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Abstract We present a new method to generate efficient

multi-level hashing codes for image retrieval based on the

deep siamese convolutional neural network (DSCNN). Con-

ventional deep hashing methods trade off the capability of

capturing highly complex and nonlinear semantic informa-

tion of images against very compact hash codes, usually lead-

ing to high retrieval efficiency but with deteriorated accuracy.

We alleviate the restrictive compactness requirement of hash

codes by extending them to a two-level hierarchical coding

scheme, in which the first level aims to capture the high-level

semantic information extracted by the deep network using a

rich encoding strategy, while the subsequent level squeezes

them to more global and compact codes. At running time,

we adopt an attention-based mechanism to select some of its

most essential bits specific to each query image for retrieval

instead of using the full hash codes of the first level. The

attention-based mechanism is based on the guides of hash

codes generated by the second level, taking advantage of both

local and global properties of deep features. Experimental re-

sults on various popular datasets demonstrate the advantages

of the proposed method compared to several state-of-the-art

methods.

Keywords image retrieval, deep hashing, hierarchical deep

hashing

1 Introduction

With the popularization of high-pixel camera phones and the

Received November 13, 2016; accepted January 24, 2017

E-mail: sunge@nuaa.edu.cn; x.tan@nuaa.edu.cn

explosive growth of the Internet, massive images flood our

daily lives, which makes it more difficult to find relevant im-

ages that we are interested. Image retrieval, i.e., finding im-

ages containing the same object or scene as in a query im-

age, has attracted much attention from both academia and in-

dustries in recent years. For this task, the semantic gap be-

tween low-level content and higher-level concepts remains

the major challenge for all current approaches that rely on vi-

sual similarity for judging semantic similarity [1]. Traditional

methods extracting visual content from images are mainly

based on statistical information at the pixel level, e.g., scale-

invariant feature transform (SIFT) and histogram of oriented

gradient (HOG), which could not capture effective semantic-

level representation and subject to various image quality de-

terioration such as blurring, low precision, various lighting

conditions and so on.

Recently, many studies have shown that convolutional neu-

ral networks (CNNs) could learn representations with high-

level semantic concepts and reported that it achieved the state

of the art performance in many computer vision tasks such

as image classification [2], object detection [3] or semantic

segmentation [4]. Notably, in image retrieval field, Zheng et

al. [5] discussed the progress of image retrieval over the past

decade in detail and highlighted the popularity of CNN-based

models in the community. Many works [6, 7] adopted solu-

tions based on features extracted from fully-connected layers

of a CNN pre-trained for the image classification task. While

several works [8–11] paid more attention on features from

the deep convolutional layers of CNNs and demonstrated that

these features contain particular interpretations of local im-

age regions which usually lead to better performance. The
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work of Ref. [12] integrated CNN features with the Bag-of-

Words (BoW) model as contextual evidence to promote the

match accuracy of keypoints, based on the observation that

the automatically learnt deep feature sets are complementary

to the hand-crafted SIFT feature sets. However, it remains

some problems with adopting deep feature directly for re-

trieval or other visual tasks. The units of CNN are activated

by different regions or objects of image [13], which indicates

that the learn features include a variety of semantic concepts.

Therefore, it is reasonable to localize the discriminative im-

age regions and use particular localizable deep representa-

tions for retrieval task. On the other hand, the CNN features

are faced with the problem of high computational cost in sim-

ilarity calculation due to the high-dimensional representation

produced, hence being not appropriate for rapid image re-

trieval. A practical solution to this issue is to use the tech-

nique of hashing based methods [14–17]. Actually, it has be-

come one of the most popular approaches in large-scale vi-

sion problems [18].

The idea of hash methods is to design a nonlinear func-

tion which projects images into compact binary codes so

that similar images are mapped into similar codes. There-

fore, with millions of images being represented by compact

binary codes, the storage cost can be greatly reduced, and

the retrieval problem can be done very efficiently by explic-

itly computing Hamming distance among query and database

images. Inspired by the success of deep learning in various

visual tasks, a few deep hash models have been proposed

[16,19–21] recently. The semantic space of image dataset can

be approximated reasonably well by the learned Hamming

space of hash codes, partly due to the impressive represen-

tation power of CNNs on which the hash codes are actually

built.

Although these methods achieved improved performance,

they have some limitations. Firstly, all these methods paid

less attention on the modeling of pairwise semantic similar-

ity between images, hence ignoring the learning of factors

that explain the relevance between the pair of images that are

related to each other but not necessarily in the same cate-

gory. Secondly, these methods concentrate on hashing full-

connect layer to obtain highly compact global-level binary

codes. This may lead to two unwelcome consequences: 1)

too compactness essentially conflicts with the expressiveness

of the codes, and 2) the local information of images that is

important for image retrieval [6] could be lost.

