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Support Vector Machine (SVM) achieves state-of-the-art performance in many real applications. A guar-
antee of its performance superiority is from the maximization of between-class margin, or loosely speak-
ing, full use of discriminative information from between-class samples. While in this paper, we focus on
not only such discriminative information from samples but also discrimination of individual features and
develop feature discrimination incorporated SVM (FDSVM). Instead of minimizing the l2-norm of feature
weight vector, or equivalently, imposing equal penalization on all weight components in SVM learning,
FDSVM penalizes each weight by an amount decreasing with the corresponding feature discrimination
measure, consequently features with better discrimination can be attached greater importance. Experi-
ments on both toy and real UCI datasets demonstrate that FDSVM often achieves better performance with
comparable efficiency.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Support Vector Machine (SVM) first introduced by Vapnik
(1998) and Cortes and Vapnik (1995) has been successfully applied
to many applications, including face detection (Osuna, Freund, &
Girosi, 1997), document categorization (Joachims, 1999), gene
selection (Guyon, Weston, Barnhill et al., 2002) and financial fore-
cast (Ding, Song, & Zen, 2008; Li & Sun, 2009). Its basic motivation
is to find the separating hyper-plane with the maximum margin
between classes (Burges, 1998; Cristianini & Taylor, 2000), as a re-
sult, SVM makes full use of the discriminative information between
samples from different classes. Recently, several generalized for-
mulations of SVM have successively been proposed with aim to
make better use of the underlying prior information in the given
samples and achieved improved performance. Belkin, Niyogi, and
Sindhwani (2006) proposed LapSVM through incorporating the
manifold structure information of data into SVM and brought sig-
nificant performance promotion in semi-supervised learning. Xue,
Chen, and Yang (2008) developed the Structure Regularized
Support Vector Machine (SRSVM) through embedding the clus-
ter-structure information into SVM, and boosted the classification
performance distinctly by both maximizing the margin between
classes and minimizing the compactness within individual classes.
Decoste and Schölkopf (2002), Pozdnoukhov and Bengio (2006)
and Schölkopf, Burges, and Vapnik (1996) developed different vari-
ants of SVM respectively by introducing the transformation invari-
ance so that the classification is invariant to some transformations
ll rights reserved.

221; fax: +86 25 84892811.
in the input space. Shivaswamy and Jebara (2006) developed the
p-SVM through introducing the permutation invariance to ensure
the invariance of the classifier to permutations of sub-elements
in each input. Besides, Akbani, Kwek & Japkowicz (2004) and
Wang and Japkowicz (2009) incorporated the unbalanced class-
distribution information into SVM and boosted its performance
by setting different trade-off parameters for different classes.
A relative comprehensive review of such researches can be found
in Lauer and Bloch (2008).

In general, the input samples are represented by vectors of fea-
tures or attributes (Krupka & Tishby, 2007), then the given sample
set can be represented either by ‘a set of samples’ (Akbani, Kwek &
Japkowicz, 2004; Burges, 1998; Cristianini & Taylor, 2000; Decoste
& Schölkopf, 2002; Schölkopf et al., 1996; Taylor & Cristianini,
2004) or by ‘a set of features or attributes’ (Fei, Quanz, & Huan,
2009; Krupka & Tishby, 2007; Sandler, Talukdar, & Ungar, 2008;
Wang, 2008). In such a sense, SVM and all above-mentioned vari-
ants can be viewed as being built on the underlying information in
the sample space (the space spanned by samples). While in this
paper, we also focus on the information underlying in the feature
space (the space spanned by features or attributes) and attempt
to incorporate it into SVM learning for better classification. Up to
date, there have already appeared some algorithms utilizing the
prior information in the feature space. Tibshirani, Saunders, Rosset
et al. (2005) considered some meaningful feature orders and pro-
posed the ‘‘fused lasso’’, which penalizes the l1-norm of both the
feature weights and their successive differences, thus encourages
both sparsity and local constancy for the weights. Li and Li
(2008) incorporated the feature graphical structure represented
by the Laplacian matrix into the linear regression model, and
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proposed a network-constrained regularization procedure to im-
pose the smoothness over the feature weights. Similarly, Fei et al.
(2009) incorporated the feature graph Laplacian into Support Vec-
tor Machine and developed GLSVM to achieve the smoothness with
respect to the reference feature network. Sandler et al. (2008) also
considered the feature graph similarities in learning, and penalized
each feature weight by the squared amount it differs from the
average weights of its neighbors so that the weights can be smooth
over the feature graph. Besides, Krupka and Tishby (2007) incorpo-
rated the feature-weight covariance matrix defined by the dis-
tances in a ‘meta-feature’ space into the SVM learning to ensure
the feature weights being a smooth function of the meta-features.

