
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 4, APRIL 2011 573
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Abstract— Support vector machine (SVM), as one of the most
popular classifiers, aims to find a hyperplane that can separate
two classes of data with maximal margin. SVM classifiers are
focused on achieving more separation between classes than
exploiting the structures in the training data within classes. How-
ever, the structural information, as an implicit prior knowledge,
has recently been found to be vital for designing a good classifier
in different real-world problems. Accordingly, using as much
prior structural information in data as possible to help improve
the generalization ability of a classifier has yielded a class of
effective structural large margin classifiers, such as the structured
large margin machine (SLMM) and the Laplacian support vector
machine (LapSVM). In this paper, we unify these classifiers
into a common framework from the concept of “structural
granularity” and the formulation for optimization problems. We
exploit the quadratic programming (QP) and second-order cone
programming (SOCP) methods, and derive a novel large margin
classifier, we call the new classifier the structural regularized
support vector machine (SRSVM). Unlike both SLMM at the
cross of the cluster granularity and SOCP and LapSVM at the
cross of the point granularity and QP, SRSVM is located at the
cross of the cluster granularity and QP and thus follows the
same optimization formulation as LapSVM to overcome large
computational complexity and non-sparse solution in SLMM. In
addition, it integrates the compactness within classes with the
separability between classes simultaneously. Furthermore, it is
possible to derive generalization bounds for these algorithms by
using eigenvalue analysis of the kernel matrices. Experimental
results demonstrate that SRSVM is often superior in classifi-
cation and generalization performances to the state-of-the-art
algorithms in the framework, both with the same and different
structural granularities.

Index Terms— Generalization bound, machine learning, struc-
tural granularity, support vector machine.
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I. INTRODUCTION

IN THE past decade, large margin classifiers have become
a hot topic of research in machine learning. Support vector

machine (SVM) [1], [2], as the most famous one among them,
is derived from statistical learning theory [3] and achieves a
great success in pattern recognition. The basic motivation of
SVM is to find a hyperplane that can separate two classes
of data with maximal margin [4]. However, SVM usually
pays more attention to the separation between classes than
the prior structural information within classes in data. In
fact, for different real-world problems, different classes may
have different underlying data structures. It is thus desirable
that a classifier be adaptable to the discriminant boundaries
to fit the structures in the data, especially for increasing
the generalization capacities of the classifier. However, the
traditional SVM does not differentiate the structures, and the
derived decision hyperplane lies unbiasedly right in the middle
of the support vectors [4]–[6], which may lead to nonoptimal
classification results for future problems.

Recently, some algorithms have been developed to give
more weightage to the structural information than SVM. They
provide a novel view in which to design a classifier, that
is, a classifier should be sensitive to the structure of the
data distribution [5]. These algorithms are mainly divided
into two kinds of approaches. The first one is manifold
assumption-based, which assumes that the data actually lie
on a submanifold in the input space. A typical paradigm in
this approach is Laplacian support vector machine (LapSVM)
[7]. LapSVM constructs a Laplacian graph for each class
on top of the local neighborhood of each datum to form
the corresponding Laplacian (matrix) to reflect the manifold
structure of individual-class data. They are then embedded
into the traditional framework of SVM as additional manifold
regularization terms, where the latter is solved via quadratic
programming (QP).

A second approach is cluster assumption-based [8], which
assumes that the data contains clusters and deduces several
popular large margin classifiers, such as ellipsoidal kernel
machine (EKM) [9], minimax probability machine (MPM)
[10], maxi-min margin machine (M4) [4], and structured large
margin machine (SLMM) [5]. EKM deems the whole data
as a single global cluster and estimates the minimum volume
bounding ellipsoid surrounding the data by using semidefinite
programming (SDP), and then applies the estimated centroid
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and covariance matrix of the ellipsoid to remap the data to a
unit sphere where it is formulated as a SVM and thus solved by
QP. It was proved in [9] that using such ellipsoid can get lower
Vapnik–Chervonenkis dimension [3] than the usual bounding
sphere in SVM, or, equivalently, implying better generalization
capacity. Meanwhile, MPM and M4 stress the different class
structure in the data and utilize one single ellipsoid, as a
cluster, to characterize each class (distribution) respectively
in the binary classification. By using the class-related Maha-
lanobis distance, which combines the centroids (or means)
and covariance matrices of the ellipsoids instead of the class-
unrelated Euclidean distance to measure the distance between
the data and the discriminant boundary, MPM and M4 integrate
the class structural information into the large margin classifier
optimization problems as the new constraints. However, just
using a single ellipsoid (cluster) to describe each class is
generally too coarse. In fact, in many real-world problems,
data that are within classes are more likely to have different
(cluster) structures. This observation motivates us to extend
SLMM further. We note that SLMM focuses on the underlying
structures in each class and applies some unsupervised clus-
tering techniques to capture such finer structural information.
Consequently, SLMM uses multi-ellipsoids or multi-clusters to
enclose the data of each class to characterize each class finer.
The subsequent optimization problem in soft margin SLMM
can be formulated as in [5] in terms of (1), which embeds the
covariance matrices in each cluster into the constraints

max ρ − C
|P|+|N |∑

l=1
ξl

s.t. (wT xl + b) ≥ |Pi |
MaxP

ρ
√

wT Σ Pi w − ξl , xl ∈ Pi ,

−(wT xl + b) ≥ |N j |
MaxN

ρ
√

wT Σ N j w − ξl , xl ∈ N j ,

wT r = 1, ξl ≥ 0 (1)

where Pi denotes the i th cluster in class one, i = 1, . . . , CP ,
and N j denotes the j th cluster in class two, j = 1, . . . , CN .
CP and CN are the number of the clusters in the two classes
respectively. r is a constant vector to limit the scale of the
weight w.

By simple algebraic deductions, MPM, M4, and even SVM
can all be viewed as the special cases of SLMM [5]. It
can achieve better classification performance among these
algorithms experimentally. However, since its optimization
problem can only be formulated as a second-order cone
programming (SOCP) rather than QP as in SVM, in contrast to
SVM, SLMM not only needs much higher computational cost
but also loses the sparsity of solution. Especially, in order to
get the kernel version of SLMM, the covariance matrix in each
cluster within the constraints has to be kernelized respectively,
which undoubtedly increases extra computational complexity.

In this paper, we first introduce the concept of “structural
granularity” to characterize the different data structures used
in the design process of classifiers. Based on the different
granularities and the formulations for optimization problems,
we construct a common framework for these structural large
margin classifiers, which provides us with a new perspective
to categorize the existing classifiers and analyze new ones.

Through a systematic analysis on the framework, we further
derive a novel large margin classifier called structural regu-
larized support vector machine (SRSVM), which stands for
SRSVM. In this framework, SRSVM has the same cluster
granularity as SLMM and likewise aims to exploit the intrinsic
cluster structures in data within classes. However, different
from SLMM, SRSVM naturally integrates the distributions
of the clusters within different classes into the traditional
optimization problem of SVM rather than in the constraints,
which can be solved by QP rather than SOCP in SLMM.
That is, SRSVM can follow the same optimization formulation
as LapSVM which is with the (datum) point granularity
to overcome high computational complexity and the non-
spare solutions in SLMM. Furthermore, SRSVM embeds the
within-class compactness and the between-class separability
simultaneously into the optimization problem, rather than only
emphasizing only one of the two aspects, respectively, in
SVM and SLMM. In order to evaluate the generalization
performances of these classifiers comprehensively, we also
discuss their generalization bounds by using the eigenvalue
analysis of the kernel matrices [11]–[13]. Comparisons both on
the experimental and theoretical analyses are made to validate
the superiority of our SRSVM to the other algorithms in the
proposed framework.

