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The existing multi-view learning (MVL) is learning from patterns with multiple information sources and
has been proven its superior generalization to the conventional single-view learning (SVL). However, in
most real-world cases, researchers just have single source patterns available in which the existing MVL is
uneasily directly applied. The purpose of this paper is to solve this problem and develop a novel
kernel-based MVL technique for single source patterns. In practice, we first generate different Nyström
approximation matrices Kps for the gram matrix G of the given single source patterns. Then, we regard
the learning on each generated Nyström approximation matrix Kp as one view. Finally, different views
on Kps are synthesized into a novel multi-view classifier. In doing so, the proposed algorithm as a MVL
machine can directly work on single source patterns and simultaneously achieve: (1) low-cost learning;
(2) effectiveness; (3) the same Rademacher complexity as the single-view KMHKS; (4) ease of extension
to any other kernel-based learning algorithms.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The pattern is the handled object of the classifier and it is mean-
ingful to consider the correlated knowledge of patterns in design-
ing classifiers (Duin & Pekalska, 2006). In practice, patterns can be
obtained through single or multiple information sources. If we re-
gard each information source as one view of patterns, the kinds of
patterns are sorted into single-view patterns and multi-view
patterns. Correspondingly, the learning based on single-view and
multi-view patterns can be sorted into single-view and multi-view
learning (SVL and MVL), respectively. In Blum and Mitchell
(1998), it has been demonstrated that the existing MVL approach
has a significantly superior generalization ability to the conven-
tional SVL.

Different from the existing MVL framework, in this paper we
develop a novel kernel-based multi-view classifier whose underly-
ing motivations are:

� It is known that the existing MVL requires the independence
assumption that multiple views of patterns are independent
given the class label (Blum & Mitchell, 1998; Muslea, Kloblock,
& Minton, 2002). The independence assumption tries to guaran-
tee a high performance to be achieved since it is unlikely for
compatible classifiers trained on independent views to agree
on an incorrect label. However, in most real-world applications,
the independence assumption is hard to given since there are
ll rights reserved.
only one single-view pattern set available. In that case, there
is not any natural way to partition the feature space (Duin &
Pekalska, 2006; Muslea et al., 2002; Nigam & Ghani, 2000)
and thus the existing MVL framework can not effectively work.
The fact motivates us to develop a new MVL that can potentially
create multiple views from a group of single-view patterns and
then learn from multiple views simultaneously.
� In the existing MVL framework, the patterns are represented by

multiple independent sets of attributes. Meanwhile, the base
learners have the same architecture in each view and iteratively
bootstrap each other. Here, we expect to utilize the multi-view
technique due to its well-known superior generalization to the
usual SVL. However, different from the existing learning on
multi-view patterns, we adopt a new multi-view viewpoint. In
the new multi-view viewpoint, a multi-view classifier is
designed for the original single-view patterns. In doing so, the
advantage of the proposed MVL can be inherited.
It can be found that the proposed multi-view classifier is novel
but off-the-shelf. We handily modify the existing technique for
a low-cost design. Here, our work falls into the kernel-based
learning framework. Kernel learning plays an important role
in many applications. In kernel-based leaning, a canonical algo-
rithm is reformulated in terms of gram matrix G and all the
prior information or knowledge of patterns is contained in G
(Shawe-Taylor & Cristianini, 2004). But a large scale data set
induces a G 2 Rn�n with large storages and causes a much com-
putational complexity. To this end, the Nyström approximation
to G (Williams & Seeger, 2001) was presented (Fowlkes,
Belongie, Chung, & Malik, 2004; Kumar, Mohri, & Talwalkar,
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2009; Williams & Seeger, 2001). Through choosing a set of rows
and columns from the original G, the Nyström approximation
can speed up kernel-based machines but without a significant
decrease in the classification accuracy. In the proposed MVL
framework, we regard each Nyström approximation to G as
one view and therefore achieve multiple views from the original
single-view patterns. Concretely speaking, we randomly choose
different sets of rows and columns from G so as to give rise to
multiple approximating Gram matrices Kps, p = 1, . . . ,M. Each
Kp bases on the same given single-view patterns, but possesses
its own structural description for the patterns due to the differ-
ent choices. Then, the learning on each Kp can be taken as one
view. Consequently, we fuse these different views in one joint
rather than separate optimization process and form a new
multi-view classifier.
� The proposed multi-view classifier can own a superior classifi-

cation performance to its corresponding single-view version
since here randomly selecting different reduced sets from G to
form its different approximations Kps is an optimal sampling
strategy for minimizing a model variation. In the proposed
method, we randomly select a set of rows and columns from
the original gram matrix G so as to generate a Nyström approx-
imation Kp. In doing so multiple times, we can give a set of Kps.
It has been stated that the presented method syncretizes multi-
ple Kps in one learning process. The designed leaning with mul-
tiple Kps is supposed to be robust against the worst possible
scenario and can reduce the model deviation. Here, the pro-
posed learning acts a similar role like that of cross validation
or Monte–Carlo sampling schemes (Duda, Hart, & Stock, 2001;
Lee & Huang, 2007).
� The proposed multiviewization technique can be applied to any

other kernel-based algorithms like the state-of-the-art kernel-
ization technique applied to the linear algorithms since only
the gram matrix G needs to be manipulated.