Obviously, these typical algorithms are all developed from the
smoothness assumption of the features, and the prior information
represented by the feature graph (network) or the meta-features
is independent of the given data, thus can be viewed as additional
information out of the data. In this paper, different from the
algorithms concentrating on the discriminative information of the
between-class samples in the sample space, we also focus on the
discrimination of individual features in the feature space, and differ-
ent from the ones concerning more on the smoothness among fea-
tures, we pay more attention on the discrimination of individual
features, which can be derived directly from the given data, i.e.,
evaluated by the data itself even though there is no prior information
provided beforehand. Such prior information of feature discrimina-
tion will not necessarily determine the final classification, but can
provide helpful guidance for it. Consequently we develop a feature
discrimination incorporated Support Vector Machine (FDSVM), in
which the features with better discrimination are paid more atten-
tion as they usually manifest greater importance in separating data
correctly (Ho & Basu, 2000; Ho & Basu, 2002; Wang, 2008). In the
learning of FDSVM, the weights are respectively penalized by the
amounts decreasing with their corresponding feature discrimina-
tion measures. Experiments on both toy and real UCI datasets
(Blake & Merz, 1998) demonstrate that compared with SVM,
FDSVM often achieves better generalization performance with
comparable efficiency.

In addition, it is worth pointing out that such an incorporation
of feature discrimination is general and can straightforwardly be
applied to the above variants of SVM, and other regularized algo-
rithms such as the least squared SVM, (Suykens & Vandewalle,
1999) for their further performance promotions.

The rest of the paper is organized as follows. Section 2 intro-
duces the preliminary about the standard SVM and the measures
adopted for evaluating the discrimination of individual features.
Section 3 presents the formulation of the proposed FDSVM, along
with its kernel extension and time complexity analysis. Section 4
shows the experiment results on both toy and real datasets and
some conclusions are drawn in Section 5.
2. Preliminary

2.1. Support Vector Machine

Support Vector Machine (Burges, 1998; Cortes & Vapnik, 1995;
Cristianini & Taylor, 2000; Vapnik, 1998) has been developed from
the theory of statistical learning (Vapnik, 1998) and structural risk
minimization, and achieved great success in pattern recognition
(Ding et al., 2008; Guyon, Weston, Barnhill et al., 2002; Joachims,
1999; Li & Sun, 2009; Osuna et al., 1997). It separates the binary
samples with the maximum sample-margin between classes (Bur-
ges, 1998; Cristianini & Taylor, 2000; Xue et al., 2008) to control
the complexity of the model and bound the generalization error
(Burges, 1998; Cristianini & Taylor, 2000; Lauer & Bloch, 2008).
For the linear case, given the training set S ¼ fðxi; yiÞg

n
i¼1 with xi e Rd
and yi e {�1, 1}, and a linear decision function f(x) = wTx + b, the
optimization problem of SVM can be formulated as

min 1
2 jjwjj

2 þ C
Pn
i¼1

ni

s:t: yiðwT xi þ bÞ � 1� ni

ni � 0

ð1Þ

where nis are the slack variables allowing samples to violate the
constraints and C is the trade-off parameter controlling the compro-
mise between the maximization of margin and accepted amount of
violations (Lauer & Bloch, 2008). This problem leads to the following
dual formulation through the standard Lagrange method,

max
Pn
i¼1

ai � 1
2

Pn
i¼1

Pn
j¼1

aiajyiyjx
T
i xj

s:t:
Pn
i¼1

aiyi ¼ 0

0 6 ai 6 C; i ¼ 1; . . . n

ð2Þ

where ais are the Lagrange multipliers and those non-zeros ais cor-
respond to the support vectors lying in the margin or strictly on the
margin boundaries. The resulting decision function can be described
as f ðxÞ ¼ sign