To deal with the aforementioned issues, we made several

contributions as follows. Firstly, we proposed a deep siamese

CNN (DSCNN) that learns semantic-preserved hash codes in

both point-wise and pair-wise manners. Secondly, we enrich

the expressiveness of hash codes by extending them to a two-

level hierarchical coding scheme, in which the first level cap-

tures the local semantic information, while the subsequent

level squeezes them to more global and compact codes. The

outputs of both levels are combined in a hierarchical way

to improve the retrieval efficiency. Last but not least, to im-

prove the retrieval robustness and runtime efficiency, instead

of using the full hash codes of the first level, we propose

an attention-based mechanism that relies on activation maps

and class activation map (CAM) [13] to select some of its

most essential bits specific to each query image, hence tak-

ing advantage of both local and global properties of deep

features. Experimental results on several popular benchmark

data sets demonstrate the superiority of the proposed method

over other methods. Figure 1 illustrates some retrieval results

using the proposed method.

Fig. 1 Examples of the retrieval results by our proposed hierarchical hash-
ing method for effective query images (left, without border) on four different
datasets: Holidays, Oxford Buildings, Paris Buildings and UKB

In what follows, Section 2 discusses the related work to our

method, the proposed method is detailed in Section 3 and its

effectiveness is evaluated in Section 4. Finally, we conclude

the paper in Section 5.

2 Related work

• Deep descriptors for image retrieval With the progress

in supervised learning representation, some works [6, 8, 22]
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have considered the use of deep features for image retrieval.

Babenko et al. [6] have demonstrated the suitability of fea-

tures from fully-connected layers for image retrieval with or

without fine-tuning on related datasets. They reported that

the best performance is observed not on the very top of the

network, but rather at the layer that is two levels below the

outputs, i.e., convolutional descriptors. Zheng et al. [11] in-

vestigated the transfer learning capability of CNN features,

and they found that combining pooled features from multiple

convolution layers is even more useful. Kalantidis et al. [23]

applied non-parametric spatial and channel-wise weighting

strategies to the convolutional layers and achieved significant

improvement. Ng et al. [10] adopted the VLAD method to

encode activations of the convolutional layer. These works

mainly focus on aggregating local descriptors into a global

representation while ignoring the local semantic property.

In order to obtain deep features for local regions, Paulin et

al. [22] introduced a feature representation for patches based

on the kernel feature map of a convolutional kernel. The

method is similar to SIFT, adopting Hessian-Affine method

to detect interesting points and then extracting patch-level de-

scriptors. However, traditional interest point detectors could

not ensure that the detected points fall in discriminative ob-

jects or scene areas. Therefore, detecting object regions at a

higher level becomes more important. Girshick et al. [3] pre-

sented R-CNN method which uses fully connected layers fea-

ture to train a bounding box regressor and classifier. Ren et al.

introduced a region proposal network (RPN) to generate ob-

ject proposals with R-CNN. Salvador et al. [24] took advan-

tage of this end-to-end object detection architecture and pro-

posed to extract both image and region features for instance

search. Unlike previous methods, Zhou et al. [13] introduced

the class activation map (CAM) model to localize the object

in an unsupervised manner.

• Deep learning for hashing Deep learning methods have

been popularly used for hashing recently. Xia et al. [19]

learned hash functions using CNNs to fit the learned hash

codes. Liong et al. [15] developed a multiple layer full-

connect network to learn hash functions by maximizing the

inter-class variations and minimizing the intra-class variation.

In those methods, the learning process of image represen-

tations is separated from learning hash functions. To deal with

this issue, several deep architectures have been proposed to

combine these two tasks within a single learning framework

[16, 20, 25]. Lin et al. [25] proposed an approach to simulta-

neously learn domain image representations and hashing-like

functions for image retrieval, through embedding a latent sig-

moid full-connect layer at the top of AlexNet network.

However, at the training stage of these methods, only the

label information is used while the similarity information be-

tween samples is completely ignored. Without similarity con-

straints, dissimilar images may be encoded to similar binary

codes, which should be avoided in image retrieval. To address

this issue, Lai et al. [26] designed a network-in-network deep

model NINH to learn image representation and hash codes in

one stage with a triple rank loss function. Zhao et al. [16] used

ranking loss to train their model and their hash layer is con-

nected with both two fully-connect layers to utilize diverse

feature information. Liu et al. [21] proposed to take pairs of

images as training inputs to learn similarity-preserving binary

codes. One challenge of these methods, however, is that it is

usually difficult to decide how many pairs or triplets to be

selected for training. Another problem is that the hash codes

based on the fully-connect layer help to capture the global-

level information, but it is not easy to embed local semantic

information in them.

3 The proposed method

In this section, we present DSCNN to produce global hash

code and local hash code for image retrieval task.

3.1 Learning multi-level semantic-preserved hash code

We propose a two-level hierarchical coding scheme to hash

convolutional features as local-level codes and hash fully-

connect features as global-level codes. Besides, we use a

siamese architecture to explore the point-wise (label) and

pair-wise (relevance between two images) semantic informa-

tion in the training set. The resulted DSCNN network is il-

lustrated in Fig. 2, where the activation of the fully-connect

hash layer and the conv7 layer are both tanh function so as to

output better approximate hash code.