In our implementation, we take the kernel Ho-Kashyap classi-
fier with regularization (KMHKS) (Leski, 2004) as a paradigm due
to both its similar principle to support vector machines (SVM)
(Vapnik, 1998) of maximizing the separation margin and
superior generalization performance, and then develop the
multi-view Nyström approximation KMHKS (MVNA-KMHKS). In
Williams and Seeger (2001), it has been proven that the
kernel-based machine with the Nyström approximation to G
has the comparable generalization to that without. Here, the
experimental results have demonstrated that even in the current
so-simple construction for views, the proposed MVNA-KMHKS
can not only outperforms the single-view classifier with the
Nyström approximation (NA-KMHKS), but also gets ahead of
the original one (KMHKS).

The rest of this paper is organized as follows. Section 2 discusses
the related work on the multi-view learning. We formulate the
problem setting and give the description about the proposed mul-
ti-view classifier in Section 3. Section 4 investigates the generaliza-
tion risk bound of the proposed multi-view method and finds that
the Rademacher complexity of the proposed method does not in-
crease but is still kept the same as that of the single-view KMHKS.
Meanwhile, this section discusses the relationship between the
proposed MVL and ensemble learning. Following that, we report
on our experimental results. Finally, conclusions are given.
2. Related work

One typical example of MVL is web-page classification (Blum &
Mitchell, 1998), where each web page can be represented by
either the words on itself (view one) or the words contained in
anchor texts of inbound hyperlinks (view two). In Blum and
Mitchell (1998), Blum & Mitchell design a co-training algorithm
on the labeled and unlabeled web pattern sets composed of the
two naturally-split views. On the labeled web set two classifiers
are incrementally built with the corresponding views, and on
each cycle each classifier labels the unlabeled webs and picks
those with the highest confidence into the labeled set. The
process repeats until the terminated condition is satisfied. The
co-training algorithm requires two assumptions: (1) the compat-
ibility assumption that the base classifiers in each view farthest
agree on labels of web patterns and (2) the independence
assumption that the different views given the class are condition-
ally independent. But in most cases it is hard to satisfy the inde-
pendence assumption due to the nonexistence of naturally-split
attribute sets (naturally-split views) such as the single-view pat-
terns. Thus Nigam and Ghani (2000) experimentally explore the
co-training algorithm with or without the independence assump-
tion, demonstrate that the co-training algorithm with a natural
split of the attributes outperforms the ones without, and further
propose a semi-supervised, multi-view algorithm co-EM that is
a probabilistic version of co-training and outperforms co-training.
Moreover, Muslea et al. (2002) incorporate active learning in co-
EM, and present co-EMT that outperforms both co-training and
co-EM and has a robustness in view-correlation cases to some ex-
tent. Recently, the literature (Wang & Zhou, 2007) demonstrates
that the co-training style algorithms could success in the case
that the two learners have enough difference without the the
independence assumption.

Although co-EMT and co-EM has the superior generalization to
co-training, all these algorithms can not effectively work on the
patterns with the non-naturally split attributes, especially the sin-
gle-view patterns. In order to solve the problem, Zhang, Tang, Li,
and Wang (2005) design an algorithm called correlation and com-
patibility based feature partitioner (CCFP) to automate multi-view
detection, where the attributes of patterns can be partitioned into
two views that are low correlated, compatible and sufficient en-
ough. But, as the authors themselves said in Zhang et al. (2005),
CCFP has two limitations: (1) the two views must have the same
number of attributes and certain correlation; (2) it is hard to get
the optimal parameters of CCFP. SVM-2 K (Farquhar, Hardoon,
Meng, & Shawe-Taylor, 2005) utilizes the multi-kernel trick on
the single-view patterns where for the same pattern, the two
views are generated through two feature projections /A and /B

with their corresponding kernels kA and kB. Then the process that
kernel canonical correlation analysis (KCCA) (Hardoon, Szedmak,
& Shawe-Taylor, 2004) combined by SVM is done on the two gen-
erated views. However, due to SVM itself, SVM-2 K also suffers
from similar problems as the scalability with the number of the
patterns and time-consuming quadratic programming (QP).
Rather than dealing with the single-view patterns themselves,
democratic co-learning (Zhou & Goldman, 2004) runs different
algorithms on the single-view patterns, whose motives are that
different learning algorithms have different inductive biases and
that better performance can be made by the voted majority.
However, in democratic co-learning, how to select those learning
algorithms to be fused is still a problem due to lack of a measur-
able selection criterion.