Pn
i¼1aiyixT

i xþ b
� �

.
For the non-linear case, the input samples are first mapped to a

higher, even infinite dimension kernel space where a linear separa-
tion is feasible, and then through the implementation of SVM in
the kernel space, a non-linear separating hyper-plane in the
original input space can be obtained with improved classification.
However, due to the infinite dimension of the kernel space, the
non-linear mapping function / : Rd !H can not be formulated
explicitly. An effective solution is to express all computations in
terms of dot products u(xi)Tu(xj) and use a kernel function K(xi, xj)
to replace them, which is the so-called ‘kernel trick’ (Cristianini &
Taylor, 2000; Taylor & Cristianini, 2004; Xue et al., 2008).
2.2. Measures of feature discrimination

Features with better discrimination have manifested greater
importance in separating data correctly, thus are usually empha-
sized in feature selection (Fei et al., 2009; Ho & Basu, 2000,
2002; Li & Li, 2008; Tibshirani, Saunders, Rosset et al., 2005; Wang,
2008). The discrimination of individual features can be evaluated
directly from the given data and there have been several such eval-
uation measures presented in literature (Ho & Basu, 2000, 2002;
Wang, 2008). In this paper, we adopt three of them, i.e., the Fisher’s
discriminant ratio, the separated region ratio and the feature effi-
ciency, they are all supervised measures and emphasize on the
geometrical characteristics of the class distributions which is the
most critical for classification accuracy (Ho & Basu, 2000, 2002).
In what follows, they are introduced respectively in separate
sub-sections.
2.2.1. Fisher’s discriminant ratio (F1)
The Fisher’s discriminant ratio is a classic measure for super-

vised class separability, which is defined as the ratio of the squared
between-class scatter and the within-class scatter,

F1 ¼
ðm1 �m2Þ2

d2
1 þ d2

2

ð3Þ

where m1, m2, d2
1; d

2
2 are the means and variances of two classes

respectively along the given feature (Ho & Basu, 2000, 2002).



Table 1
The learning algorithm of FDSVM.

Input xi 2 Rd, i 2 {1 . . . n} – the ith input sample
yi 2 {�1, 1}, i 2 {1 . . . n} – the label of xi

C – the trade-off parameter
g – the scaling parameter

Output w – the feature weight vector, or projection norm-vector for
classification
b – the classification threshold

Procedure Evaluate the feature discrimination vector q = {qi}d�1 using F1 (or
F2, F3)
Construct the weight penalization matrix A = (Aij)d�d with g and
(6)
Transform the original data through T: xi ? A�1/2xi, i 2 {1 . . . n}
Perform SVM on the transformed dataset with C, output (w, b)
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2.2.2. Ratio of separated region (F2)
The ratio of the separated region along a given feature f can be

formulated as

F2 ¼
maxðminðfþÞ;minðf�ÞÞ �minðmaxðfþÞ;maxðf�ÞÞ
maxðmaxðfþÞ;maxðf�ÞÞ �minðminðfþÞ;minðf�ÞÞ ð4Þ

where max(f+), max(f�), min(f+) and min(f�) are the maximum and
minimum feature values in individual classes respectively. There-
fore after the normalization of the feature, F2 is identical to the
margin of the closest between-class samples if the given samples
are linear separable, and the negative of the overlap-region length
otherwise, obviously, a larger F2 value indicates a better feature
discrimination.

2.2.3. Feature efficiency (F3)
The feature efficiency measures the proportion of samples not

lying in the overlap region (Ho & Basu, 2000, 2002). Specifically,
let a = max ( min (f+), min (f�)) and b = min ( max (f+), max (f�)), it
can be formulated as

F3 ¼
1� #ðf jf2½a;b�Þ

n ; if a 6 b;
1; else;

(
ð5Þ

where #(S) denotes the number of elements in S and n is the total
number of samples in both classes. Thus if there is no overlap be-
tween classes, F3 achieves the maximum value of 1, and F3 is a lower
bound of accuracy when the feature values are viewed as classifica-
tion scores with the classification hyper-plane perpendicular to the
feature.

As a result, F1 focuses on the between-class scatter represented
by the difference of the between-class sample means, and the
within-class scatter simultaneously, F2 emphasizes the minimum
sample-margin between classes and F3 more concerns the number
of separated samples, thus bounding the accuracy. Of course, other
feature discrimination measures can also be applied here, while
here we just focus on the above three ones due to the commonality
in such an incorporation manner.