Assuming that the feature maps of Conv7 are

I1, I2, . . . , IC ∈ (−1, 1)W×P, W, P are width and height, C is the

number of filters, the output of Hash Layer are a ∈ (−1, 1)H,

H is the length of hash code. ŷ is the output of softmax layer,

y is expected output. To learn the two levels of hash codes

(i.e., the first level hash codes Hl and the second level Hg,

c.f., Fig. 2), we adopt two different loss functions respec-

tively. Particularly, the loss function of the first local-level

hash codes Hl is defined as the point-wise loss:

L1 = −
N∑

j=1

yi log(ŷ j), (1)

and that of the second global-level hash codes Hg is defined
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Fig. 2 The architecture of the proposed deep siamese CNN (DSCNN) for image retrieval (Firstly, the semantic-preserved global-level (Hg) and local-level
hash codes (Hl) are learned in a joint point-wise and pair-wise manner. Secondly, we obtain activation maps (AM) of Covnv7 and class activation maps
(CAM) of each bit of Hg, and average CAMs to acquire “Hash attention area”, meanwhile we get “Local hash attention area” by AMs, because one AM
corresponds to one bit of Hl, visually highlight bits (red colored) can be selected as compact local hash code through comparing these areas. Finally, both
Hg and selected Hl bits are combined to give the hash codes for a given query)

as the following pair-wise loss:

L2 = −L1 + αJ11 + αJ12 + βJ2 + γJ3

= −
N∑

j=1

yi log(ŷ j) + α
N∑

j=1

N∑

i=1

δ(y j = yi)‖a j − ai‖22

+α

N∑

j=1

N∑

i=1

δ(y j � yi) max(0, c − ‖a j − ai‖22)

+β

N∑

j=1

(‖|a j| − 1‖2) + γ
N∑

j=1

(‖avg(a j) − 0‖2), (2)

where δ is an indicator function, avg is mean function, and c

is a constant. The first L1 and second item J1∗ aim to embed

semantic consistency and similarity to hash code respectively.

The third term J2 aims to minimize the quantization loss be-

tween the learned binary code and the original approximate

code. The last term J3 enforces evenly distribution of –1 and

1 in hash code. α, β, γ are parameters to balance the effect of

different terms.

After training, we could obtain the hash code by quantiza-

tion. That is, global-level hash codes Hg and local-level hash

codes Hl are obtained respectively by

Hg = δ(a > 0),Hl = δ( f > 0), (3)

where f ∈ (−1, 1)C, fk = 1
W×P

∑W
i=1
∑P

j=1 Ik(i, j), k =

1, 2, . . . ,C.

3.2 Attention-based hash bits section

A number of works [27, 28] have attempted to visualize the

internal representations and have shown that the deep con-

volutional feature maps are activated with different regions.

Therefore, we can identify the image regions most relevant

to the particular object by weighted summing these feature

maps as done in the method of Class Activation Map (CAM)

[13]. However, the CAM is originally used to obtain discrim-

inative image region of identified category and is not suitable

for image retrieval. In this work, we regard bits as categories

and use CAM to locate the salient region for each global hash

bits. For local-level codes, we adopt a similar method to get

CAMs. Since some of feature maps are irrelevant to those

salient areas of interest (c.f., Fig. 3), hash bits correspond-

ing to them could be discarded as they do not contain useful

information for image retrieval.

The first stage is to find out the attention region in the

input image for each bit of the global hash code Hg. We

treat every bit as a category and compute their CAMs as

M1,M2, . . . ,MH , and average them to obtain Mavg. The av-

erage map is then binarized as Bavg = δ(Mavg > θ), where θ is

a threshold. Finally, we obtain the attention region by finding

the largest connected subgraph of Bavg. Figure 3 (middle col-

umn) gives some examples of the resulting average binarized

map.

The next stage is to evaluate the salience score for each lo-
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Fig. 3 The leftmost column contains a query image (top) and its top one retrieval result (bottom). The images at the rightmost are the illustration
of 20 activation maps (AM) of feature maps from Conv7 (512 in total) corresponding to the leftmost images. Images in the middle are the weighted
average activation map Mavg obtained from these AMs, which are then used for bit selection in the first layer hash bit selection (those selected
are labeled with the red box). Note that not all activation maps focus on the same query-specific salient region as the average map

cal feature map. We converted all feature maps I1, I2, . . . , IC

of Conv7 to activation maps AM1, AM2, . . . , AMC using the

method of [13], and then calculate heat map for each of them,

see the rightmost column for some illustration of these. De-

note the resulted binary maps as B1, B2, . . . , BC. We then cal-

culate the salience score of each feature map as the overlap-

ping between its heat map with that of the average map

si(Bi, Bavg) = sum(Bi ∧ Bavg), (4)

where ∧ is a bit-by-bit AND operation, and sum represents

summing over all elements of the matrix.