The rest of this paper is organized as follows. Section II,
introduces the structural granularity and constructs the frame-
work. Section III, presents the proposed SRSVM, including
the linear and nonlinear versions. Experimental results both
on the toy and real-world problems are given in Section IV. In
Section V, the theoretical analysis of the generalization bounds
for the algorithms is deduced. Some conclusions are drawn in
Section VI.

II. FRAMEWORK FOR STRUCTURAL LARGE MARGIN

CLASSIFIER

After decades of in-depth study on SVM, researchers have
proposed many improved algorithms to modify its perfor-
mance [14]–[19], where structural algorithms are one of the
popular research trends in recent years. In this section, we
analyze SVM from the structural view and introduce the
concept of “structural granularity,” which allows us to derive a
common framework for the recent SVM-based structural large
margin classifiers.

A. SVM

For binary classification problems, given a training set
{xi , yi }n

i=1 ∈ Rm × {±1}, the objective of SVM is to learn a
classifier f = wT x +b that can maximize the margin between
classes

min
w,b

‖w‖2

2

s.t. yi (wT xi + b) ≥ 1, i = 1, . . . , n. (2)

The above formulation can be further relaxed to solve
linearly nonseparable problems [9]

min
w,b

‖w‖2

2 + C
n∑

i=1
ξi

s.t. yi (wT xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1 . . . , n (3)
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where ξi is the penalty for violating the constraints. C is a
regularization parameter that makes a tradeoff between the
margin and the penalties incurred.

If we focus on the constraints in (2), we can immediately
capture the following insight about SVM, which is easily
generalized to the relaxation version.

Proposition 1: SVM constrains the separation between
classes as wT Sbw ≥ 4, where Sb = (μ1 − μ2) (μ1 − μ2)

T ,
μi is the mean of class i(i = 1, 2).

Proof: Without loss of generalization, we assume that
the class one has the class label yi = 1, and the other
class has y j = −1. Then we reformulate the constraints as:
wT xi + b ≥ 1, where xi belongs to class one; wT x j +b ≤ −1,
where x j belongs to class two.

Let the numbers of the samples in the two classes be
respectively n1 and n2. Then we have

1/n1

n1∑

i=1

(
wT xi + b

)
=

(
wT μ1 + b

)
≥ 1 (4)

−1/n2

n2∑

j=1

(
wT x j + b

)
= −

(
wT μ2 + b

)
≥ 1. (5)

Adding the two inequalities (4) and (5), we obtain

wT (μ1 − μ2) ≥ 2. (6)

Squaring the inequality (6), we further have

wT (μ1 − μ2) (μ1 − μ2)
T w ≥ 4. (7)

That is, wT Sbw ≥ 4.
Consequently, following the above proposition, it is clear

that SVM gives a natural lower bound for the separation
between classes, exactly according to its original motivation
that pays more attention to the maximization of margin.
However, it more likely neglects the prior data structural infor-
mation within classes, which is also vital for classification.
A linear classifier example is illustrated in Fig. 1, where ‘*’
and ‘.’ denote the two classes, respectively. Here each class
is generated via a mixture of two Gaussian distributions that
have approximately perpendicular trends of data occurrence.
As we mentioned before, SVM does not sufficiently utilize
the structurally obvious information, and the derived decision
plane, denoted by the dash line in Fig. 1(a), approximately lies
in the middle of three support vectors [4]–[6] in the training
set, which leads to inaccurate classification in the testing set
[Fig. 1(b)]. However, a more reasonable decision plane should
be as denoted by the solid line in Fig. 1. This boundary has
almost parallel orientation to the ‘.’ class data trend, and,
at the same time, relatively far from the ‘*’ class due to
the approximately vertical trend of the corresponding data.
Consequently, SRSVM has better classification performance
both in the training and testing sets.

B. Structural Granularity

Definition 1: Given a dataset T = {xi , yi }n
i=1. Let

S1, S2, · · · , St be a partition of T according to some relation
measure, where the partition characterizes the whole data in
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Fig. 1. Illustration on the importance of the structural information within
classes in SRSVM and SVM. (a) Discriminant boundaries in the training set.
(b) Discriminant boundaries in the testing set.
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point
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Fig. 2. Illustration of structural granularity.

the form of some structures such as cluster, and S1 ∪ S2 ∪
· · · ∪ St = T . Here Si (i = 1, 2, . . . , t) is called structural
granularity.

Clearly, structural granularity relies on the different assump-
tions about the actual data structures in real-world problems.
In our viewpoint, it involves four layers, as illustrated in
Fig. 2, where “◦” and “�” denote the two classes respectively.
Moreover, the data in the class I “◦” are generated by three
Gaussian distributions and the class II “�” are obtained by
two Gaussian distributions.

According to the Gaussian mixture model [20] for a mix-
ture Gaussian distributions, we can characterize the structural
granularity of the training data by ellipsoids (or clusters),
whose centroids (or means) and covariance matrices reflect
the properties of Gaussian distributions. As a result, four
granularity layers can be differentiated:

Global Granularity: The granularity refers to the dataset
T . With this granularity, the whole data are characterized or
enclosed by a single ellipsoid, as shown by the solid line
ellipsoid in Fig. 2, whose centroid μglobal and covariance
matrix Σglobal can be obtained by minimizing the volume
of the ellipsoid [9]

min
Σglobal ,μglobal

ln
∣
∣Σglobal

∣
∣

s.t.
∥
∥
∥
(
xi − μglobal

)T
Σ−1

global

(
xi − μglobal

)∥∥
∥ ≤ 1, (8)

Σglobal ≥ 0.

The corresponding classifier, such as EKM, aims to utilize
such global data structure, or more precisely, global data
scatter in its design.
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Class Granularity: The granularities are the class-
partitioned data subsets. Single ellipsoid can be used to
describe an individual class to form the so called class
structure, as denoted by the dashed line ellipsoids in Fig. 2,
whose mean and covariance matrix are defined by the data in
the individual class [4]

μi
class = 1

ni

ni∑

j=1
x j

Σ i
class = 1

ni

ni∑

j=1

(
x j − μi

class

)(
x j − μi

class

)T
, i = 1, 2. (9)

Thus the corresponding classifiers, for example MPM and
M4, can focus on the global class scatter.

Cluster Granularity: The granularities are the data subsets
within each class. The data structures within each class are
depicted by a certain amount ellipsoids that are obtained by
some clustering techniques, as shown by the dot and dash line
ellipsoids in Fig. 2. The corresponding mean and covariance
matrix in cluster i are [5]

μi
cluster = 1

nCi

nCi∑

j=1
x j

Σ i
cluster = 1

nCi

nCi∑

j=1

(
x j − μi

cluster

)(
x j − μi

cluster

)T
. (10)

Compared to the above two kinds of classifiers, the cluster-
granularity classifiers, including SLMM, have finer cluster
assumption about the data.

Point Granularity: The granularities are the neighborhoods
ne(xi) of every datum xi , which are described by overlapped
local ellipsoids surrounding the data in each class, as denoted
by the dot line ellipsoid in Fig. 2, whose covariance matrix
can be viewed as a kind of local generalized covariance [7]

Σ i
point =

∑

x j ∈ne(xi )

Si j
(
xi − x j

) (
xi − x j

)T (11)

where

Si j =
{

exp (−‖xi−x j ‖2

σ 2 ) if xi ∈ ne(x j ) or x j ∈ ne(xi )

0 otherwi se.