3. Feature discrimination incorporated Support Vector Machine

Support Vector Machine delivers the state-of-art performance
in many real applications through maximizing the margin between
classes (Burges, 1998; Cristianini & Taylor, 2000; Xue et al., 2008),
as a result, SVM concentrates much on the discriminative informa-
tion between samples from different classes (Xue et al., 2008). The
margin term in the objective function of SVM is formulated as the
magnitude squares of the weight vector w, i.e. ||w||2 or

Pd
i¼1w2

i

where d is the dimension of the features, thereby SVM penalizes
all weight components in w equally. In this paper, we focus on
not only the discriminative information of samples but also the
discrimination of individual features and propose the feature dis-
crimination incorporated Support Vector Machine (FDSVM), in
which each component in w is penalized by an amount decreasing
with the corresponding feature discrimination measure. The for-
mulation of the proposed FDSVM will be presented in the next sub-
section, followed by its kernel extension and time complexity
analysis.

3.1. Formulation of FDSVM

We first define the feature discrimination vector q = {qi}d�1 with
each qi describing the discrimination of the ith feature. To ensure
the (feature) weight penalization parameter positive and decreas-
ing with the increase of qi, we further define the weight penaliza-
tion matrix A = (aij)d�d with each aij formulated as
aij ¼
expð�gqiÞ; i ¼ j

0; i–j

�
ð6Þ

g is the parameter scaling the diagonal elements in A. A is diagonal
and positive definite, with the diagonal elements decreasing with
the increase of the corresponding feature discrimination measures
and reflecting the penalization degrees of the corresponding feature
weights. To avoid the possible ‘‘domination’’ of some features, each
diagonal element in A is normalized through aii = aii/trace(A),
i = 1 . . . d so that 0 6 aii 6 1 and

Pd
i¼1aii ¼ 1. Finally the primal prob-

lem of FDSVM can be formulated as

min 1
2 wT Awþ C

Pn
i¼1

ni

s:t: yiðwT xi þ bÞP 1� ni

ni P 0; i ¼ 1; :::n

ð7Þ

or equivalently,

min 1
2

Pd
i¼1

aiiw2
i þ C

Pn
i¼1

ni

s:t: yiðwT xi þ bÞP 1� ni

ni P 0; i ¼ 1; :::n

ð8Þ

From (8), it is clear that the weights of the better discrimination
features are relatively less penalized through the embedding of A,
thus those better discrimination features can be attached greater
importance in learning. Further, when the value of g approaches
0, A is close to an identity matrix and hence the proposed FDSVM
degenerates to the standard SVM. Through introducing the positive
Lagrange multipliers for each inequality constraints in (7), or (8),
the corresponding dual problem can be derived as

max
Pn
i¼1

ai �
Pn
i¼1

Pn
j¼1

aiajyiyjx
T
i A�1xj

s:t:
Pn
i¼1

aiyi ¼ 0;

0 6 ai 6 C; i ¼ 1; . . . n

ð9Þ

which is similar to the dual problem of the standard SVM in (2) but
replacing xT

i xj with xT
i A�1xj, amounting to transforming S to a new

one ~S by T:x ? A�1/2x, and the training of SVM on the new dataset
~S is equivalent to the training of FDSVM on the original one S. The
diagonal elements in A�1/2 increase with the feature discrimination
measures, thus the features with better discrimination are rela-
tively emphasized after the transformation T. The finally-derived
decision function can be written as

f ðxÞ ¼
Xn

i¼1

aiyix
T
i A�1x ð10Þ

and the specific learning algorithm of FDSVM is presented in the
Table 1,
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3.2. The kernel extension of FDSVM

As described in Section 2.1, for many linear non-separable
applications, the linear algorithms in the input space are often
not so powerful due to their under-fitting, thus we usually implic-
itly map the samples from the input space to a higher dimension
feature space in which a linear separation is feasible, and then per-
form the linear algorithms in such implicit feature space with the
help of the popular ‘kernel trick’ (Cristianini & Taylor, 2000; Taylor
& Cristianini, 2004; Xue et al., 2008). However, we fail to directly
apply this ‘kernel trick’ used in SVM to the proposed FDSVMs, since
they involve the discrimination measures evaluated explicitly on
individual features, which are implicitly expressed in the feature
space induced by kernel, thus we instead adopt an alternative
kernelization approach in which the implicit mapping is replaced
by the explicit empirical kernel mapping (EKM) (Scholkopf, Mika,
& Burges, 1999; Xiong, Swamy, & Ahmad, 2005) such that the ex-
plicit evaluation of feature discrimination becomes possible. In
the following, we will detail the EKM process through which to ex-
tend the linear FDSVM to its kernel version.