At the last stage, we rank the feature maps I1, I2, . . . , IC

according to their scores S and select top L as informative

local features. The corresponding L bits of Hl ( denoted as

H′l ) are then chosen for effective retrieval. The index of these

L selected bit will serve as a filtering template for the first

level hash codes of each of the images to be retrieved. That

is, we only need to compare the selected hash bits of the query

image with those at the same position for each image i. For-

mally, let Ψq(∗) denote the L bits of ∗ at the same L posi-

tions as those selected in the query hash codes Hq, we have

H′q = Ψq(Hq). Then the Hamming distance between the query

and each hash code Hi can be calculated as follows,

dH(H′q,Hi) = dH(H′q,Ψq(Hi)). (5)

• Fast implementation One bottleneck of runtime complex-

ity of the above bit selection scheme lies in the computation

of CAMs and activation maps. Since feature maps focusing

on the foreground attention area tend to have a stronger corre-

lation with each other than those focusing on the background,

we could exploit this heuristic to dig compact bits in a more

efficient way. For this, a correlation analysis on the feature

maps is performed. We first vectorize all features maps {Ii}Ni=1

and construct data matrix F with each column representing a

feature map. Next, we calculate the covariance matrix COV ∈
�C×C of F, where COVi, j = cov(Ii, I j)/

√
cov(Ii, Ii)cov(I j, I j).

This covariance matrix is visualized in Fig. 4. Fortunately, we

could find that feature maps activated by salient local regions

almost share high correlation and their indexes are approxi-

mately consistent with what selected by CAMs. Finally, we

rank those feature maps by their correlation coefficients and

select top highest feature maps to construct the needed hash

code. The time complexity of proposed method will be dis-

cussed in Section 4.6.

Fig. 4 The result of correlation analysis (CA) of feature maps (We only
apply CA on 81st–100th feature maps of the image shown in Fig. 3. The in-
dex of the column with strong correlation is consistent with the index of the
selected activation maps (with red box annotated) in Fig. 3)

3.3 Searching via multi-level hashing

To perform efficient retrieval, we proposed a hierarchical

method that takes advantage of the low computational cost

and high accuracy properties using the learned global and lo-

cal level hashing codes. Particularly, we use the following
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baseline reranking strategy: first use global-level hash code

Hq for efficient rough retrieval, select top K results as can-

didates, and then use local-level hash code HL to rerank the

results.

We also designed two weighted Hamming distances for

similarity evaluation. Denote the query image as xq, N im-

ages to be retrieved as {xi}Ni=1, and denote their correspond-

ing global-level hash codes as
{
Hgi

}N
i=1

and local-hash codes

as {Hli}Ni=1, respectively. Then, the Hamming distance (HD)

dH(·, ·) between a query and an image is calculated as fol-

lows:

1) Weighted distance by linear combination (wLinCb-HD):

Sim(xq, xi) = λdH(Hgq,Hgi) + (1 − λ)dH(H′lq,Hli), (6)

where λ is a linear combination coefficient set by the users

(e.g., 0.5).

2) Weighted distance based on attention (wAtt-HD):

Sim(xq, xi) = dH_W (H′lq,Hli)TW, (7)

where WT ∈ (0, 1)L, and its element is computed as follows,

wi =
1
z

exp(
si

smax
), (8)

in which si is the salience score of bit i (c.f., Eq. (4)) and,

z =
L∑

j=1

exp(
si

smax
), smax = max({si}Ci=1). (9)

In our experiments, we first do the retrieval with global-

level hash codes, and then rerank the result with the above

two weighted strategies.

4 Experiments

4.1 Datasets and evaluation protocols

To evaluate the performance of proposed method, we use the

following benchmark datasets in our experiments for image

retrieval.

• CIFAR10 [29] (CIFAR10) contains 60,000 32 × 32

color images correspond to 10 classes. For each class,

it includes 1,000 query images and 5,000 training sam-

ples. Hence we have 10,000 queries and 50,000 training

images in total.

• INRIA Holidays dataset [30] (Holidays) contains

1,491 vacation images, divided into 500 groups. Images

in the same group have the same object or scene and the

number of images for groups is not balanced. Choosing

one image of each group as a query.

• Oxford Buildings dataset [31] (Oxford5k) contains

5,062 images, including 55 queries corresponding 11

landmark buildings, and the ground truth relevance of

these 11 classes are provided. Similar to Holidays, its

images do not evenly distribute in these 11 classes. Al-

though the region of interest (ROI) of 55 queries are

annotated, we did not use them in our experiments and

simply took the whole image as the query.

• Oxford Buildings dataset+100K [31] (Oxford105k)

includes Oxford Buildings dataset (5k) and extra 100K

images from Flickr as the distractor.

• Paris Buildings dataset [32] (Paris6k) contains 6,412

images associated with Paris landmarks, among which

55 are queries corresponding to 11 buildings with

ground truth relevance provided. We did not use the an-

notated ROI information of query in our experiments.

• University of Kentucky Benchmark dataset [33]

(UKB) includes 10,200 indoor object images. Each ob-

ject contains four images, and each image is used to

query the rest. The performance is measured by the av-

erage number of same object images within the top four

results. In our experiment, we select one image of each

object as the query (2,550 images in total) and use the

rest as training samples (7,650 images in total).

