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Semisupervised Dimensionality Reduction With
Pairwise Constraints for Hyperspectral
Image Classification

Shiguo Chen and Daogiang Zhang

Abstract—Dimensionality reduction is an important task in the
analysis of hyperspectral image data. While traditional dimension-
ality reduction methods use class labels as prior information, this
letter presents a general semisupervised dimensionality reduction
framework for hyperspectral image classification based on new
prior information, i.e., pairwise constraints which specify whether
a pair of examples belongs to the same class or not. The proposed
semisupervised dimensionality reduction framework contains two
terms: 1) a discrimination term that assesses the separability
between classes; and 2) a regularization term that characterizes
some property of the original data set. Furthermore, a novel
semisupervised dimensionality reduction method is derived from
the framework based on sparse representation. Experimental re-
sults on two hyperspectral image data sets show that the proposed
algorithms are remarkably effective in comparison to traditional
dimensionality reduction methods.

Index Terms—Dimensionality reduction, hyperspectral image
classification, pairwise constraints, sparse representation.

I. INTRODUCTION

YPERSPECTRAL sensors have been developed and

widely used for observing the Earth’s surface by sam-
pling a huge number of spectral bands, typically up to sev-
eral hundreds. This unreasonably large number of spectral
bands implies high dimensionality of hyperspectral image and
causes several challenges to image classification. As a result,
it is advantageous to reduce the number of original dimen-
sions without sacrificing significant information, i.e., dimen-
sionality reduction. Existing dimensionality reduction methods
can be roughly categorized into supervised and unsupervised
ones according to whether they use supervision information
or not. Linear discriminant analysis [1] and nonparametric
weighted feature extraction (NWFE) [2] are two widely used
supervised dimensionality reduction methods for hyperspectral
image data. In recent years, many extensions on those two
methods have been proposed, such as modified Fisher’s linear
discriminant analysis [3], regularized linear discriminant anal-
ysis [4], cosine-based nonparametric feature extraction [5], and
improved NWFE based on support vector machine and support
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vector domain description [6]. While the supervised dimension-
ality reduction methods use class labels to guide the process of
dimensionality reduction, unsupervised dimensionality reduc-
tion methods do not use any supervision information. One of the
most popular unsupervised dimensionality reduction methods
is principal component analysis (PCA) [7], which maximizes
data global variance by orthogonal projection. A refinement
of PCA is independent component analysis (ICA) [8], which
uses higher order statistics. In competition to PCA and ICA,
Phillips et al. [9] and He and Mei [10] used singular value
decomposition and random projection, respectively, to reduce
the dimensions of hyperspectral image data. More recently,
lower rank tensor approximation [11] and minimum change
rate deviation [12] are proposed for hyperspectral image data
by taking into account the spatial relation among neighboring
image pixels.

In many practical applications, unlabeled training examples
are readily available but labeled ones are fairly expensive to
obtain, and therefore, semisupervised learning, which takes into
account both labeled and unlabeled samples in the learning
of the classifier, has attracted much attention recently [13]. In
general, there are different forms of supervision information
or prior knowledge, such as class labels, pairwise constraints,
and others. In hyperspectral image data analysis, class labels
have been widely used for classification and dimensionality
reduction. However, to the best of our knowledge, the other
forms of prior knowledge have rarely been investigated for
dimensionality reduction, except that [14] uses the U.S. Ge-
ological Survey digital spectral libraries to estimate the pa-
rameter of the algorithm. In this letter, we focus on prior
knowledge in the form of pairwise constraints, which can be
defined as follows: Pairs of samples known as belonging to
the same class are called must-link constraints and the ones
belonging to different classes are called cannot-link constraints
[15]. Pairwise constraints arise naturally in many real tasks. For
example, in hyperspectral image data analysis, the true labels
may not be known a priori, while it could be easier for a user
to specify whether some pairs of instances belong to the same
class or not.

In this letter, we first propose a general semisupervised
dimensionality reduction framework for classification of hy-
perspectral image data based on pairwise constraints, which
contains two terms: 1) a discrimination term; and 2) a regu-
larization term. Then, the idea of sparse representation [16],
[17] is introduced into our framework that will lead to novel
semisupervised dimensionality reduction methods based on
sparsity preserving (SSDRsp). Finally, the experimental results
on two hyperspectral image data sets, i.e., Indian Pines 92AV3C
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data set and Washington DC Mall data set [18], validate the
effectiveness of the proposed methods.