Compared with CCFP, SVM-2 K and democratic co-learning, the
multi-view classifier proposed by us has the following advantages:
(1) it does not need to split the attributes of the original single-
view patterns but just manipulates the corresponding gram ma-
trix; (2) it employs the off-the-shelf learning technique, i.e. the
Nyström approximation to gram matrix, and simply generates
multiple views naturally and freely.
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3. The proposed multi-view classifier

3.1. Nyström approximation to gram matrix G

The Nyström approximation matrix K 2 Rn�n to gram matrix
G 2 Rn�n (Williams & Seeger, 2001) is to decrease the computation
cost of kernel-based methods from O(n3) to O(m2n), where n is the
number of training patterns and 0 < m < n. The approximation K is
got by randomly choosing m rows and columns from G without
replacement. Concretely, let G be partitioned into four blocks
Gm,m, Gn�m;m ¼ GT

m;n�m and Gn�m,n�m and then set the approximating
gram matrix

K ¼ Gn;mG�1
m;mGm;n; ð1Þ

where

Km;m ¼ Gm;m;

Kn�m;m ¼ Gn�m;m;

Km;n�m ¼ Gm;n�m;

Kn�m;n�m ¼ Gn�m;mG�1
m;mGm;n�m:

The experiments in Williams and Seeger (2001) demonstrate that
when m is set to the empirical values 256 or 512 on the US Postal
Service (USPS) handwritten digit database with 7291 training pat-
terns (n = 7291), the classifier with the Nyström approximation
has the comparable classification accuracy to the one without, i.e.
the average number of errors on the test patterns are 26 vs. 26.1.

3.2. Multi-view Nyström approximation KMHKS (MVNA-KMHKS)

Suppose that there are n labeled training patterns fðxi; yiÞg
n
i¼1

available, where xi 2 Rd and the corresponding class label
yi 2 { + 1,� 1}. The training set can give rise to a gram matrix G
by a given kernel function k(xi,xj) (Shawe-Taylor & Cristianini,
2004). In KMHKS (Leski, 2004), the decision function

f ðxÞ ¼ sign
Xn

i¼1

yiaikðx; xiÞ þw0

 !
; ð2Þ

is obtained by optimizing the criterion

min JðC;b;w0Þ ¼ ðGCþw0Y � 1� bÞTðGCþw0Y � 1� bÞ þ cCT GC;

ð3Þ

where the scalars ai;w0 2 R; c P 0; the vectors Cn�1 ¼ ½ai�ni¼1;

Yn�1 ¼ ½yi�
n
i¼1, 1n�1 and bn�1 respectively denote the vectors of

dimension n � 1 with all entries equal to 1 and the nonnegative va-
lue; the gram matrix G ¼ ½yiyjkðxi; xjÞ�ni;j¼1.

In our method, through the random choices for m (different sets
of rows and columns) from the gram matrix G, there are multiple
Nyström approximating gram matrices Kps, p = 1. . .M. Each Kp is
associated with one KMHKS, which learns from the same patterns
but owns different structural architecture (view) due to the differ-
ent approximation. Consequently, it induces multiple views
KMHKSs. In such a set of views, there is a set of solutions

Cp;wp
0

� �M
p¼1, correspondingly. A natural idea is to learn the solution

set Cp;wp
0

� �M
p¼1 such that each individual KMHKS respectively on

its corresponding approximating matrix can correctly classify a gi-
ven pattern. It is known that although the given pattern generates
multiple views through different Nyström approximations, it still
has one class label. In other words, the disagreements among the
outputs of all KMHKSs should be farthest minimized. This suggests
the following objective function of multi-view Nyström approxi-
mation KMHKS (MVNA-KMHKS)
min J0 Cp;bp
;wp

0

� �
¼
XM

p¼1

KpC
p þwp

0Y � 1� bp� �TðKpC
p

�
þwp

0Y � 1� bpÞ þ cpCpT KpC
p
�

þ c
XM

p¼1

KpC
p þwp

0Y �
XM

j¼1

ljðKjC
j þwj

0YÞ
 !T

� KpC
p þwp

0Y �
XM

j¼1

ljðKjC
j þwj

0YÞ
 !

; ð4Þ

where bp, cp are respectively the error vector and the regularization
parameter of each view, c is the coupling parameter that regularizes
multiple views towards the compatibility using the multiple
approximating gram matrices fKpgM

p¼1 on the given single-view pat-
terns, lj P 0;

PM
j¼1lj ¼ 1, lj denotes the importance of the corre-

sponding view and the bigger the lj is, the more important the
corresponding view is. The first term of the right side of (4) is to
guarantee each view can correctly classify the patterns, and the sec-
ond one is to minimize the disagreement between each view by
making the output of each view be maximally close to the weight
average output of all views.