Especially, the images of Holidays dataset contain com-

plex scene or object, and the training examples are too few

to feed CNNs which easily lead to over-fit. The main chal-

lenge is that there exists only one training sample for some

groups exclude query image resulting in no positive pairs for

these groups. In order to address this problem, as Babenko et

al. [6] done, we firstly collect extra relevant images for these

groups by image search engine, for each query we eyeball

the returned images and download most relevant photographs

from the top of the response. We totally obtain 652 images,

to preserve the distribution of original dataset as possible, we

then manually select top eight or fewer images as added train-

ing samples for the group with single training data. However,

we found that several groups still have no additional simi-

lar images through the first stage. Therefore, we adopt one

near-duplicate transformation, e.g., crop or rotation, on the

single images to generate positive pairs for these groups. We

finally obtain 165 added images for training. The usefulness

of these added images could be understood in two ways: 1)

they encode our prior knowledge of our task by saying that in-

troducing these sets of transformations onto our data should

not alter the output of the network; and 2) these added images
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could introduce useful noise into training, acting as a regular-

izer. In other words, such noise could actually help our model

to escape from over-fitting.

Except on the UKB dataset, we adopt the commonly-used

mean average precision (mAP) as the performance metric,

which is defined as follows:

P@n =
# {relevant images in top N results}

N
,

AP =
∑

n P@n × I {image n is relevant}
# {retrieved relevant image} ,

mAP =
1
Q

∑

i

APi,

(10)

where # is count function, I is an indicator function, and Q

represents the total number of queries.

4.2 Implementation details

We implement the proposed DSCNN with the Caffe [34]

package, in which we modify the AlexNet architecture by

maintaining the top four layers, altering the number of filters

at layer 5 to 384, adding conv6, conv7 layer (both with 512

filters, 3×3 size, 1 pad) and an average-pooling layer (11×11

size, 11 stride), and replacing the Fc6-Fc7 layers with hash

layer (48 nodes). We also implement the Hash Constraints

loss layer. The activate function of Conv7 is the tanh function

(sigmoid was also considered but proven to be not so effec-

tive) while those of other convolution layers are ReLu. In this

architecture, an extra average-pooling layer is added so as to

approximate the binary codes for the first layer of hash code

HL and the learned weights from this layer to the second hash

layer are used to calculate CAMs, as described in Section 3.

We binarized CAMs with threshold θ = 0.6.

Table 1 gives the details of our network. The SoftmaxLoss

layer is usually connected with a fully-connect layer, and the

number of nodes for this layer is set to be the number of ob-

ject categories in the target dataset.

All images are resized to 256×256 before passing through

the network. In training phase, we randomly select positive

and negative pairs at a ratio of 5:2 approximately from the

training set and the query images are not used for training.

The number of positive pairs for each category is almost

equal. If two images share the same label, then they could

construct a positive pair, otherwise a negative pair. For CI-

FAR10 dataset, we sample 100,000 positive pairs and 50,000

negative pairs from 50,000 training examples. We use the

same training set for Oxford5k and Oxford105k, which in-

cludes 65,422 pairs and the positive pair is defined by the

provided relevance information. We also construct 53,235

positive and 11,088 negative pairs for Pairs6k. For Holidays,

totally 49,550 positive and 23,784 negative pairs are con-

structed. Finally, we build 76,500 positive and 22,950 nega-

tive pairs with 7,650 training samples from UKB. For training

effectively, we adopt fine-tune strategy over all six datasets

and initialize the weights of top four layers (Conv1–Conv4)

of DSCNN with pre-trained AlexNet model on ImageNet

(provided by Caffe), Conv5–Conv7 and Fc8 with Gaussian

distribution (std are 0.01 and 0.005 respectively). For param-

eter setting of the loss function, we penalize classification and

pair-wise loss equally and discount the importance hash con-

straints loss by setting c to 1, α to 1, β, γ to both 0.1 in Eq. (2).

We set the iteration number to 100,000 and decay the base

learning rate by 90% every 10,000 step from 0.01 or 0.001.

The batch size is set to 32, momentum to 0.9, and weight

decay to 0.0005.

Table 1 Model description of the proposed DSCNN

Layer Details

Data 256 × 256 RGB image cropped to 227 × 227

Conv1 11 × 11 96 ReLU. stride 4

Pool1 3 × 3 Max. stride 2

Conv2 5 × 5 256 ReLU. stride 1

Pool2 3 × 3 Max. stride 2

Conv3 3 × 3 384 ReLU. stride 1

Conv4 3 × 3 384 ReLU. stride 2

Conv5 3 × 3 384 ReLU. stride 2

Pool5 3 × 3 Max. stride 1

Conv6 3 × 3 512 ReLU. stride 1

Conv7 3 × 3 512 TanH. stride 1

Pool7 11 × 11 Ave. stride 11

Fc8 | L1 48 TanH | SoftmaxLoss

L2 Softmax/HashConstraints/ContrastiveLoss

In the test phase, we extract global hash code (48 bits) from

the second hash layer and local hash code (512 bits) from the

average-pooling layer (the first hash layer). Mention that, we

need to modify the numbers of nodes of hash layers and re-

train models to obtain global hash codes with variable length.

As we discussed in Section 3, we only select compact lo-

cal bits of query images. For each query, 256 bits of a hash

mask is first learned and is applied to every image to be com-

pared. All experiments were run on a workstation with Xeon

E5 CPU 16G memory and a Nvidia Titan X GPU.