The classifier with such granularity, as LapSVM, seeks
the k nearest neighbors of individual samples within the
same class to construct the local nearest neighbor scatter
matrices Σ i

point . It then sums those matrices to form the global
scatter matrices as Laplacians, which can characterize the data
manifold structures in the respective classes.

C. Structural Large Margin Classifier Framework

Structural granularity reflects the data distribution
arrangement from macroscopic to microcosmic, which offers
a natural rule to reclassify the algorithms mentioned above.
Consequently, we construct a new structural large margin
classifier framework both from the structural granularity
and formulation of optimization problem perspectives, as
illustrated in Fig. 3.

Here we list two main optimization formulations in large
margin classifiers, namely SOCP and QP, which denote the

Structural Large
Margin Classifier

SOCP QP

Global
Granularity

EKM

Class
Granularity

Cluster
Granularity

Point
Granularity

MPM, M4

SLMM SRSVM

LapSVM

?

?

?

Fig. 3. Framework for structural large margin classifier.

SOCP and QP methods, respectively. Each classifier is located
at the cross of some granularity and optimization formulation.
The “?” symbol represents that, to the best of our knowledge,
the research on the corresponding classifier is still a blank.

From the vertical directions in the framework, due to the
introduction of the structural information into the constraints,
the optimization problems of MPM, M4, and SLMM boil down
to SOCP, and are more difficult to solve in real applications.
The corresponding solutions lose generally their sparsity as
the ones derived from optimizing a QP problem. Consequently,
these algorithms have poor scalability to the size of the dataset
to great extent.

From the horizontal directions in the framework, from EKM
to SLMM, the descriptions of the data cluster distribution get
finer and finer. As a result, the performance of the classifiers, in
general, also improves gradually. The LapSVM characterizes
the data manifold distribution. Though the point granularity is
finer than the cluster granularity, the classification performance
of LapSVM does not always exceed the cluster granularity
models. Its performance depends on whether the data struc-
tures are more coincidental with the manifold assumption or
the cluster assumption, which is a validation for the “No Free
Lunch” Theorem [21]. In fact, in the real-world problems, the
two learning algorithms are basically comparable, which we
will discuss in detail in the experimental section. Furthermore,
LapSVM constructs a Laplacian graph for each class, which
results in the same number of the manifold regularization
terms as the number of classes [7], [22]. Consequently, depen-
dence on the number of given classes makes LapSVM difficult
to scale well [23]. The algorithm sometimes involves more
computational cost than SLMM in multiclass recognitions, due
to the complex adjustment of the free regularization parameters
corresponding to the manifold regularization terms.

In summary, the framework not only explores the relation-
ships among these structural SVM-based algorithms but also
reveals their characteristics deeply. Although widely applied,
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they either characterize the data structure insufficiently or have
high computational complexity. This is our major motivation
to develop the new large margin classifier model SRSVM.
SRSVM follows the same cluster granularity as SLMM, which
has shown better performance than SVM, M4, and radial
basis function network [5], but the corresponding optimization
problem can still be solved by QP to reduce the computational
difficulty and complexity in SLMM. Furthermore, compared
to LapSVM, SRSVM only has one cluster regularization term
in the objective function, which also lightens the optimization
burden in LapSVM greatly.

III. SRSVM

Following the line of the research in the cluster granular-
ity model, SRSVM algorithm has two steps: clustering and
learning. SRSVM adopts some clustering techniques to capture
the data distribution within classes, and then directly embeds
the minimization of the compactness between the estimated
clusters into the objective function. Moreover, the algorithm
can also be extended to the nonlinear version by the kernel
trick. In the following subsections, we will discuss these steps
concretely.

A. Clustering

Many clustering methods, such as K -means [24], nearest
neighbor clustering [25], and fuzzy clustering [26], can be
applied in this step. As in SLMM with the same cluster
granularity as our model, clustering is employed to investigate
the underlying data distribution within classes in SRSVM.
After clustering, the structural information is introduced into
the optimization problem by the covariance matrices of the
clusters. So the clusters should be compact and spherical
for the computation. Following SLMM, here we use the
Ward’s linkage clustering [27] which is one of the hierarchical
clustering techniques [28].

Concretely, if A and B are two clusters, their Ward’s linkage
W (A, B) can be calculated as [5]

W (A, B) = |A| · |B| · ‖μA − μB‖2

(|A| + |B|)
where μA and μB are the means of the two clusters, respec-
tively.

Initially, each sample is a cluster in the clustering algorithm.
The Ward’s linkage of two samples xi and x j is defined as
W (x i , x j ) = ∥

∥xi − x j
∥
∥2

/2 [5]. When two clusters A and B
are being merged to a new cluster A′, the linkage W (A′, C)
of A′ and other cluster C can be conveniently derived from
W (A, C), W (B, C), and W (A, B) by [5]

W (A′, C) =
(|A| + |C|) W (A, C) + (|B|+|C|) W (B, C)−|C| W (A, B)

|A| + |B| + |C| .

During clustering, the Ward’s linkage between clusters to
be merged increases as the number of clusters decreases [5].
We can draw a merge distance curve to represent this process.
Here we take one class in Sonar in the UCI database (the UCI
Machine Learning Repository) as an example to illustrate the

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Clusters

M
er

ge
 D

is
ta

nc
e

Knee Point

Fig. 4. Choosing the knee point corresponding to the optimal number of
clusters in Sonar.

process, as shown in Fig. 4. Salvador and Chan [29] provided
a method to automatically determine the number of clusters
that selects the number corresponding to the knee point, i.e.,
the point of maximum curvature, on the curve. Furthermore,
the clustering method can also be applicable in the kernel
space. For more details, interested readers can refer to the the
literature [5].

B. Learning

After clustering, we obtain two sets of c1 and c2 clusters,
respectively, in the two classes. We denote the clusters in the
classes as P1, . . . , Pc1 and N1, . . . , Nc2 respectively. In Propo-
sition 1, we have validated that SVM gives a natural lower
bound to the separability between classes by the constraints.
Here we pay more attention to the compactness within classes,
i.e., the clusters that cover the different structural information
in different classes. We aim to maximize the margin and
simultaneously minimize the compactness. Accordingly, the
SRSVM model can be formulated as

min
w,b

‖w‖2

2
+ λ

2
wT Σw

s.t. yi (wT xi + b) ≥ 1, i = 1, . . . , n (12)

where Σ = Σ P1 + · · · + Σ Pc1
+ Σ N1 + · · · + Σ Nc2

, Σ Pi , and
Σ N j are the covariance matrices corresponding to the i th and
j th clusters in the two classes, i = 1, . . . , c1, j = 1, . . . , c2.
λ is the parameter that regulates the relative importance of the
structural information within the clusters, λ ≥ 0.