II. PROPOSED METHODOLOGY

Let us consider the problem of semisupervised dimen-
sionality reduction. Given a set of data samples X =
{x1,X2,...,Xn}, together with some must-link constraints set
(M) and cannot-link constraints set (C), then the problem is to
find a set of projective vectors {wy, wa, ..., Wy}, such that the
embedding low-dimensional representations y; = wix; can
preserve the structure of the original data set as well as the
constraints in M and C [15]. The original data samples are all
D-dimensional vectors, and the low-dimensional representa-
tions are d-dimensional (D > d) vectors.

A. Semisupervised Dimensionality Reduction Framework

The semisupervised dimensionality reduction framework
contains two terms: a discrimination term and a regularization
term. The global objective function is made up of the two
terms.

1) Discrimination term—This term is based on pairwise
constraints. Here, the intuition is to let the distance be-
tween instances involved by the cannot-link constraints
in C as large as possible, while the distances between
instances involved by the must-link constraints in M
as small as possible in the embedding low-dimensional
space. As a result, we define the objective function of
discrimination term as follows:

Jp(w) = 1 Z (WTX,- - waj)2

€ (i.4)eC

oo 2 (Wi wxg) ()
M em

Here, x; and x; are the pairs of samples belonging
to must-link constraints or cannot-link constraints, n¢
is the number of cannot-link constraints, and similarly,
n s is the number of must-link constraints. The scaling
parameter «v is used here to balance the contribution of
the must-link constraints. There exists a concise form
for (1)

1
Tp(w) =35> (whxi - wix;)* Ay )
i

where the coefficient matrix A is defined as
% if (Xi, Xj) eC
n N
0

if (Xi,Xj) eM (3)
otherwise.
If we denote A as a diagonal matrix whose nonzero
elements are column sums of A, i.e.,A;; = Zj Aij,
thus (2) can be simplified as
Jp(W) =wrX(A - A)XTw. 4)

2) Regularization term—This term is to characterize some
property of the original data set, including abundant

unlabeled data. The motivation of using this term is to
use the unlabeled data to enhance the performance when
constraints are few. Since some property of abundant
unlabeled data is included, it is expected to be more
stable than using only the constraints. In order to use
the original data, we will define two different forms for
the regularization term. In Section II-B, maximizing data
global variance (PCA criterion) will be used that would
lead to a global structure preserving semisupervised di-
mensionality reduction, which is equivalent to the method
in [15]. In Section II-C, a sparse reconstruction weight
matrix will be calculated by sparse representation, and
then, the regularization term can be defined based on the
idea of minimizing the reconstruction errors in the low-
dimensional space, which lead to SSDRsp.

In order to find the optimal projective vectors w’s, we defined
the global objective function as
J=Jp+pBeJdp 5)
where J g is some definition of the regularization term and
parameter [ is added to tune the tradeoff between discrim-
ination term Jp and regularization term Jpg. The final ob-
jective function J is to preserve the some property of the
original data set as well as the pairwise constraints in sets IM
and C. In the following two sections (Sections II-B and C),
two semisupervised dimensionality reduction will be intro-
duced according to our basic framework.

B. SSDRpca

The method in [15] (named global structure preserving
semisupervised dimensionality reduction (SSDRpca) here) is
one of the most widely used semisupervised dimensional-
ity reduction methods. The goal of SSDRpca is to preserve
the global covariance of the original data set as well as the
pairwise constraints. The objective of SSDRpca is defined as
maximizing J ssprpea (W) w.r.t. wI'w = 1, where T denotes
the transpose operator and JgspRrpea(W) can be written as
follows:

1 2 «
JsspRpca(W) ~one (‘z)éc (wix;—w'z;) “onn
Z’j
x > (WTXi—WTXj)ZJFLz
(i.j)eM 2N

(6)

X Z (WTXi—WTXj)z.
2

The last term of (6) is equivalent to the PCA criterion with some
simple algebraic derivation. As shown in [15], the objective of
SSDRpca is efficient and has a closed-form solution of an eigen
problem.