4.3 Comparison with state-of-the-art non-deep hashing

methods

We firstly compare our proposed hierarchical deep hashing

(HDH) method with several state-of-the-art non-deep hash-

ing methods. For our method, we firstly do retrieval with cor-



260 Front. Comput. Sci., 2017, 11(2): 253–265

responding bits Hg code, then rerank top 5,000 ranks with

selected 256 bits Hl code by different strategies: HDH (base-

line) without weighted strategies, HDH (wLinCb-HD) and

HDH (wAtt-HD) with weighted strategies. We category non-

deep hashing methods into unsupervised hashing methods

and supervised hashing methods. The unsupervised hashing

methods include one data-independent method, local sensi-

tive hashing (LSH [14]), and four data-dependent hashing

method, iterative quantization (ITQ [35]), spectral hashing

(SH [36]), spherical hashing (SpH [37]) and scalable graph

hashing (SGH [38]). The hash function of LSH is a set of

random project hyperplane, while other four data-dependent

methods learn hash function based on data similarity in fea-

ture space. The supervised hashing methods include fast su-

pervised hashing (FastHash [39]), supervised discrete hash-

ing (SDH [40]), supervised hashing with kernels (KSH [17]),

supervised hashing with latent factor models (LFH [41]) and

column sampling based discrete supervised hashing (COS-

DISH [42]). For the fairness of the experiment, all these non-

deep methods are conducted with 4096-dim deep features,

represented by “+CNN”, and the features are extracted from

the last fully-connected layer of AlexNet pre-trained on Im-

ageNet. Since most of the results in these papers are on the

CIFAR10 [29], for a fair comparison, we also conduct the

experiments on this dataset.

Figure 5 shows the results for different unsupervised and

supervised hash methods with 12, 24, 32 and 48 bits, respec-

tively. As we can see, our HDH method outperforms the other

compared non-deep hashing methods.

Fig. 5 Mean average precision on the CIFAR10 dataset (Five unsupervised
and five supervised non-deep hashing methods with CNN feature are com-
pared)

Figure 6 gives some illustration of the retrieval examples,

where we used 48 bits hash codes for different methods.

Compared with COSDISH and FastH methods, although both

results are seemly good, e.g., top retrievals are relevant, our

method seems to work the best. One explanation is that our

HDH effectively embeds high-level semantic relevance into

hash codes and exploits the local property of hash codes to

further improve the retrieval performance.

4.4 Comparison with state-of-the-art deep hashing methods

To further assess the performance of the proposed hierarchi-

Fig. 6 Top six images of five queries are retrieved with different supervised hashing methods on the CIFAR10 dataset (The image on the first
column is the query sample. From left to right are the retrieved results by HDH, FastH, COSDISH, SDH and LFH when 48-bit binary codes
are used for search)
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cal deep hashing (HDH) method, we compare it with sev-

eral closely related state-of-the-art deep hashing methods, in-

cluding convolutional neural network hashing (CNNH [19])

and its improved version CNNH+, deep pairwise-supervised

hashing (DPSH [20]), network-in-network hashing (NINH

[26]), deep supervised hashing (DSH [21]), deep regularized

similarity comparison hashing (DRSCH [43]) and its simpli-

fied variant DSCH, and supervised deep hashing (SDH [15]).

We also conduct the experiments on CIFAR10 dataset. Note

that for a fair comparison, because above methods did not

use the rerank strategy and we only use Hg hash code with

varying lengths for retrieval. On the other hand, it is easy to

incorporate our strategy into existing deep hashing structures.

To verify this, we re-implement the DSH structure by modi-

fying the activate function of the two fully-connect layers to

tanh, and imposing L1 and L2 loss to them respectively. Then

we trained the model on our pairwise training samples, us-

ing the same training setting of hyper-parameters (e.g., learn-

ing rate, decay rate) as that of DSH [21]. We take the out-

put of the second fully-connect layer as the global hash code

(HDH_shallowglobal) after quantization and take the output

of the first fully-connect layer as the local hash code (500

bits), which is used for reranking (HDH_shallowrerank).

Table 2 gives results. One can see that the proposed hierar-

chical deep hashing with attention-based weighted hamming

distance (i.e., HDH (wAtt-HD)) obtain the best performance,

and it improves the closest competitor — deep pairwise-

supervised hashing (DPSH [20]) by 10.0% to 15.0%. DRSCH

[43] and NINH [26] both use the triplet loss to train their net-

works, which is similar to the siamese network adopted here

in some sense, but the table reveals that our method yields

6% to 20% performance advantage over these two even with

our most compact Hg code. Indeed, the performance gaps be-

tween deep hashing methods may be caused by their different

loss functions, both DSH and DPSH use pairwise as objec-

tives and perform superior to triplet-based methods DRSCH,

NINH, which indicates pairwise constraints could depict sim-

ilarity more powerful than triplet ones in some cases. While

ours adopt extra classification constraint to capture supple-

mentary semantic information to boost state performance.

The retrieval performance may have a strong connection

with the underlying deep learning architectures. In particu-

lar, convolutional neural network hashing (CNNH [19]) uses

several convolutional layers and two fully-connected lay-

ers to fit pre-designed binary codes. Supervised deep hash-

ing (SDH [15]) uses three fully-connected layers without

any convolutions and adopts hand-crafted features as inputs.