When the data are linearly nonseparable, SRSVM can
further introduce the slack variables ξi . The objective function
is reformulated as

min
w,b

‖w‖2

2
+ λ

2
wT Σw + C

n∑

i=1

ξi

s.t. yi (wT xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , n. (13)

Incorporating the constraints into the objective function, we
can rewrite (13) as a primal Lagrangian. Then, we transform
the primal into the dual problem following the same steps as
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SVM:

max
α

n∑

i=1
αi − 1

2

n∑

i=1

n∑

j=1
αiα j yi y j

[
xT

i (I + λΣ)−1x j
]

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n
n∑

i=1
αi yi = 0. (14)

Problem (14) is a typical convex optimization problem. By
using the QP techniques, we can obtain the solution αi . Then,
the derived classifier function can be formulated as follows,
which is used to predict the class labels for future unseen
data x:

f (x) = sgn

[
n∑

i=1

αi yi xT
i (I + λΣ)−1x + b

]

. (15)

C. Kernelization

Early in the 1960s, Minsky and Papert [30] had highlighted
the limited computational power of linear learning machines
[1]. While samples are linearly nonseparable in the input
space, the performance of linear classifiers will descend heav-
ily. Kernelization offers an alternative solution by projecting
the samples into a high-dimensional kernel space to increase
the computational power of the linear classifiers [1]. According
to Cover’s pattern separability theory, linearly nonseparable
samples in the input space may be mapped into a kernel space
to make them more likely linearly separable, as long as the
mapping is nonlinear and the dimensionality of the kernel
space is high enough (even infinity) [5], [31]. However, if
the samples are noisy, in general linear separability cannot be
guaranteed in the kernel space unless very powerful kernels
are used that may lead to overfitting. Two most often used
tricks of avoiding overfitting are adoption of the soft margin
optimization and regularization. In this subsection, the nonlin-
ear soft margin SRSVM using the kernel trick is developed
to further improve the classification performance for complex
pattern recognition problems. Furthermore, different from the
kernelization in SLMM, SRSVM only needs to kernelize a
total covariance matrix obtained by summing all the clusters
instead each cluster covariance matrix and, as a result, SRSVM
can be implemented more simply and effectively.

Now, assume that a nonlinear (implicit) mapping is Φ :
Rm → H , where H is a Hilbert space with higher dimension.
Then the optimization (objective) function of soft margin
SRSVM in the kernel space can be described as

min
w,b

‖w‖2

2
+ λ

2
wT ΣΦw + C

n∑

i=1

ξi

s.t. yi (wT Φ(xi ) + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , n (16)

whereΣΦ = ΣΦ
P1

+ · · · + ΣΦ
Pc1

+ ΣΦ
N1

+ · · · + ΣΦ
Nc2

, ΣΦ
Pi

and ΣΦ
N j

denotes the corresponding covariance matrices of the
clusters obtained by the kernel Ward’s linkage clustering [5],
[32] in the kernel space, i = 1, . . . , c1, j = 1, . . . , c2.

Then the dual problem is

max
α

n∑

i=1
αi − 1

2

n∑

i=1

n∑

j=1
αiα j yi y j

× [
Φ(xi )

T (I + λΣΦ)−1Φ(x j )
]

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n∑

i=1
αi yi = 0. (17)

However, due to the higher or even infinite dimensions,
Φ cannot often be explicitly formulated. A remedy to this
problem is to express all computations in terms of dot
products, called the kernel trick [9]. The kernel function
k : Rm × Rm → R, k(xi , x j ) = Φ(xi )

T Φ(x j ) derives the
corresponding kernel matrix K ∈ Rn×n ,K i j = k(xi , x j ),
which is called Gram matrix. For more details of kernel
tricks, interested readers can refer to the literature [33], [34].

Consequently, we transform (17) into the form of dot
products so as to adopt the kernel trick. For each covariance
matrix in the kernel space, we have

ΣΦ
i = 1

∣
∣CΦ

i

∣
∣

∑

Φ(x j )∈CΦ
i

[
Φ(x j ) − μΦ

i

] [
Φ(x j ) − μΦ

i

]T

= 1
∣
∣CΦ

i

∣
∣
TΦ

i TΦT

i −TΦ
i

�1∣
∣CΦ

i

∣
∣�1 T∣

∣CΦ
i

∣
∣ TΦT

i (18)

where CΦ
i denotes the clusters without differentiating the

different classes, i ∈ [1, c1 +c2]. TΦ
i is a subset of the sample

matrix, which is combined with the data belonging to the i th
cluster in the kernel space. �1∣

∣CΦ
i

∣
∣ denotes a

∣
∣CΦ

i

∣
∣-dimensional

vector with all the components equal to 1/
∣
∣CΦ

i

∣
∣.

Then we obtain

ΣΦ =
c1+c2∑

i=1

ΣΦ
i

=
c1+c2∑

i=1

TΦ
i TΦT

i /
∣
∣
∣CΦ

i

∣
∣
∣ − TΦ

i
�1∣
∣CΦ

i

∣
∣�1T∣

∣CΦ
i

∣
∣TΦT

i (19)

=
[

TΦ
1 · · · TΦ

c1+c2

]

×

⎡

⎢
⎢
⎣

I|CΦ
1 |/

∣
∣CΦ

1

∣
∣−�1|CΦ

1 |�1T|CΦ
1 |

. . .
I ∣
∣
∣CΦ

c1+c2

∣
∣
∣
/
∣
∣
∣CΦ

c1+c2

∣
∣
∣−�1∣

∣
∣CΦ

c1+c2

∣
∣
∣
�1T∣
∣
∣CΦ

c1+c2

∣
∣
∣

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

TΦT

1
...

TΦT

c1+c2

⎤

⎥
⎥
⎦

where I ∣
∣CΦ

i

∣
∣ is a

∣
∣CΦ

i

∣
∣× ∣

∣CΦ
i

∣
∣ identity matrix, i ∈ [1, c1 +c2].

Let the matrices

Ψ =
⎡

⎢
⎢
⎣

I|CΦ
1 |/

∣
∣CΦ

1

∣
∣−�1|CΦ

1 |�1T|CΦ
1 |

. ..
I ∣
∣
∣CΦ

c1+c2

∣
∣
∣
/
∣
∣
∣CΦ

c1+c2

∣
∣
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∣CΦ
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∣
∣
∣
�1T∣
∣
∣CΦ

c1+c2

∣
∣
∣

⎤

⎥
⎥
⎦

and PΦ = [
TΦ

1 · · · TΦ
c1+c2

]
.
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Then ΣΦ = PΦΨ PΦT .
By the Woodbury’s formula [35]

(A + U BV )−1

= A−1−A−1U B(B + BV A−1U B)−1 BV A−1. (20)

So
(

I + λΣΦ
)−1 =

(
I + λPΦΨ PΦT

)−1

= I − λPΦΨ
(
Ψ + λΨ PΦT PΦΨ

)−1
Ψ PΦT.

(21)

By substituting (21) into the optimization function (17), we
have the kernel form of the dual problem as follows:

max
α

n∑

i=1
αi − 1

2

n∑

i=1

n∑

j=1
αiα j yi y j

×
[

K i j − λK̃
T
i Ψ

(
Ψ + λΨ K̂Ψ

)−1
Ψ K̃ j

]

s.t. 0 ≤ αi ≤ C, . . . , n
n∑

i=1
αi yi = 0 (22)

where K̃ i represents the i th column in the kernel Gram
matrix K̃ , K̃ i j = k(xCt

i , x j ), and xCt
i is the sample that

is realigned corresponding to the sequence of the clusters,
t = 1, . . . , c1 + c2. K̂ is the kernel Gram matrix, K̂ i j =
k(xCt

i , xCt
j ).

D. Relationship with SVM and SLMM

In this subsection, we discuss the relationship among
SRSVM, SVM, and SLMM, and present how the three algo-
rithms can be transformed to each other under some special
conditions. With these analyses, the characteristics of SRSVM
can be demonstrated in depth. For simplicity but without loss
of generality, we only analyze the linearly separable version.