By differentiating (4) with respect to Cp; wp
0 and zeroing them,

we obtain

ð1þ cÞKT
pKp þ cpKp

� �
Cp þ ð1þ cÞKT

pYwp
0

¼ KT
p 1þ bp þ c

XM

j¼1

lj KjC
j þwj

0Y
� � !

; ð5Þ

ð1þ cÞYT KpC
p þ ð1þ cÞYT Ywp

0

¼ YT 1þ bp þ c
XM

j¼1

lj KjC
j þwj

0Y
� � !

: ð6Þ

Then, considering that Kp is positive semi-definite and defining the
matrix

K ¼
ð1þ cÞKp þ cpI ð1þ cÞY
ð1þ cÞYT Kp ð1þ cÞYT Y

" #
;

(5) and (6) are converted into

Cp
tþ1

wp
0tþ1

" #

¼ K�1

1þ bp
t þ c

Pp�1

j¼1
lj KjC

j
tþ1 þwj

0tþ1Y
� �

þ
PM
j¼p

lj KjC
j
t þwj

0tY
� � !

YT 1þ bp
t þ c

Pp�1

j¼1
lj KjC

j
tþ1 þwj

0tþ1Y
� �

þ
PM
j¼p

lj KjC
j
t þwj

0tY
� � ! !

2666664

3777775;
ð7Þ

where the subscript t denotes the iteration index. The gradient of
(4) with respect to bp is given as follows

rbp J0 ¼ �2 KpC
p þwp

0Y � 1� bp� �
: ð8Þ

In order to keep the condition bp P 0 in each view, we start with
bp

1 P 0, refuse to decrease any of its components like KMHKS, and
give the update of bp as follows

bp
1 > 0

bp
tþ1 ¼ bp

t þ qp ep
t þ je

p
t jð Þ

(
; ð9Þ

where at the tth iteration, the error vector of the pth view
ep

t ¼ KpC
p
t þwp

0tY � 1� bp
t , and the learning rate of the pth view

0 < qp < 1. In practice, the termination criterion can be designed as

J0tþ1 � J0t
�� ��

J0t
�� �� 6 n; ð10Þ



Table 1
Algorithm MVNA-KMHKS.

Input: The single-view patterns fðxi; yiÞg
n
i¼1;

M approximating gram matrices fKpgM
p¼1.

OutPut: fCp;wp
0g

M
p¼1.

1. Initialize Cp
1; wp

01; bp
1 P 0; p ¼ 1; . . . ;M at random; LET t = 1;

2. Do until the termination criterion (10) is satisfied:
(A) For p = 1, . . . ,M:

I. Compute Cp
tþ1;w

p
0tþ1 with (7);

II. Set bp
tþ1 with (9);

(B) Compute J0tþ1 with (4);
(C) Increment t.

3. Return the final fCp;wp
0g

M
p¼1.
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where n 2 R is a small positive value, and k.k is chosen to be L2 norm
throughout the paper. Such a designed procedure is exactly the
MVNA-KMHKS and summarized in Table 1.

The decision function of MVNA-KMHKS for the pattern x 2 Rd is
given as follows

gðxÞ ¼ sign
XM

p¼1

Xn

i¼1

lp yia
p
i kðx; xiÞ þwp

0

� � !
; ð11Þ

where Cp ¼ ap
i

	 
n
i¼1.

It can be found that in Algorithm MVNA-KMHKS, the update of
Cp

tþ1; wp
0tþ1 is determined by fCj

tþ1;w
j
0tþ1g

p�1
j¼1 and fCj

t ;w
j
0tg

M
j¼p as in

(7), which reflects that these views cooperate each other. Then, if
M = 1, c = 0 of (4), MVNA-KMHKS will be degenerated to KMHKS
and thus KMHKS is taken as a special instance of MVNA-KMHKS.
4. Discussion

4.1. Rademacher complexity analysis

It is well-known that the analysis of the generalization risk
bound is important for algorithms (Bartlett, Boucheron, & Lugosi,
2002; Koltchinskii & Panchenko, 2000; Koltchinskii, 2001; Vapnik
& Chervonenkis, 1971). For example, the generalization risk bound
can be used to choose a suitable model. In this section, we give the
discussion of the proposed MVNA-KMHKS in terms of the general-
ization risk bound with the Rademacher complexity. Firstly, we
know that the classical risk bound theory was proposed by Vapnik
and Chervonenkis (1971) and can be described through Theorem 1.

Theorem 1. Let P be a probability distribution on v � { ± 1} and
fxi; yig

n
i¼1 be chosen independently according to P. Then, for a {±1}-

valued function class F with the domain v, there is a constant c P 0
such that for any integer n, with probability at least 1 � d over
fxi; yig

n
i¼1, every f in F satisfies

Pðy – f ðxÞÞ 6 P̂nðy – f ðxÞÞ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VCðFÞ

n

r
; ð12Þ

where VC(F) denotes the Vapnik–Chervonekis dimension of F and P̂n de-
notes the empirical risk error of the function f on the sample set
fxi; yig

n
i¼1.