Deep pairwise-supervised hashing (DPSH [20]) and network-

in-network hashing (NINH [26]) share a similar loss function,

but DRSCH is composed of three convolutional layers and

three fully-connected layers while NINH only contains four

convolutional layers. Comparing HDH_shallowglobal and Hg,

they give different retrieval performance although they are

trained with the same loss function and with the same set

of training samples. The re-ranking strategy is also useful,

as verified by the fact that HDH_shallowrerank improves the

performance of HDH_shallowglobal by 2.9%.

Table 2 Comparison with state-of-the-art deep hashing methods on CI-
FAR10

Method 12bits 24bits 32bits 48bits

CNNH [19] 43.9 51.1 50.9 52.2

CNNH+ [19] 46.5 52.1 52.1 53.2

SDH [15] - - 20.83 -

NINH [26] 55.2 56.6 55.8 58.1

DSCH [43] - 61.3 61.7 61.9

DRSCH [43] - 62.1 62.8 63.0

DSH [21] 61.5 65.1 66.7 67.5

DPSH [20] 68.2 68.6 72.5 73.3

Hg code 74.3 79.9 80.8 81.2

HDH_shallowglobal - - - 37.2

HDH_shallowrerank - - - 40.1

HDH (baseline) 77.2 83.2 84.6 84.9

HDH (wLinCb-HD) 75.2 82.3 84.0 86.3

HDH (wAtt-HD) 77.8 83.9 84.9 85.9

Note that in our HDH method with weighted Hamming

distance, the actual code length used is the corresponding

length of Hg code (for rough search) plus the 256 bits of

local hash code (for result refining). Among the three HDH

variants compared here, the HDH(wAtt-HD) strategy works

the best, while the linear combination method HDH improves

the performance of baseline method HDH(baseline) by 1.6%

when the code-length of Hg is 48. All the three hierarchical

search strategies are beneficial to the performance compared

to the retrieval scheme that is directly based on the Hg code,

revealing that they could fuse local and global information

and make the resulting retrieval scheme more discriminative

and more robust while being as efficient as possible. Figure

7 gives some examples on how the hierarchical search im-

proves the ranking accuracy over the naive Hg code.

4.5 Comparison with state-of-the-art non-hashing methods

We next conduct experiments on other five datasets, includ-

ing Oxford5k [31], Oxford105k [31], Paris6k [32], Holi-

days [30], and UKB [33]. Specifically, besides the proposed

hierarchical deep hashing method (HD), we evaluate several

variants of the proposed method, including the global hash
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Fig. 7 Illustration of using local-level hash for reranking (For each query image (the first column), images in the first row are the top ten results
retrieved with global-level Hg hash code, while the images below are results adjusted by using the proposed multi-level hash search method)

code (Hg), local hash codes (Hl) without pruning (Hl f ull),

with attention-based bit selection (Hlselected), and fast im-

plementation (Hl f ast). For comparison, we also test a PCA-

based dimensionality reduction method for the Conv7 layer,

denoted as Conv7-PCA. We compare our method with sev-

eral states-of-the-art non-hashing CNN methods popularly

used for image retrieval. Particularly these methods can

be roughly divided into two categories: the first category

are three sophisticated aggregation methods, including those

based on Fisher vectors [8], VLAD [44] and Triangulation

embedding of traditional local descriptors (T-embed [45]).

The second category mainly includes methods that are based

on various variants of CNN features, such as CNN-based

VLAD (C-VLAD [10]), OxfordNet [46], CNN spatial search

(CNN-ss [7]), regional maximum activation of convolution

(R-MAC [9]), cross-dimensional weighting (CDW [23]), and

Faster R-CNN [24].

Table 3 gives the results (Note that the number appeared in

the parentheses of the first column are dimensionality of the

corresponding method). From the table, several observations

can be made: First, one can see that methods using current

state-of-the-art sophisticated aggregation feature descriptors

[8,45] yield similar performance to some of the state-of-the-

art deep feature descriptors network [10,46,8] on the task

of image retrieval. However, their performance is inferior to

that of more advanced CNN variants, such as R-MAC [9],

CDW [23], and Faster R-CNN [24], while our hierarchical

deep hashing method (HD) yields better or competitive re-

sults compared to these state-of-the-art non-hashing meth-

ods. Particularly on the challenging large-scale Oxford105k

dataset, our method with attention-based weighted distance

yields mAP of 63.5%, outperforming the previous best per-

former R-MAC [9] by 1.9% without using extra complex re-

trieval strategies such as spatial reranking or query expansion

as the latter does. For Holidays dataset, images are composed

of complex scenes. CDW encodes prior knowledge into the

aggregate process and C-VLAD adopts VLAD on complete

feature maps with less loss of scene information, while our

average strategy may introduce more noise for this situation.

Therefore, our HDH performs inferior to C-VLAD and CDW.