1) Relationship with SVM: Clearly, if we assume that each
ellipsoid cluster is a unit ball, i.e., Σ Pi = Σ N j = I , i =
1, · · · , c1, j = 1, · · · , c2, and I is the identity matrix, the
optimization problem of SRSVM can be rewritten as

min
w,b

‖w‖2

2
+ λ(c1 + c2) ‖w‖2

2

s.t. yi (wT xi + b) ≥ 1, i = 1, . . . , n. (23)

Given the regularization parameter λ and the cluster num-
bers c1 and c2, especially taking λ = 0, (23) can be exactly
formulated as the optimization problem (2) in SVM

min
w,b

‖w‖2

2

s.t. yi (wT xi + b) ≥ 1, i = 1, . . . , n.

Moreover, the optimization problem (1) of SLMM in lin-
early separable version is

max ρ (24)

s.t. (wT xl + b) ≥ |Pi |
Max P

ρ
√

wT Σ Pi w, xl ∈ Pi , (24.1)

− (wT xl + b) ≥
∣
∣N j

∣
∣

MaxN
ρ
√

wT Σ N j w, xl ∈ N j , (24.2)

wT r = 1. (24.3)

Yeung et al. [5] have shown that, if one further assumes
that each cluster just contains a single sample, i.e., CP = |P|
and CN = |N |, (24) can be transformed to

max ρ

s.t. (wT xl + b) ≥ ρ ‖w‖ , xl ∈ P

−(wT xl + b) ≥ ρ ‖w‖ , xl ∈ N

wT r = 1. (25)

Imposing ρ ‖w‖ = 1, instead of the constraint (24.3), (25)
can also be formulated the same as (2) in SVM.

In summary, SVM can be viewed as a special case of
both SRSVM and SLMM by assuming that each cluster is
represented by a unit ball, even a single sample. Therefore,
basically, SVM does not embed the data structural information
into its own design, which leads to its relatively poor perfor-
mance than SRSVM and SLMM in the complex classification
problems.

2) Relationship with SLMM: SRSVM and SLMM are both
cluster granularity models that incorporate the data distribution
information in a local way and assume the covariance matrices
of the clusters in each class containing the trend of data
occurrence in statistics [4]. However, the two algorithms have
many various properties also that are embodied not only in the
optimization formulation but also in the different emphasis on
the utilization of the data structure.

For simplicity, here we assume that the weights for the
clusters in SLMM are equal, i.e., |Pi | /Max P = ∣

∣N j
∣
∣ /MaxN ,

i = 1, · · · , CP , j = 1, · · · , CN .
Proposition 2: The optimization problem of SLMM can

be approximately transformed to the minimization of the
covariance matrix sum in (12) of SRSVM.

Proof: Focus on the constraints (24.1) and (24.2) in (24)
of SLMM

{
(wT xl + b) ≥ ρ

√
wT ΣPi w, xl ∈ Pi

−(wT xl + b) ≥ ρ
√

wT ΣN j w, xl ∈ N j .
(26)

Relax the functional margin to 1
{

(wT xl + b) ≥ ρ
√

wT ΣPi w ≥ 1, xl ∈ Pi

−(wT xl + b) ≥ ρ
√

wT ΣN j w ≥ 1, xl ∈ N j .
(27)

So we have
{ 1

ρ ≤ √
wT Σ Pi w, i = 1, · · · , CP

1
ρ ≤

√
wT Σ N j w, j = 1, · · · , CN .

(28)

Squaring the inequality (28), we further obtain

1

ρ2 ≤ min
(

wT Σ Pi w,wT Σ N j w
)

, i = 1, · · · , CP ,

j = 1, · · · , CN . (29)
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Hence, the maximization of ρ in (24) of SLMM will
approximate to

min
(

min
(
wT Σ Pi w,wT Σ N j w

))
,

i = 1, · · · , CP , j = 1, · · · , CN . (30)

For Σ Pi and Σ N j are symmetric positive semidefinite, we
have

min
(
wT Σ Pi w,wT Σ N j w

)

≤
[
wT

(
Σ P1 + · · · + Σ PCP

+ Σ N1 + · · · + Σ NCN

)
w

]

(CP + CN )

= wT Σw

(CP + CN )
(31)

where Σ = Σ P1 + · · · + Σ PCP
+ Σ N1 + · · · + Σ NCN

.
So the optimization problem in SLMM can be approxi-

mately reformulated as

min
w,b

wT Σw

s.t. wT r = 1 (32)

which is similar to the minimization of the covariance matrix
sum in the optimization problem (12) of SRSVM.

Different from SVM, which focuses on the separability
between the classes, SLMM emphasizes more the compact-
ness between the clusters within the individual classes. In
other words, SLMM maximizes the margin by restricting the
compactness. However, this is likely to be insufficient for
classifier design. Consequently, to a great extent, SRSVM not
only embeds the compactness within the individual classes
into the objective function but also integrates the constraints in
the SVM formulation to introduce the natural lower bound of
the separability between the classes, which may lead to better
classification and generalization performance than SLMM. We
will address these issues in more detail in the experimental
section.

IV. EXPERIMENTS

To evaluate the proposed SRSVM algorithm, in this section
we perform a series of experiments systematically on both
toy and real-world classification problems. First, we present
a synthetic XOR dataset for clearly comparing SRSVM with
SLMM and SVM. On real-world problems, several datasets
in the UCI database (the UCI Machine Learning Repository)
are used to evaluate the classification accuracies derived from
SRSVM in comparison to the other algorithms in the proposed
structural large margin classifier framework. Finally, we fur-
ther apply SRSVM for the image recognition problems.

Due to the better performance of the kernel version,
throughout the experiments we uniformly compare the algo-
rithms in the kernel and soft margin cases. The width parame-
ter in the Gaussian kernel and the regularization parameters
such as C and λ in the algorithms are selected from the set{
2−10, 2−9, · · · , 29, 210

}
by cross validation. For multiclass

cases, we adopt the one-against-all strategy [21] for all the
classifiers. We apply sequential minimal optimization (SMO)
algorithm [1] to solve the QP problem in SVM, EKM,

TABLE I

ATTRIBUTES OF THE TOY XOR DATASET. EACH CLASS CONTAINS TWO

CLUSTERS

ProbabilityMean Covariance

Class I

Gaussian
distribution I1

Gaussian
distribution I2

1/2
1/2

[2, 5]
[1, -5]

[0.75, 0; 0, 5]
[6, 0; 0, 0.75]

Class II

Gaussian
distribution II1

Gaussian
distribution II2

1/2
1/2

[-5, 0]
[8, 0]

[0.75, 0; 0, 6]
[5, 0; 0, 0.75]

TABLE II

TRAINING AND TESTING ACCURACIES (%) OF SVM, SLMM, AND

SRSVM ON THE TOY XOR DATASET IN CASES FROM 10% TO 50% OF

THE SAMPLES IN EACH DISTRIBUTION AS THE TRAINING SETS

Percents of Training accuracy /Testing accuracy

samples
SVM SLMM SRSVM

10 100.00/92.78 100.00/96.39 100.00/99.44
20 99.38/96.09 99.38/97.50 99.38/99.53
30 99.58/99.11 99.58/99.46 99.58/99.64
40 99.69/99.17 99.69/99.38 99.69/99.58
50 99.50/99.50 99.50/99.75 99.50/99.75

LapSVM, and SRSVM. Meanwhile, the Sedumi toolbox [36]
is used to solve the SOCP optimization in SLMM and the SDP
optimization in EKM. All the experiments are performed on a
server with Xeon(R) X5460 3.16-GHz processor and 32 766-
MB RAM.