In this case, the VC (F) dimension measures the complexity of
the class function F. Further, the Rademacher complexity was pro-
posed as an alternative notion of the complexity of a function class
F (Bartlett & Mendelson, 2002; Farquhar et al., 2005; Koltchinskii,
2001; Mendelson, 2002). Here, the Rademacher complexity is used
to measure the proposed MVNA-KMHKS. Definition 2 gives the
Rademacher complexity (Koltchinskii, 2001).
Definition 2. Let l be a probability distribution on a set v and
suppose that fxign

i¼1 are independent samples selected from v
according to l. Let F be a class of functions mapping from v to R.
Let frign

i¼1 be independent uniform { ± 1}-valued random variables
and define the random variable

bRnðFÞ ¼ E½sup
f2F
j2
n

Xn

i¼1

rif ðxiÞkx1; . . . ; xn�; ð13Þ

where E is the operator of the expected value of a random variable.
Then the Rademacher complexity of F is

RnðFÞF ¼ EbRnðFÞ: ð14Þ

Theorem 3 (Bartlett & Mendelson, 2002) gives the generaliza-
tion risk bound of F with the Rademacher complexity Rn(F).
Theorem 3. Let P be a probability distribution on v � { ± 1} and
fxi; yig

n
i¼1 be chosen independently according to P. Then, for a {±1}-

valued function class F with the domain v, with probability at least
1 � d over fxi; yig

n
i¼1, every f in F satisfies

Pðy – f ðxÞÞ 6 P̂nðy – f ðxÞÞ þ RnðFÞ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=dÞ

2n

r
: ð15Þ

Due to the Eqs. (2) and (11) with kernels, the proposed method
MVNA-KMHKS falls into the kernel-based learning framework.
According to the literature (Bartlett & Mendelson, 2002), the
empirical Rademacher complexity of F (13) also satisfies

bRnðFÞ 6
2B
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
kðxi; xiÞ

q
6

2B
n

ffiffiffiffiffiffiffiffiffiffiffi
trðGÞ

p
; ð16Þ

where G is the gram matrix formed by a given kernel function
k(xi,xj) on the sample set fxign

i¼1, the parameter B is a fixed value
and satisfies CTGC 6 B2, C 2 Rn.

Then, the Rademacher complexity of F (16) can also satisfy

RnðFÞ ¼ EbRnðFÞ 6 2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtrðGÞ

n

r
: ð17Þ

Therefore, Theorem 3 can also be rewritten into

Theorem 3
0
. Let P be a probability distribution on v � { ± 1} and

fxi; yig
n
i¼1 be chosen independently according to P. Then, for a { ± 1}-

valued function class F with the domain v, with probability at least
1 � d over fxi; yig

n
i¼1, every f in F satisfies

Pðy – f ðxÞÞ 6 P̂nðy – f ðxÞÞ þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtrðGÞ

n

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=dÞ

2n

r
: ð18Þ

Here, the generalization risk bound of the single-view KMHKS
satisfies the inequation (18). According to the Eqs. (2) and (11),
the decision function g of the proposed multi-view MVNA-KMHKS
is the convex combination of the decision function f of the single-
view KMHKS. It has been proven that for a class of functions F, if
convF is the class of convex combinations of function from
F;�F ¼ f�f : f 2 Fg (Bartlett & Mendelson, 2002) then
RnðconvFÞ ¼ RnðFÞ: ð19Þ

Concretely, for the sample set fxign
i¼1 and frign

i¼1,

sup
g2convF

j
Xn

i¼1

rigðxiÞj ¼max sup
g2convF

Xn

i¼1

rigðxiÞ; sup
g2convF

�
Xn

i¼1

rigðxiÞ
 !

¼max sup
f2F

Xn

i¼1

rif ðxiÞ; sup
f2F
�
Xn

i¼1

rif ðxiÞ
 !

¼ sup
f2F
j
Xn

i¼1

rif ðxiÞj:

Further, according to the definition of the Rademacher complexity,
the Eq. (19) is proven (Bartlett & Mendelson, 2002).
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It is known that the generalization risk bound of the single-view
KMHKS satisfies the inequation (18). Due to the Eq. (19), the pro-
posed multi-view MVNA-KMHKS also satisfies

Pðy – gðxÞÞ 6 P̂nðy – gðxÞÞ þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtrðGÞ

n

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=dÞ

2n

r
: ð20Þ

Therefore, it can be found that although the proposed method intro-
duces additional information into training process, it is still kept the
same generalization risk bound as the single-view KMHKS. In other
words, the proposed multi-view method does not increase the
Rademacher complexity for such convex combinations.
4.2. Relationship with ensemble learning

