/her
two parents. Furthermore, we collected a new kinship face data-
base characterized by over 1,000 groups of triples, on which we
show that our method achieves state of the art verification ac-
curacy. Our experimental results also reveal that the proposed
method could be used to significantly boost the performance
of bi-subject kinship verification when the information about
both parents is available. Additionally, we show that our method
can be applied with encouraging performance on other types of
tri-subject kinship verification such as Father/Son-Mother veri-
fication, and on the traditional one-vs-one kinship problem.
Future works include further improvement based on ex-

ploiting other types of prior knowledge and learning multiple
complementary features to better represent the discriminative

information that is useful for our task. We also plan to extend
our framework to handle more general family structure.
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