In terms of our semisupervised dimensionality reduction
framework proposed in Section II-A, the first two terms of (6)
is equivalent to the discrimination term, and the last term is
equivalent to the regularization term using PCA criterion. Thus,
SSDRpca can be seen as a special case of our semisupervised
dimensionality reduction framework.
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C. SSDRsp

Sparse representation is initially proposed as an extension to
traditional signal representations such as Fourier representation
and wavelet representation [17]. Additionally, in mathematical
form, sparse representation can be briefly expressed as follows
[16], [17]:

)

min |s;[|, s.t. x;=Xs; and 1=1"s;
Sq

where 1 € RY is a vector of all ones. s; is the sparse re-
constructive weight vector for x;, and s; = {s;;}, where the
elements s;;(j # 7) summarize the contribution of each x; to
reconstructing x;. All the sparse reconstructive weight vectors
compose a reconstructive weight matrix S = {s1,s2,...,Sn}.
The sparse weight matrix S can reflect the intrinsic geometric
properties of the data to some extent and naturally preserve
potential discriminant information [17]. We therefore expect
that the characterization in the original high-dimensional em-
bedding space can be preserved in the low-dimensional embed-
ding space. In particular, the same weights s;; that reconstruct
the th data in high dimensions should also reconstruct its low-
dimensional representations. Here, the regularization term J
can be defined as follows:

1
Jr(w) = N (Z [whx; — WTXSi||2> . (3)

Equation (8) is equivalent to the objective function of sparsity
preserving projections (SPP) [17]. With some simple algebraic
derivation, (8) can be rewritten into

Jr(W)=wTX <;(ST +8-8Ts - I)> XTw

—wIXOXTw )
where S is the reconstructive weight matrix and I is the
identity matrix. According to (4) and (9), the objective func-
tion of SSDRsp can be defined as maximizing J ssprsp(W)
wrtwlw =1, and J sspRrsp(W) can be written as follows:

Jssprsp(W) =Jp(w) + S e Jp(w)
=wiX(A-A+B0)X w
=wIXLX"w (10)

whereL = A — A + B€2. Then, from (10), the objective func-

tion of SSDRsp can be expressed to be a typical eigen problem.

Then, the optimal w’s are the eigenvectors corresponding to

the largest d eigenvalues. The pseudocode for the algorithm is

shown in Fig. 1.

III. EXPERIMENTAL RESULTS
A. Data Sets and Experimental Setting

Experiments were conducted on two hyperspectral image
data sets: Indian Pines 92AV3C and Washington DC Mall [18].
For Indian Pines 92AV3C, we chose two sets of all 16 classes:
one for training and the other for testing, respectively, sampling
1398 instances for training and 1401 instances for testing from
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Algorithm: SSDRsp
Input: Set of data points X={x,Xy,...,.Xy};
Set of must-link constraints M;
Set of cannot-link constraints C.
Output: projective vectors {w;,wy,...,w;}
Method:
1l Initialize parameters: &, £, ny=|M|, nc=|C|;
2 Calculate the coefficient matrix using Eq. (3);

3. Construct the reconstructive weight matrix S using Eq.
(M
4. Obtain the projective vectors w’s from maximizing

Jssprsp(W) in Eq. (10).

Fig. 1. SSDRsp algorithm.
TABLE 1
DATA SETS USED IN THE EXPERIMENTS
properties Indian Pines 92AV3C Washington DC Mall
Training Testing Training Testing
#samples 1398 1401 2107 3045
#bands 220 220 191 191
#classes 16 16 7 7
TABLE II

CLASSIFICATION ACCURACIES (%) ON INDIAN PINES 92AV3C WITH
DIFFERENT CONSTRAINTS (#C') AND FIXED NUMBER OF FEATURES (15)

#C |Classifier| PCA | NWFE | SPP | JD SSDRpca | SSDRsp

10 | NN 21.91 | 50.75 | 47.11 | 68.77 | 69.30 68.02
SVM 14.99 | 48.75 | 57.89 [ 72.45 | 73.22 1291
QDC 3.43 |43.61 | 48.18 [ 59.91 | 62.66 59.41

100 | NN 21.91 | 50.75 | 47.11 | 69.49 | 69.59 72.42
SVM 14.99 | 48.75 | 57.89 | 73.10 | 73.73 77.19
QDC 343 [43.61 | 48.18 | 62.71 | 66.98 67.85