Now let Ktrain = [kij]n�n with respect to the kernel matrix from
the training set, due to its symmetrical positive-semidefinition, it
can be decomposed as Ktrain = U K UT, where K 2 Rn�n is a diagonal
matrix containing its Eigen-values and U 2 Rn�n consists of the cor-
responding Eigen-vectors. Then the EKM for mapping samples
from the input space to the empirical kernel space can be formu-
lated as
x! K�1=2UTðkðx; x1Þ; kðx; x2Þ . . . kðx; xnÞÞT ð11Þ
Table 2
The attributes of the toy dataset.

CLASS MEAN COVARIANCE NUMBER

CLASS 1 [0, 0] 1 0
0 1

� �
100

CLASS 2 [2, 1] 100
thus the training and testing set in the empirical kernel space can be
represented as Xe

train ¼ K�1=2UKtrain and Xe
test ¼ K�1=2UKtest respec-

tively. Further, if the kernel matrix Ktrain is singular or we want to
reduce the dimension of the empirical kernel space, we can select
the non-zero or top-r-rank Eigen-values and their corresponding Ei-
gen-vectors, i.e. Ktrain = Ur KrUrT with Ur 2 Rn�r and Kr 2 Rr�r (r 6 n),
then the new training and testing sets through the reduced EKM be-
come Xe

train ¼ Kr�1=2UrKtrain and Xe
test ¼ Kr�1=2UrKtest respectively. Fi-

nally the kernel version FDSVM can be derived through evaluating
the individual feature discrimination and then performing the lin-
ear version FDSVM on such newly-derived data with the pre-
defined kernel.

It is worthy noting that the discrimination vector here is evalu-
ated from the n features in the empirical kernel space rather than
the d features in the input space, since the original input samples
have been non-linearly mapped to the empirical kernel space
and the features on which the kernel version FDSVM really con-
structed are the ones in such empirical kernel space.
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(a)

Fig. 1. The (a) training and (b) testing dataset and the corresponding separating hy
3.3. Time complexity analysis

Given the data X e Rd�n, where n is the number of samples and d
is the number of features, the training time of the original SVM is
O(n3) (Burges, 1998; Cristianini & Taylor, 2000). For the linear case,
the time for calculating the feature discrimination measure F1 (or
F2 and F3) incorporated in FDSVM is O(nd). Then from Table 1,
the total training times of the proposed FDSVMs become
O(nd + d + 2nd + n3), which is comparable to that of the original
SVM except the case of n2 << d, in which we can first use some fea-
ture extractor as a preprocessor for the given data to reduce its
dimension (Fei et al., 2009; Wang, 2008). For the nonlinear case,
the time for calculating F1 (or F2 and F3) becomes O(n2), and the
learning times of FDSVMs are O(n2 + n + 2n2 + n3), if only r (r 6 n)
Eigen-values and the corresponding Eigen-vectors are selected,
the training times of FDSVMs become O(nr + r + 2nr + n3), thus still
comparable to that of SVM. In conclusion, FDSVM can maintain
comparable efficiency with the original SVM.
4. Experiment

In this section, we will evaluate the performance of the pro-
posed FDSVM (FDSVM1, FDSVM2 and FDSVM3 corresponding to
F1, F2 and F3 respectively) by comparing with SVM on both toy
and real datasets. In the toy problem, we use a two-dimension
dataset containing two Gaussian distributions, in which the data
projections along one dimension are more separable than those
along the other, and compare FDSVM and SVM both with the linear
kernel. In the real problem, we select 14 UCI datasets (Blake &
Merz, 1998) to compare the performances of FDSVM and SVM,
using both the linear and Gaussian kernels. We resort to the pop-
ular LIBSVM toolbox (Chang & Lin, 2001) in our experiment to learn
both FDSVM and SVM, and search the regularization parameter C
and the scaling parameter g from the set {0.001, 0.01, 0.1, 1,
10, 100, 1000}, and the width parameter r of the Gaussian kernel
from {2�10, 2�9, . . . , 29, 210} respectively through 5-fold cross-
validation.
4.1. Toy problem

The two-dimension binary dataset used here is described
in Table 2, each class follows a Gaussian distribution and the
-3 -1 1 3 5
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per-planes derived from the linear kernel SVM and the linear kernel FDSVMs.