The proposed MVL on single-view data sets can be naturally
associated it with ensemble learning (Basak & Kothari, 2004;
Breiman, 1996; Igelnik, Pao, LeClair, & Shen, 1999; Robert, Ricardo,
& Francis, 2003; Seewald, 2003; Valentini & Masulli, 2002;
Windeatt, 2006) since the proposed MVL also generates different
classifiers from multiple attribute sets. In the proposed MVL frame-
work, the machine combines the generated classifiers into one
learning process in which all the outputs of the classifiers are
expected to maximally agree with each other. In contrast, an
ensemble of classifiers works by generally separably running a base
classifier multiple times, and forming a final decision with the
combination the outputs of the individual classifiers produced by
the base learner, where all the outputs are expected to achieve a
large diversity of prediction errors. Ensembles of learning machines
have become an effective method of boosting classification perfor-
mance on single-view patterns and also through combining multi-
ple base classifiers trained on a given data set. Valentini and
Masulli (2002) have given an overview of ensemble algorithms dis-
tinguishing between generative and non-generative algorithms.
Generative ensemble methods generate a set of base learners,
whereas non-generative ones confine themselves and combine a
set of existing base learners. But in Valentini and Masulli (2002),
the authors do not give an unified theory on ensembles. Thus,
Seewald (2003) proposed a theoretical framework for the field of
ensemble learning, where some common ensemble learning
schemes can be reduced into the Stacking strategy. Here, we pay
attention to those ensemble schemes which generate sets of base
learners acting on the original patterns since our proposed multi-
view classifier works on different Nyström approximations to gram
matrix generated from the original single-view patterns. The exist-
ing ensemble methods acting on the original patterns have two
main schemes: sampling patterns and sampling features. Bagging
(Breiman, 1996), AdaBoost (Freund & Schapire, 1996; Freund &
Schapire, 1997) and Attribute Bagging (Robert et al., 2003) are their
typical instances of the two schemes. Bagging works by randomly
sampling M times from the original training set with replacement
and generating M new training sets. AdaBoost (Freund & Schapire,
1996; Freund & Schapire, 1997) works by sampling M times from
the original training set with the weights of the training patterns.
Attribute Bagging works by randomly selecting subsets of features
from the original feature set without replacement.

There are two differences between our method and Bagging.
First, the proposed approach adopts the so-called multiviewization,
i.e., different Nyström approximations to the gram matrix G so as
to generate multiple approximating gram matrices Kps. Thus, the
original single-view training set can induce multiple Kps. In this
case, we not only keep the size of the original training set, but also
add some representation information from multi-aspects. In con-
trast, Bagging randomly samples the original training set multiple
times with replacement. In this case, the size of each newly-
generated training set decreases. Secondly, the proposed approach
adopts the joint learning on the generated training sets. Bagging
adopts the separate learning, i.e. the majority voting technique.
Although AdaBoost (Freund & Schapire, 1996; Freund & Schapire,
1997) is different from Bagging in terms of learning style, it still
makes each base learner independently train with the newly-
generated sample set in each cycle learning. From this viewpoint,
both Bagging and Adaboost adopt a separate learning for all base
learners. In a word, our proposed method works by producing
multiple different Nyström approximations from the original
single-view patterns and joint learning over the Kps. Therefore, it
is an entirely different but novel approach of producing multiple
data sets for base classifiers.
5. Experiments

5.1. Experimental setting

In our experiments, the used single-view patterns are the syn-
thetic data and some UCI data sets (Newman, Hettich, Blake, &
Merz, 1998), respectively. The associated kernel function for

MVNA-KMHKS is Gaussian RBF kðxi; xjÞ ¼ exp � kxi�xjk2

2r2

� �
, where r

is set to the average of all the pairwise distances kxi � xjk i,
j = 1, . . . ,n between patterns as used in Tsang, Kocsor, and Kwok
(2006). For the proposed MVNA-KMHKS without any prior knowl-
edge, the parameter lp, p = 1, . . . ,M is set to 1

M, i.e., each view owns
the same importance and M = 2. In each classification case of the
MVNA-KMHKS, we randomly choose different sets of rows and col-
umns from the gram matrix G so as to generate multiple Nyström
approximating gram matrices Kps, p = 1, . . . ,M. Concretely, we set
a sample group S of mp columns randomly selected from the origi-
nal gram matrix G uniformly without replacement. S is composed of
p sub-samples S1 , . . . ,Sp, . . . ,SM. Each sub-sample Sp contains m col-
umns and is used to define the Nyström approximation matrix Kp.
The range of both cp and c is from 10�3 to 103 with each step by
multiplying 10. The experimental results reported here are corre-
sponding to the case with the best cp and c. The classification per-
formances of all the classifiers here are reported by N-fold cross
validation that randomly splits the pattern set into two parts (the
training and testing sets), and repeats the procedure N times. In
our experiments, N is set to 10.
5.2. Synthetic Data

Fig. 1 demonstrates the effectiveness of MVNA-KMHKS on 3
synthetic data sets where patterns in two classes (’�’ vs.‘+’) of each
set appear as two moons. The first column of Fig. 1(a)–(c) shows
the 3 original two-moon data sets with different complexities.
The second column of Fig. 1(d)–(f) shows the classification results
of KMHKS in the 3 different complexity cases, where the blue pat-
terns are used to train; the green ones are correctly classified; and
the red ones are misclassified. Analogously, the third (g)–(i) and
fourth (j)–(l) columns of Fig. 1 also show the results of the sin-
gle-view Nyström approximation KMHKS (NA-KMHKS) and
MVNA-KMHKS, respectively.