To evaluate the impact of binarization, in Table 3 we also

give the retrieval performance without hashing, these are re-

spectively denoted as Fl f ull (using the outputs of pool7),

Fg baseline (using the output of hash layer but not perform-

ing binarization), and Fl selected (using the features before

hashing to Hl selected). We use cosine distance to measure

the similarity of these continuous feature sets. Comparing

these results with their binarized versions, we see that as

expected, binarization reduces the retrieval performance, but

the degrees of influence are different from dataset to dataset.

It seems that the performance is less sensitive to binarization

on the datasets of Holidays and UKB, while their behaviors

are much different on the Paris6k and Oxford105k. This high-

lights the needs of further research on narrowing the perfor-
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mance gap due to feature binarization.

Table 3 Comparison with state-of-the-art non-hashing methods (mAP)

Method Holidays Oxford5k Oxford105k Paris6k UKB

Fisher Vec. [8] (256) 74.7 54.0 - - -

T-embed. [45] (1,024) 72.0 56.0 50.2 - 3.51

VLAD [8] (128) 62.5 44.8 37.4 55.5 -

C-VLAD [10] (128) 81.6 55.8 - 58.3 -

OxfordNet [46] (256) 71.6 53.3 48.9 67.0 3.36

SPC [8] (256) 80.2 58.9 57.8 - 3.65

Neural Codes [6] (256) 78.9 55.7 52.4 - 3.42

CNN-SS [7] (32k) - 55.6 - 69.7 3.47

R-MAC [9] (512) - 66.9 61.6 83.0 -

CDW [23] (256) 81.5 65.4 59.3 77.9 -

FasterRCNN [24] (4,096) - 67.8 - 78.4 -

Fg baseline (48) 65.1 61.7 62.3 74.1 2.92

Fl selected (256) 78.9 70.1 67.8 88.8 3.68

Fl f ull (512) 81.0 71.2 70.4 89.3 3.74

Conv7+PCA (256) 62.9 58.6 55.7 68.6 3.1

Hg baseline (48) 64.4 59.3 58.2 69.2 2.84

Hl f ast (256) 71.5 67.3 60.1 77.8 3.52

Hl selected (256) 78.2 69.7 63.9 85.2 3.67

Hl f ull (512) 80.8 70.5 65.1 87.3 3.71

HDH(baseline) (294) 77.2 67.1 63.3 83.7 3.62

HDH(wLinCb-HD) (294) 78.1 67.2 62.8 83.4 3.42

HDH(wAtt-HD) (294) 78.2 67.7 63.5 84.1 3.62

One advantage of our method compared to these CNN-

based non-hashing methods is that we use binarized hash

codes instead of continuous features for image representa-

tion, hence being much more efficient in terms of compu-

tational and storage cost. Under the situation when the re-

trieval efficiency is not so critical, using our hash descriptors

(e.g., Hl( f ull)) directly without performing retrieval first us-

ing Hg yields the best performance among the methods com-

pared. Particularly, on the large-scale Oxford105k dataset,

the mAP performance of our Hl( f ull) descriptor is 65.1%,

14.9% higher than that of the best traditional features [45]

and 7.3% higher than that of the best CNN descriptors [45].

Similar observations can be made on other datasets.

Another interesting point revealed by the table is that, al-

though the three variants of the proposed method achieve

similar performance on all the datasets tested, the attention-

based weighted Hamming distance seems to work the best

among them. One possible reason for this is that the local

salience weighting factors help to highlight the attention re-

gion of the image to be compared, hence being more robust

against the noise of the irrelevant region.

4.6 Analysis of time cost

In this section, we investigate the running time complexity of

our method empirically. In particular, we report the time for

feature extraction (denoted as “GPU” and “CPU”), bits se-

lection (denoted as “CAM”, “AM”, and “Fast”), and retrieval

(denoted as “Search”, “Rerank”), respectively. The feature

extraction stage is tested on both the CPU mode and the GPU

mode. The experiments are conducted on the Paris6k dataset

with 24-bit and 48-bit codes respectively.

Figure 8 gives the logarithmic time (in microseconds, base

10) of different components, where the results were averaged

over the whole test set. As we can see, varying the length

of codes take almost the same amount of time on the fea-

ture extraction stage, because of using the common convo-

lution layers. The GPU-accelerated mode is 10x faster than

the CPU mode as excepted. Although the stage of calculating

CAM and AM consumes more time than the stage of feature

extraction, the fast version shortens the time cost by nearly

two orders of magnitudes, which makes it possible to real-

world applications. Since not all candidates are involved in

the reranking stage, it is much faster than rough search and

hence the query time with or without rerank strategy is at the

same order of magnitude.

Fig. 8 Time cost to query (microseconds) on Paris6k

5 Conclusion

This paper presents a deep siamese CNN to produce global-

level and local-level semantic-preserved hash codes for im-

age retrieval. Meanwhile, in order to reduce the dimension

of local-level hash code while maintaining its discrimina-

tive capability, we propose a method that selects hash bits

most relevant to a specific query image based on the attention

mechanism. We also give a fast implementation of this using

correlation analysis. Finally, we present an efficient hierar-
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chical search that combines the advantages of both local and

global hash code. Extensive results over several benchmark

datasets verify the effectiveness of the proposed method.
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