Table 4
The corresponding feature discrimination vectors and weight penalization matrices in
individual FDSVMs.

CLASSIFIER FDSVM1 FDSVM2 FDSVM3

q1:q2 2.8748:0.5359 �0.2384:�1.0368 0.7:0.01
a11:a22 0.4418:0.5582 0.3104:0.6896 0.334:0.666
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projections of data along the x axis are more separable than those
along the y axis, since the difference of the class sample means
along the x axis is larger than that along the y axis under the same
class sample covariance. Each class has 100 samples, from which
we randomly select a half as the training set, and the rest as the
testing set, the distribution of the dataset is shown in Fig. 1, where
‘ � ’ and ‘�’ denote the samples in individual classes respectively.

The linear kernel FDSVMs and linear kernel SVM are respec-
tively performed on the dataset, the resulting accuracies along
with the testing times are listed in Table 3, and their corresponding
separating hyper-planes are displayed in Fig. 1. Besides, the feature
discrimination vectors and the weight penalization matrices in
individual FDSVMs are shown in Table 4, and the performances
of FDSVMs according to different values of g are illustrated in
Fig. 2. Jointly from those tables and figures we can make the fol-
lowing observations,

� From Fig. 1, the separating hyper-planes of FDSVMs are all less
inclined compared to that of SVM, i.e. more close to the separat-
ing hyper-plane derived exclusively from the x-feature (more
discriminative feature according to the data generation), or
the separating hyper-plane perpendicular to the x axis. Thus
Table 3
The resulting accuracies and testing times of the linear kernel SVM and the linear
kernel FDSVMs, the bold value indicates that FDSVM performs better than SVM, and
value with underline indicates the best performance among those four classifiers.

CLASSIFIER SVM FDSVM1 FDSVM2 FDSVM3

TRAIN_ACC. 0.92 0.92 0.92 0.92
TEST_ACC. 0.85 0.88 0.88 0.89
TEST_TIME 0.125 0.1994 0.2031 0.1969

Fig. 2. The performances (testing accuracy and standard deviation) of the linear
kernel SVM and the linear kernel FDSVMs with respect to different values of g with
C fixed to 1.

Table 5
The average accuracies and variances from SVM and FDSVMs on 14 UCI datasets, using
performance improvements from FDSVMs through the t-test, and the values with underlin
kernels respectively.

DATASET SVM FDSVM1

LINEAR GAUS. LINEAR

ARRHYTHMIA .6718 .7426 .6923⁄

.0009 .0011 .0008
AUTOMOBILE .8280 .8300 .8532⁄

.0016 .0019 .0022
BIOMED .8526 .8750 .8514

.0005 .0006 .0006
BUPA .6368 .6926 .6279

.0047 .0023 .0041
ECHOCARDIOGRAM .8484 .8645 .8659⁄

.001 .0016 .0017
HEPATITIS .6264 .7705 .7139⁄

.0109 .0014 .0033
HORSE_COLIC .5254 .7087 .6281⁄

.0042 .0006 .0024
HOUSE .9014 .9234 .9256⁄

.0007 .0004 .0006
HOUSING .6254 .9263 .6515⁄

.0019 .0004 .0018
IMPORT .8282 .8334 .8347

.0009 .0015 .0009
IONOSPHERE .8450 .8907 .8453

.0006 .0008 .0006
PIMA .6747 .7448 .6761

.0042 .0013 .0038
SONAR .7177 .8684 .7535⁄

.0013 .0025 .0009
WDBC .8941 .9190 .9065

.0016 .0008 .0009
MEAN .7483 .8279 .7733
CASE (WIN/t-TEST) 14/14 14/14 9/8
through such incorporations, better discrimination features
can be attached greater importance and contribute more to
the between-class separation.
� From Table 3, FDSVMs obtain the same training accuracy as

SVM while achieve better accuracies on the testing set. Besides,
the testing times of FDSVMs are all close to that of SVM, which
both the linear and the Gaussian kernels, the values with ‘‘⁄’’ indicate significant
e indicate the best accuracies among SVM and FDSVMs with the linear and Gaussian

FDSVM2 FDSVM3

GAUS. LINEAR GAUS. LINEAR GAUS.