From Fig. 1, it can be found that: (1) the more complex the two-
moon data sets are, the more patterns are misclassified in KMHKS,
NA-KMHKS, and MVNA-KMHKS; (2) although NA-KMHKS uses the
approximating gram matrix, it has the competitive classification
performance with KMHKS, which is consistent with the results in
Williams and Seeger (2001); (3) on the given single-view patterns,
MVNA-KMHKS can correctly label patterns in the boundary and
has the superior performance to both KMHKS and NA-KMHKS,
which validates that the multiple views generated by the different
Nyström approximations can boost each other and work well.
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Fig. 1. Two-Moon Data: KMHKS (d,e, f), NA-KMHKS (g,h, i) and MVNA-KMHKS (j,k, l) (Denote the 3 subfigures in the 1st column as a, b and c and similarly, the rest subfigures
in the 2nd, 3rd, and 4th columns are denoted from d to l, respectively.)
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5.3. UCI data

5.3.1. Classification performance
To further investigate the classification performance of the pro-

posed MVNA-KMHKS, it is compared with its single-view version
NA-KMHKS, the original KMHKS and the state-of-the-art SVM on
some UCI data sets where the one-against-one classification strat-
egy (Krebel, 1998) is adopted for multi-class problems. For each
data set, their classification accuracies on the testing sets gener-
ated by the 10-folds cross validation are averaged and reported
Table 2
Average testing accuracy (%) and p-values comparison between MVNA-KMHKS, NA-
KMHKS, KMHKS and SVM (Note: The best testing results of each data set are in bold.
The p-values are from a t-test comparing each classifier to MVNA-KMHKS. An
asterisk * denotes that the difference from MVNA-KMHKS is significant at 5%
significance level, i.e. p-value less than 0.05. The kernel alignment (KA) values of
MVNA-KMHKS on each set are given in italic.)

Data set MVNA-
KMHKS

NA-
KMHKS

KMHKS SVM

Accuracy Accuracy Accuracy Accuracy
KA-value p-value p-value p-value

Lung-cancer 57.33 46.67⁄ 50.00 52.67
0.5169 0.0107 0.1116 0.3153

House-votes 93.98 93.44 93.94 93.80
0.3261 0.1990 0.9275 0.7414

Shuttle-landing-
control

71.43 62.86 70.00 70.00

0.2790 0.1233 0.8084 0.7946
Horse-colic 63.46 60.63⁄ 60.63⁄ 59.69⁄

0.4249 0.0478 0.0478 0.0043
Echocardiogram 88.51 87.31 87.61 88.36

0.0759 0.3915 0.5228 0.9038
Iris 97.33 97.07 97.07 97.60

0.9801 0.6750 0.7006 0.6111

The best testing results of the compared methods on each data set are in bold. The
kernel alignment (KA) values of MVNA-KMHKS for each set are given in italic and
shown in the second column.
in Table 2, where for the different methods, the best results are
in bold. In addition to reporting the average accuracies, we perform
the paired t-test (Mitchell, 1997) by comparing MVNA-KMHKS
with the other classifiers NA-KMHKS, KMHKS, and SVM. The null
hypothesis H0 demonstrates that there is no significant difference
between the mean number of samples correctly classified by
MVNA-KMHKS and the other classifiers. Under this assumption,
the p-value of each test is the probability of a significant difference
in correctness values occurring between two testing sets. Thus, the
smaller the p-value, the less likely that the observed difference re-
sults from identical testing set correctness distributions. The
threshold for p-value is set to 0.05. From this table, it can be found
that: (1) the average classification accuracy of MVNA-KMHKS is
superior to that of the other classifiers NA-KMHKS, KMHKS, and
SVM on all the used data sets only except Iris; (2) NA-KMHKS
has the comparable performance to KMHKS on House-votes,
Horse-colic, Echocardiogram, and Iris, but clearly failed on Lung-
cancer and Shuttle-landing-control; (3) on both Lung-cancer and
Shuttle-landing-control, MVNA-KMHKS succeeds and even clearly
outperforms KMHKS; (4) further, based on the p-value MVNA-
KMHKS has significantly different accuracies from others on
Lung-cancer and Horse-colic.
5.3.2. Correlation in multiple views
The existing MVL such as co-training requires the independence

asumption well satisfied (Blum & Mitchell, 1998) where the pat-
terns are obtained from multiple sources. In our method, on the
one hand only the single-view patterns are available. On the other
hand, the views are induced from the multiple approximating
gram matrices and the number of the views is set to 2 (M = 2). Thus
we adopt the kernel alignment (KA) (Cristianini et al., 2001) as a
good correlation measure between views to further explore the
reasons why the performance of our method improves. Its defini-
tion is given as follows:



Table 3
Comparison of the error numbers of the MVNA-KMHKS, NA-KMHKS, and KMHKS for
the 9 different tasks.