A. Toy Dataset

The XOR problem is a typical linearly nonseparable prob-
lem in classification. The toy 2-D dataset is randomly gener-
ated under two Gaussian distributions in each class. Table I
describes the corresponding attributes of the dataset. Each
Gaussian distribution has 200 samples. And the samples in
each class are designed to scatter in two clusters I1, I2 and
II1, II2. In order to conduct the comparisons more efficiently,
we randomly select 10%, 20%, 30%, 40%, and 50% of the
samples in each distribution as the training sets, and the
remaining ones as the testing sets.

We compare SRSVM with SLMM and SVM. Due to
limited space, we show the resulting discriminant boundaries
in cases of 10% and 50% both in training and testing sets as
representatives in Figs. 5 and 6, where ‘*’ and ‘·’ denote the
samples in the two classes, respectively. We can see that class I
has the vertical distribution and class II has a horizontal one.
In these cases, the structural information within the classes
may be more important than the discriminative information
between the classes. The corresponding accuracies in all cases
from 10% to 50% are listed in Table II. From the results, we
can infer the following.

1) Due to the formal neglect of the structural information
within the classes, SVM cannot differentiate the different
data occurrence trends, i.e., the two clusters here in each
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Fig. 5. Classification results of SRSVM, SLMM, and SVM on the toy
XOR dataset with 10% of the samples in each distribution as the training set.
(a) Discriminant boundaries in the training set. (b) Discriminant boundaries
in the testing set.

class. The derived boundaries always approximately lie
in the middle of the support vectors [4]–[6] in the
training sets in the two cases, which only focus on the
separability between the classes. Consequently, though
SVM can achieve comparable training accuracies in the
training sets and its testing accuracies can increase suc-
cessively in cases from 10% to 50% with the growth of
the training data, it still has relatively poor performance
in the testing sets.

2) SLMM exploits the structural information within the
classes uncovered by some clustering algorithm, thus it
has better classification performance than SVM. From
Figs. 5 and 6, its discriminant boundaries basically
enclose those of SVM, meaning that SLMM has better
generalization performance than SVM. However, owing
to the lack of sufficient emphasis on the separability
between the classes, SLMM also gives a worse perfor-
mance than SRSVM in almost all the testing sets except
in case of the 50% set which is due to sufficient sampling
of the training data.
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Fig. 6. Classification results of SRSVM, SLMM, and SVM on the toy
XOR dataset with 50% of the samples in each distribution as the training set.
(a) Discriminant boundaries in the training set. (b) Discriminant boundaries
in the testing set.

3) Thanks to capturing the cluster structures in the classes
and considering the separability between the classes
as well as the compactness within the classes simul-
taneously, SRSVM gets more reasonable discriminant
boundaries than both SLMM and SVM which basically
accord with the data occurrence trend, and thus has the
best classification performance in all the testing sets.
Furthermore, from Figs. 5 and 6, the boundaries of
SRSVM enclose those of not only SVM but also SLMM.
Especially in case of the 50% case, though SRSVM and
SLMM have the same training and testing accuracies,
the boundary of SRSVM still almost encloses that of
SLMM. As a result, SRSVM can classify more testing
data correctly than SLMM and SVM, which further
validates that SRSVM actually has better generalization
ability.

B. UCI Dataset

To further investigate the effectiveness of our SRSVM, we
also evaluate its performance on several real-world datasets in
the UCI database, whose attributes are presented in Table III.
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TABLE III

ATTRIBUTES OF THE 18 DATASETS IN THE UCI DATABASE

Dataset Feature Data Class
Automobile 25 159 2

Bupa 6 345 2
Hepatitis 19 155 2

Ionosphere 34 351 2
Pima 8 768 2
Sonar 60 208 2
Water 38 86 2
Wdbc 30 569 2

Iris 4 150 3
Tae 5 151 3

New_thyriod 5 215 3
Cmc 9 1473 3

Balance_scale 4 625 3
Vehicle 18 846 4

Dermatology 33 366 6
Ecoli 6 332 6
Glass 9 214 6
Yeast 8 1484 10

For the multiclass datasets, we adopt the one-against-all strat-
egy [21] uniformly in all the classifiers. Since SLMM have
been shown to be better than M4 in terms of classification
accuracy [5], in this experiment we systematically compare
SRSVM with the other algorithms in the proposed framework,
i.e., SVM, EKM, SLMM, and LapSVM.

For each dataset, we divide randomly the samples into
two nonoverlapping training and testing sets, where each set
contains almost half of samples in each class. This process is
repeated 10 times to generate 10 independent runs for each
dataset; their average results are reported in Table IV.

We also compare the average running times and the average
support vector numbers of all the algorithms after the cross
validations of the parameters, as shown in Tables V and VI.
The intermediate numbers of clusters obtained by the Ward’s
linkage clustering algorithm used in SLMM and SRSVM are
listed in Table VII, where the number in the first row denotes
the total cluster number in the two class and the numbers in
the bracket in the second row denote the cluster numbers in
the respective classes. For multiclass datasets, we use the one-
against-all strategy [21] to establish multiclass classifiers. Such
an establishment generally leads to inexact estimation for the
numbers of support vectors and clusters in each individual
class to some extent and, consequently, we just report the
comparison results conducted on the two-class datasets.

From these results, we can make several interesting obser-
vations as follows.

1) EKM, SLMM, LapSVM, and SRSVM basically have
the better classification performance than SVM on the
overall datasets. As the improved algorithms of SVM,
they devote to embedding the data structure into the
traditional SVM framework. According to the well-
known “No Free Lunch” Theorem [21], the introduction
of as much prior knowledge into data as possible can
indeed improve the classifier performance. As a result,
the outstanding performance of these algorithms further

validates the necessity of structural information as prior
knowledge for the classifier design.

2) For the three cluster-based algorithms, EKM emphasizes
on the data global granularity and neglects the local
structures. Consequently, its capability is weaker than
the other two algorithms with finer granularity. SLMM
and SRSVM both adopt the Ward’s linkage clustering
algorithm to capture the corresponding cluster struc-
tures in individual classes. As shown in Table VII,
the clustering algorithm obtains relatively reasonable
clusters both in the small and large datasets. As a result,
by embedding such structural information, SLMM and
SRSVM achieve better performance than EKM. Further-
more, on almost all the datasets except Pima, SRSVM
outperforms SLMM due to its more consideration of
data distribution within and between classes. The gap of
their classification accuracies on Pima is less than 1%.

3) LapSVM is a manifold-based algorithm that focuses on
the point granularity and introduces the data manifold
structure into the classifier design. In the experiments,
its performance is comparable to SRSVM, which further
demonstrates that the cluster and manifold assumptions
about data structure are both reasonable in the real-
world problems. When the data structure is closer to
the manifold geometry, LapSVM is relatively dominant.
Otherwise, SRSVM is ascendant. Therefore, how to
select the suitable classifier in the applications actually
depends on more prior knowledge about the data.

4) For comparing efficiency and solution sparsity of these
algorithms, Tables V and VI give their average running
times and the average support vector numbers, respec-
tively, on all the two-class datasets. From Table V, we
observe that SLMM has the highest training times due to
its implementation of SOCP in solving its dual problem.
EKM is the second highest since it first adopts SDP
in estimating the minimum volume bounding ellipsoid
surrounding the data and then still uses QP to solve a
transformative SVM problem after remapping the data to
a unit sphere by the estimated centroid and covariance
matrix of the ellipsoid. SVM, LapSVM, and SRSVM
have far lower training times than SLMM and EKM
since their optimization problems can be directly solved
by QP. Among the three algorithms, SRSVM has the
highest training times due to the clustering process, and
LapSVM is the second highest for the constructions of
the neighbor graph on the data and the corresponding
Laplacian matrix. Furthermore, as the improved meth-
ods, SRSVM, LapSVM, and EKM also have better
sparsity than SVM according to the reported average
numbers of support vectors in Table VI, which means
that these algorithms more likely have better scalability
to the size of the datasets in the real applications. On
the contrary, the optimization problem of SLMM can
only boil down to SOCP and thus the solutions lose the
sparsity.