TABLE III

CLASSIFICATION ACCURACIES (%) ON WASHINGTON DC MALL WITH
DIFFERENT CONSTRAINTS (#C') AND FIXED NUMBER OF FEATURES (15)

#C [Classifier| PCA | NWFE | SPP | JD SSDRpca | SSDRsp

10 | NN 72.46 | 97.51 | 79.99 | 96.25 | 96.54 96.79
SVM | 7.14 | 9450 [ 92.60 [ 94.65 | 94.42 93.45
QDC [ 52.42 [ 98.20 | 92.96 | 96.51 | 96.87 97.19

100 | NN 7246 |1 97.51 | 79.99 | 97.01 [ 96.52 97.20
SVM | 7.14 | 94.50 [ 92.60 [ 94.80 | 94.55 97.10
QDC  [52.42 [ 98.20 | 92.96 | 97.19 | 96.86 97.36

the original data set randomly. Similar methodology was used
for Washington DC Mall, but 2107 instances were selected for
training and 3045 instances were selected for testing. Table I
summarizes the properties of the data sets: the number of
samples (#samples), the number of spectral bands (#bands), and
the number of classes (#classes).

Since the method proposed in this letter is used for classifi-
cation of hyperspectral image data, we therefore use classifica-
tion accuracy to evaluate the dimensionality reduction results.
Three widely used classifiers were used here: nearest neighbor
classifier (NN), quadratic discriminant classifier (QDC), and
support vector machines (SVM). The methods compared in the
experiments include the following:

1)

2)

3)

PCA[7]: principal component analysis;

NWPFE|2]: nonparametric weighted feature extraction;
SPP[17], which uses only the regularization term Jg
described in Section II-C;

JD, which uses only the discrimination term Jp de-
scribed in Section II-A;

4)
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Fig. 2. Accuracies (%) on Indian Pines 92AV3C when the number of constraints is 100. (a) Results of NN. (b) Results of QDC. (c) Results of SVM.
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Fig. 3.

5) SSDRpca [15], which uses both the discrimination
term Jp and the regularization term J g described in
Section II-B;

6) SSDRsp, which uses both the discrimination term
Jp and the regularization term Jpg described in
Section II-C;

7) Baseline: the accuracy on the original data.

We selected the same number of must-link constraints and
cannot-link constraints from the training sets randomly accord-
ing to the ground truth in our experiments. The same constraints
were used for JD, SSDRpca, and SSDRsp in each run, and
the results were averaged over ten runs. In the experiments,
the value of o was always fixed to one, and the value of 3
was searched in the range of [0, 3] based on the standard grid
search, which is an exhaustive search method to determine
the best value over a supplied range of parameter values with
a user-defined step size, i.e., 0.2 in our experiments. The
reconstructive weight matrix S in Section II-C of SSDRsp was
calculated by the sparse learning package (SLEP)!—a software
that can solve the L1-regularized sparse learning problem [(7)]
efficiently. The dimensionality reduction methods were run on
the training data sets, but the accuracies were calculated only
on the testing data sets.

B. Results and Discussion

We first compared all the dimensionality reduction meth-
ods when the number of features was fixed at 15. For the
three methods (JD, SSDRpca, and SSDRsp) derived from

'www.public.asu.edu/~jye02/Software/SLEP/

(b) ()

Accuracies (%) on Washington DC mall when the number of constraints is 100. (a)Results of NN. (b) Results of QDC. (c) Results of SVM.

the semisupervised dimensionality reduction framework, we
displayed their results with different numbers of constraints:
ten little constraints and 100 lots of constraints independently.
Tables II and III show the results on two hyperspectral image
data sets, respectively. The symbol #C in Tables II and III
denotes the number of constraints (where ny; = no = #0C),
and the symbol Classifier denotes the classifiers used in ex-
periments. From the results of the two tables, the two semisu-
pervised methods are superior to the unsupervised methods.
For the Indian Pines 92AV3C (Table II), both SSDRpca and
SSDRsp are all superior to JD that uses only the discrimina-
tion term, which shows that the regularization term can im-
prove the performance of dimensionality reduction. However,
for two semisupervised methods (SSDRpca and SSDRsp) on
Washington DC mall (Table III), only SSDRsp is superior to
JD, which shows that the methods proposed in this letter are
more stable than SSDRpca.