0 2 3 4 5 6 7 8 9

MVNA-KMHKS 1 1 21 4 10 5 17 22 18
NA-KMHKS 2 10 25 5 14 5 19 23 21
KMHKS 2 8 26 4 11 6 19 28 18
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Definition 3
0

(Kernel alignment (Cristianini et al., 2001)). The
correlation between the gram matrices K1 and K2 is

AðK1;K2Þ ¼
trðKT

1K2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðKT

1K1ÞtrðKT
2K2Þ

q ; ð21Þ

where tr(.) is a matrix trace operation.
The KA can be taken as the cosine of the angle between the

gram matrices, it satisfies �1 6 A(K1,K2) 6 1. Here, since Ki in
(21) is substituted with the approximating gram matrix Kp that is
positive semi-definite, 0 6 A(K1,K2) 6 1. Intuitively, the bigger the
value of A(K1,K2), the more correlated the matrices and also the
more correlated the views from the matrices. If A(K1,K2) = 1, K1 ¼
aK2; a 2 R. In our experiments, the KA values on each data set
are also shown by italic in Table 2, from which it can be clearly ob-
tained that the KA value only on Iris is nearly to 1 (0.9801) and all
the others are no larger than 0.5169. The fact is consistent with the
result that MVNA-KMHKS loses the first place only on Iris. Thus,
the less correlation between the views of our method is the neces-
sary condition of the performance improvement in the proposed
multi-view classifier.

5.3.3. Further analysis in optical handwritten digits
Our method inherits the low computational cost of the Nyström

approximation manipulating the gram matrix with O(m2n), and
has the cost O(Mm2n) where M is the number of the generated
views and is set to 2. So MVNA-KMHKS has the good scalability
with the number of patterns. Here, the experiments were carried
out on the relatively-large data set Optical Handwritten Digits
(Optdigits) (Newman et al., 1998) that has 3823 training patterns
and 1797 testing patterns. Due to the easy recognition on digit
’1’ and our limited condition on the computer and MATLAB envi-
ronment, we select the digits ‘0,2, . . . ,9’ as the discussion example
and m is set to 512 as used in Williams and Seeger (2001). Table 3
gives the number of errors for the three classifiers MVNA-KMHKS,
NA-KMHKS, and KMHKS on the nine classification tasks. The re-
sults show that MVNA-KMHKS takes the first place in all the nine
tasks especially for digit ‘2’.

Finally, we have also experimentally explored the convergence
of the proposed MVNA-KMHKS. The results show that MVNA-
KMHKS can converge in the limited iterations.

6. Conclusions

In this paper, our contributions mainly lie in.

� Significance: this paper introduces the creation of multiple
views from a single view for multi-view learning. It is important
because while the existing MVL has been shown to be effective,
it relies heavily on the natural separability of the feature set into
two independent components. In many settings, there might
not be any natural way to partition the feature space, and the
existing MVL framework may therefore not be applicable. In
such scenarios, the proposed approach suggested in this paper
can potentially create multiple independent or at least weaker
correlated views from a single view and then learn from the
multiple views simultaneously.
� Novelty in the two aspects: in the first aspect, the learning
approach proposed in this paper is different from the existing
multi-view learning approach. Instead of the classifiers trained
on two different views iteratively boot-strapping each other,
this paper proposes a joint learning approach that minimizes
disagreement across the classifications using multiple views.
There are similarities with ensemble learning, where predic-
tions from different classifiers over a single view are combined,
but, again, the critical difference is in the joint optimization. In
the second aspect, for sake of comparison with the two current
typical combined classifiers: Bagging or AdaBoost based on pat-
tern sampling and Attribute Bagging based on attribute sam-
pling both for generation of classifier diversity, our strategy is
neither sampling patterns nor sampling attributes, instead
constructing different views for our classifier from multiple
approximating gram matrices induced through different
Nyström approximations to the gram matrix. Each learning
with the Nyström approximation matrix can develop a corre-
sponding classifier and then can be combined together. As a
result, a performance gain can be obtained. More importantly,
we give an analysis of the generalization risk bound of the pro-
posed MVNA-KMHKS and conclude that the Rademacher com-
plexity of the proposed multi-view method does not increase
but is still kept the same as that of the single-view KMHKS.
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