5) In order to find out whether SRSVM is significantly
better than the other algorithms, we perform the t-test
on the classification results of the 10 runs to calculate the
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TABLE IV

CLASSIFICATION ACCURACIES (%) AND VARIANCES COMPARED BETWEEN

SVM, EKM, SLMM, LAPSVM, AND SRSVM ON THE UCI DATASETS

Dataset
Classification Accuracy

SVM EKM SLMM LapSVM SRSVM

Automobile 88.48* ±
2.49

88.53* ±
2.22

88.63* ±
2.73

87.85* ±
3.00

91.14 ±
2.46

Bupa 73.06* ±
2.43

73.36* ±
2.35

73.52* ±
2.85

78.72* ±
2.65

76.18 ±
2.76

Hepatitis 79.61* ±
0.63

79.68* ±
1.94

79.82* ±
2.70

78.18* ±
2.99

83.25 ±
2.63

Ionosphere 95.11* ±
1.34

95.34* ±
0.99

95.63* ±
1.63

98.30 ±
1.76

97.52 ±
1.52

Pima 77.08* ±
1.26

77.35 ±
1.52

79.46 ±
1.69

77.88 ±
1.89

78.63 ±
1.79

Sonar 85.00* ±
3.55

86.15 ±
3.63

86.21 ±
3.09

91.26* ±
2.80

87.60 ±
2.74

Water 90.51* ±
2.90

94.73* ±
1.14

95.49* ±
3.46

98.21 ±
2.18

98.69 ±
1.40

Wdbc 94.25* ±
0.53

94.34* ±
0.64

94.57* ±
1.33

94.84* ±
0.88

95.72 ±
0.72

Iris 98.27 ±
1.10

98.40 ±
2.18

98.47 ±
1.59

98.67 ±
2.22

98.83 ±
1.78

Tae 54.34 ±
3.72

55.53 ±
4.18

55.56 ±
3.57

57.63 ±
4.44

56.18 ±
3.63

New_thyriod 96.02 ±
1.38

96.30 ±
2.31

96.51 ±
2.22

97.30 ±
2.04

97.23 ±
2.17

Cmc 56.41 ±
1.63

56.25 ±
1.72

56.29 ±
1.54

56.46 ±
1.89

56.79 ±
1.33

Balance_scale 92.04* ±
0.46

92.21* ±
0.52

92.63* ±
0.99

92.77* ±
0.64

93.54 ±
0.90

Vehicle 74.76* ±
1.37

75.35* ±
1.79

76.76* ±
2.04

75.87* ±
2.36

78.70 ±
1.99

Dermatology 97.28* ±
0.54

97.75 ±
1.69

97.77 ±
1.96

98.78 ±
1.43

98.51 ±
1.88

Ecoli 89.17* ±
1.34

90.33 ±
1.02

90.43 ±
2.03

89.19 ±
2.65

90.54 ±
1.59

Glass 72.75* ±
3.96

73.10 ±
3.68

74.73 ±
3.85

75.57 ±
3.57

76.04 ±
4.04

Yeast 60.58 ±
1.50

60.82 ±
1.35

60.96 ±
1.87

61.70 ±
1.63

61.21 ±
1.79

‘*’ Denotes that the difference between SRSVM and the other four
algorithms is significant at 5% significance level, i.e., t-value >1.7341

statistical significance of SRSVM. The null hypothesis
H0 demonstrates that there is no significant difference
between the mean numbers of patterns correctly classi-
fied by SRSVM and the other algorithms. If the hypoth-
esis H0 of each dataset is rejected at the 5% significance
level, i.e., the t-test value is more than 1.7341, the
corresponding results in Table IV will be denoted “*.”
Consequently, as shown in Table IV, it can be clearly
found that SRSVM possesses significantly superior clas-
sification performance compared with SVM, EKM, and
SLMM on the most datasets. Meanwhile, SRSVM and
LapSVM are basically comparable on the datasets. This
just accords with our conclusions.

C. Image Recognition

Image classification is a popular problem in pattern recog-
nition [23], [37]–[39]. In this subsection, we also apply our
proposed method to image recognition. Two well-known and
publicly available databases corresponding to typical image

Fig. 7. Illustration of 20 subjects on the COIL-20 database.

classification problems, i.e., objects (COIL-20) and handwrit-
ten digits (USPS), are used to evaluate SRSVM with SVM,
EKM, SLMM, and LapSVM.

1) Dataset Description and Experimental Setting: COIL-20
[40] is a database of gray-scale images of 20 objects, as shown
in Fig.7 [39]. The objects were placed on a motorized turntable
against a black background. The turntable was rotated through
360° to vary the object poses with respect to a fixed camera.
Images of the objects were taken at pose intervals of 5°, which
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TABLE V

AVERAGE RUNNING TIMES (S) COMPARED BETWEEN SVM, EKM, SLMM, LAPSVM

AND SRSVM ON THE TWO-CLASS UCI DATASETS

Dataset
Training time/Testing time

SVM EKM SLMM LapSVM SRSVM

Automobile 0.47 /
0.02

5.83 /
0.02

28.08 /
0.05

0.86 /
0.03

2.20 /
0.05

Bupa 0.50 /
0.03

85.47 /
0.03

417.05 /
0.03

1.58 /
0.03

5.12 /
0.03

Hepatitis
0.42 /
0.03

4.69 /
0.03

39.33 /
0.05

0.80 /
0.03

2.17 /
0.05

Ionosphere
0.58 /
0.06

122.56 /
0.03

198.03 /
0.03

1.20 /
0.03

4.06 /
0.08

Pima
0.72 /
0.06

480.09 /
0.13

620.86 /
0.15

3.90 /
0.22

10.97 /
0.20

Sonar
0.50 /
0.05

17.47 /
0.05

41.20 /
0.03

0.89 /
0.02

3.03 /
0.03

Water
0.30 /
0.08

3.80 /
0.25

13.09 /
0.08

2.73 /
0.08

2.50 /
0.05

Wdbc
0.47 /
0.03

336.36 /
0.03

454.21 /
0.05

3.62 /
0.25

12.73 /
0.12

Average training time (s.) 0.50 132.03 226.48 1.95 5.35

Average Testing Time (s) 0.05 0.07 0.06 0.08 0.08

TABLE VI

AVERAGE SUPPORT VECTOR NUMBERS COMPARED BETWEEN SVM,

EKM, SLMM, LAPSVM,

AND SRSVM ON THE TWO-CLASS UCI DATASETS

Dataset
Number of support vectors

SVM EKM SLMM LapSVM SRSVM

Automobile 59 61 — 44 45
Bupa 113 100 — 110 100

Hepatitis 62 62 — 62 62
Ionosphere 123 113 — 90 92

Pima 273 268 — 259 250
Sonar 62 55 — 75 55
Water 32 32 — 32 32
Wdbc 203 178 — 185 178

Fig. 8. Illustration of 10 digits on the USPS database.

corresponds to 72 images per object. For our experiments, we
have resized each of the original 1440 images down to 32 × 32
pixels. We partition the database into the different gallery and
probe sets where Gm/Pn indicates that m images per object
randomly selected for training and the remaining n images are
used for testing [41].