In the second set of experiments, we evaluated the perfor-
mance of all dimensionality reduction methods when different
numbers of features were used. Figs. 2 and 3 demonstrate the
results of three classifiers on two hyperspectral image data sets,
where the number of constraints is 100 for JD, SSDRpca, and
SSDRsp. It can be seen from Figs. 2 and 3 that SSDRsp is
superior to other methods in nearly all cases. Furthermore,
Figs. 2 and 3 indicate that SSDRsp and SSDRpca still work well
when only a few features are used (about ten features for Indian
Pines 92AV3C and four features for Washington DC mall
according to the curves) in comparison to other approaches.

In the next experiments, we study the sensitivity of SSDRsp
with the parameter S for all three classifiers (NN, QDC, and
SVM). Fig. 4 shows the changing curves when the value of /3



CHEN AND ZHANG: SEMISUPERVISED DIMENSIONALITY REDUCTION WITH PAIRWISE CONSTRAINTS 373

80 T T 98
I | | |
anug, I I |
752 "-J, e NN 97.----"""""' LIy
E T 7T 7TT% |- 7 = -
= 3 N QDC = 'l | ~
o3, | suuns SVM S | \ |
z > I | \i
& 0fF--—-—-71 @961————r————‘————
3 a |l ! AR
< g 10 || — NN N
|
65— ——- -~~~ 7- 95T“"_|____-QDC_
I | I
| | | sunun SVVM
| | 94 o 2 T
600 1 2 3 0 1 2 3
The value of beta The value of beta
(@) b

Fig. 4. Sensitivity analysis of S on different data sets. (a) Indian Pines
92AV3C. (b) Washington DC mall.

TABLE IV
COMPUTATIONAL COST (THE UNIT OF MEASUREMENT IS SECOND)
OF DIFFERENT APPROACHES. Set/ DENOTES INDIAN PINES 92AV3C
DATA SET, AND Ser2 DENOTES WASHINGTON DC MALL DATA SET

Dataset PCA NWFE | SPP SSDRpca SSDRsp
Set!] 0.062s | 663.6s 50.49s 94.7s 177.4s
Set2 0.047s | 1803s 84.17s 194.1s 359.4s

was varied from zero to three. The other parameter o was not
studied here because it is fixed to be one in our experiments
following [15]. According to our framework in Section II, the
value of (3 is used to balance the contribution of regularization
term. Particularly, when the value of S is zero, SSDRsp has not
balance the regularization term and only utilizes the pairwise
constraints. From the results in Fig. 4, all curves have the
similar changing tendency that they rise quickly at first and then
begin to descend, and the peak value arises always with a small
value of 5. According to this observation, we advise that the
value of 3 can be selected within a limited range near zero, i.e.,
zero to three in our experiments.

At last, we compared the computational cost (related to the
process of data extraction only) of different approaches on
two hyperspectral image data sets. We carried out the exper-
iments on an Intel (R) Xeon (R) CPU E5410 at 2.33 GHz
processor, and the time consumed on parameter determination
is also included here for the computational cost of 3 determi-
nation in SSDRpca and SSDRsp methods. From the results in
Table IV, PCA and SPP are faster than SSDRpca and SSDRsp,
respectively, and SSDRpca is more efficient than SSDRsp. The
reason for the former is because 3 determination in SSDRpca
and SSDRsp is time consuming, and the reason for the latter
is because constructing the weight matrix in SSDRsp is time
consuming. It’s noteworthy that both SSDRpca and SSDRsp
are much more efficient than NWFE.

IV. CONCLUSION AND FUTURE WORK

This letter proposed a general semisupervised dimensionality
reduction framework based on pairwise constraints for hyper-
spectral image classification. It contains two terms: a discrim-
ination term and a regularization term. From the framework,
we also developed a novel semisupervised dimensionality re-
duction method called SSDRsp based on sparse representation.
Experimental results on two well-known hyperspectral image
data sets show the effectiveness of our proposed method for
hyperspectral image classification.

In the future, we will further evaluate our methods on more
hyperspectral image data sets, e.g., NASA John F. Kennedy
Space Center and the Okavango Delta, Botswana data sets,
etc. Other interesting topics for future research include nonlin-
ear extension of the proposed semisupervised dimensionality
reduction framework, selection of most informative pairwise
constraints, and definition of novel regularization term for the
semisupervised framework.
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