The USPS database consists of grayscale handwritten digit
images from 0 to 9, as shown in Fig. 8 [42]. Each digit contains
1100 images, and the size of each image is 16 × 16 pixels
with 256 gray levels. Due to the large scale data, here we
randomly choose 10%, 20%, and 30% per digit for training
and the remaining for testing.

2) Evaluation of Classification Performance: Fig. 9 shows
the experimental results of the five algorithms on the COIL-20
and USPS databases, respectively, in terms of different sam-
pling in the training and testing sets. From these results, we
can also obtain several attractive insights as follows.

1) The COIL-20 database is a typical pose estimation
dataset, where the object images have underlying invari-
ant and associated transformations, such as shift and
rotation. Ghodsi et al. [43] have shown that such
image data naturally imply a low-dimensional intrinsic
manifold on which the neighboring samples are small
transformations of one another. Consequently, the clas-
sification accuracies of LapSVM are better than those of
the other algorithms in the G9/P63 and G18/P54 cases.
However, with the increase of the training samples, the
difference between the accuracies of the five algorithms
becomes much smaller, especially in the G18/P54 case.

2) On the USPS database, from 10% to 30% cases, the
accuracies of the five algorithms increase steadily with
the growth of the training samples. Especially, SRSVM
has obvious superiority to the other algorithms in the
whole cases, which more likely implies that the samples
of the 10 digits tend to the cluster distribution rather than
the manifold distribution in the high-dimensional space.

V. GENERALIZATION BOUND ANALYSIS

In this section, we discuss the generalization bounds for
the large margin classifiers. In traditional SVMs, we are
accustomed to carrying out generalization bound estimation
based on the radius of the smallest enclosing sphere of the
data and the observed margin on the training set [11], [44].
However, this approach completely ignores the information
about the distribution of the data [11]. Therefore, here we
adopt another generalization bound for the classifiers, which
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TABLE VII

NUMBERS OF CLUSTERS OBTAINED BY THE WARD’S LINKAGE CLUSTERING ALGORITHM

USED IN SLMM AND SRSVM ON THE TWO-CLASS UCI DATASETS

Auto. Bupa Hepa. Iono. Pima Sonar Water Wdbc
No.

of Cluster
7

(4, 3)
12

(6, 6)
8

(3, 5)
18

(10, 8)
15

(11, 4)
11

(4, 7)
7

(4, 3)
16

(8, 8)
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30%
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SVM
EKM

SLMM

SRSVM

Fig. 9. Classification accuracies compared between SVM, EKM, SLMM,
LapSVM, and SRSVM on (a) COIL-20 database and (b) USPS database.

is given by the empirical covering number in terms of the
distribution of the eigenvalues of the kernel matrix [11]–[13].

Assume that the data (x, y) ∈ Z follow a certain distribution
P(x, y). The expected risk of a hypothesis h ∈ F is given
by R(h) = ∑

(x,y)∈Z δ (yh(x) ≤ 0) P(x, y) [13]. Given a
training set {xi , yi }n

i=1 from Z, the empirical margin risk for
a certain margin γ is defined by the rate of the samples with

yi h(xi ) < γ : Rγ
s (h) = (1/n)

n∑

i=1
δ (yi h(xi ) < γ ) [13]. Then

the following theorem gives an upper bound for the expected
risk [11]–[13].

Theorem 1: Let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of the kernel matrix derived from the train-
ing samples. Consider the hypothesis class F(c)B =
{〈w, x〉 + b : ‖w‖ ≤ c, |b| ≤ B}. Then the following inequal-
ity holds simultaneously for all γ ∈ (8ϒ(m), 1] :

Ps∈Zn
(∃h ∈ F(c)B : R(h) ≥ Rr

s (h)

+√
(m ln 2 + ln(�c�/θγ )�8B/γ �)/(2n)

)

≤ θ (33)

where

ϒ(m)= min
j∈{1,...,m−1}6×2

− j−1
k(2 j−1)

(
λ1· · ·λk(2 j−1)

) 1
2k(2 j−1) c(m, j)

k(l) = min
{

k ∈ {1, · · · , n} : λk+1 ≤ (λ1 · · · λk/ l2)
1
k

}

(34)

c(m, j) = min
(

1, 1.86
√

log2(n/(m − j) + 1)/(m − j)
)

.

We select four datasets in the UCI database to estimate
the generalization bounds for the five classifiers. The cor-
responding results are shown in Fig. 10. The bounds of
SRSVM are smaller than those of SVM, EKM, and SLMM
on the four datasets. And the bounds of LapSVM are basically
comparable with SRSVM. However, due to the more free
regularization parameters involved than the other algorithms

0.8
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B
ou

nd
 f

or
 R

(h
)
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0
Automobile Bupa Hepatitis Ionosphere

SVM
EKM
SLMM
LapSVM
SRSVM

Fig. 10. Bounds of the expected risks for SVM, EKM, SLMM, LapSVM,
and SRSVM on the four UCI datasets.

and the insufficient samples to characterize the data manifold
structure, LapSVM yields unstable capability and its bounds
achieve even the largest ones on the Automobile and Hepatitis
datasets. These theoretical results are also consistent with the
experimental results in the previous section.

VI. CONCLUSION

In this paper, with systematic analysis on the modern large
margin classifiers, we first introduced the concept “structural
granularity,” which characterizes a series of data structures
involved in the various classifier design ideas. Based on
the different granularities and the formulations for optimiza-
tion problems, we further constructed a uniform structural
framework for these classifiers. A novel algorithm SRSVM
was then derived from the cluster granularity in the frame-
work, which captures the data structural information within
individual classes by some clustering strategies. Owing to
the insights into both SVM and SLMM, we simultaneously
embedded the compactness within classes into the objective
function as well as the separability between classes into the
constraints of SRSVM based on the learning framework of
SVM. The corresponding optimization problem follows the
same QP formulation as SVM, rather than the SOCP in the
related algorithms such as MPM, M4, and SLMM. As a result,
SRSVM not only has much lower computational complexity
but also holds the sparsity of the solution. Furthermore, we
also discussed the generalization bounds for these algorithms
by using the distribution of the eigenvalues of the kernel
matrix. The experimental results demonstrated the superiority
of our proposed SRSVM compared to the state-of-the-art
algorithms in the framework.

There are several directions of future study.
1) Additional generalization: The proposed structural

framework still has many parts for further research. The
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combinations of different granularities, such as cluster gran-
ularity and point granularity, may lead to a large family of
new algorithms and we believe that there should be many
interesting observations that can be obtained.

2) Large-scale problem: In the experiments, we apply
SRSVM in the middle-scale classification problems. However,
due to the requirements of the practical applications, large-
scale problem solution has become a hot issue in machine
learning. Tsang et al. [45] have presented an algorithm of
ball vector machine (BVM) to improve SVM in the large-
scale cases. How to develop a fast algorithm for SRSVM
to solve large-scale problems is another interesting topic for
future study.

3) Prior knowledge: The experimental results have shown
that the cluster granularity algorithm SRSVM and the point
granularity algorithm LapSVM have comparable performance
in the real-world problems under study here. How to select a
suitable classifier between the two algorithms actually depends
on more prior knowledge about the data. Consequently, we
intend to develop more effective methods to reveal more prior
knowledge hidden in the data to guide classifier design.
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