.7613⁄ .6981⁄ .7613⁄ .6871 .7666⁄

.0007 .0011 .001 .0015 .0011

.8671⁄ .8524⁄ .8644⁄ .8516⁄ .8662⁄

.0012 .0025 .0012 .0025 .0012

.8949 .8696 .8884⁄ .8688 .8899⁄

.0018 .0001 .0009 .0004 .0009

.6886 .6432 .7027 .6568⁄ .7129⁄
0018 .0047 .0021 .0038 .0019

.8769⁄ .8449 .8531 .8593 .8765

.0009 .0013 .001 .0019 .0019

.7827⁄ .6723⁄ .7740 .7234⁄ .7896⁄

.0012 .0067 .0009 .0044 .0007

.7268⁄ .5893⁄ .7232⁄ .5991⁄ .7256⁄

.0006 .0031 .001 .0038 .0008

.9350⁄ .9145 .9397⁄ .9258⁄ .937⁄

.0008 .0007 .0002 .0006 .0002

.9387⁄ .6501⁄ .9386 .6693⁄ .9385⁄

.0004 .0017 .0007 .0015 .0003

.8388 .8532⁄ .8624⁄ .8487 .843⁄

.0019 .0025 .0014 .0025 .0013

.9067⁄ .8537 .8950 .8510 .8993

.0008 .0004 .0009 .0005 .0012

.7514 .7074⁄ .7522 .6915⁄ .7639⁄

.0016 .0009 .0015 .001 .0012

.8882⁄ .7271 .8834⁄ .7104 .8755

.0022 .0016 .0017 .0024 .0014

.9431⁄ .9214⁄ .9378⁄ .9040 .9054

.0004 .0003 .0006 .0018 .0008

.8429 .7712 .8412 .7748 .8422
11/10 10/8 11/8 11/7 11/9
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is consistent to our analysis in Section 3.3. As a result, FDSVMs
can achieve better generalization performance than SVM
through the incorporation of feature discrimination while main-
tain comparable efficiency.
� From Table 4, the feature discrimination values (q1) with

respect to the x-feature are all relatively larger than those
(q2) of the y-feature, consequently the corresponding weight
penalization parameters (a11) are relatively smaller and the
weights (w1) are penalized with lower degrees. Meanwhile,
the weight penalization parameters in individual FDSVMs are
not exactly the same, since they rely on the initial feature
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Fig. 3. The performances of SVM and FDSVMs with respect to g on 4 selected UCI datase
and (d) Gaussian kernel, ionosphere with the (e) linear and (f) Gaussian kernel and sonar
Gaussian kernel, C = 1, r = 1 (r = 64 for the biomed dataset).
discrimination vectors, whereas we can still adjust them
through the choose of the scaling parameter, as a result, the fea-
ture discrimination incorporated can help but not determine
the final classification.
� In Fig. 2, the most suitable values of g are all in the range

[0.01,1], further, when g approaches to 0, the performances
of FDSVMs would be close to that of SVM, and when it
becomes too large, the performances of FDSVMs would
decrease, as the final classification would be dominated com-
pletely by the x-feature, or the feature with better
discrimination.
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ts, automobile with the (a) linear and (b) Gaussian kernel, biomed with the (c) linear
with the (g) linear and (h) Gaussian kernel, for the linear kernel, C = 1, and for the
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4.2. Real problems

In this subsection we select 14 UCI datasets to compare the per-
formances of SVM and FDSVMs, using both the linear and Gaussian
kernels. For each dataset, we randomly select a half of the samples
in each class for training and the rest for testing, this process for
each algorithm is repeated 10 times and the average results are re-
ported in Table 5. Each row (except the last two ones) in the table
gives the average testing accuracies and variances of the individual
algorithms on each dataset, the bold values in each row indicate
that FDSVMs outperform SVM by at least one percent in perfor-
mance, the values with ‘⁄’ indicate significant performance
improvements from FDSVMs through the t-test with the confi-
dence interval at 95%, and the values with underline indicate the
best accuracies among SVM and FDSVMs with the linear and the
Gaussian kernels respectively. The last second row gives the aver-
age testing accuracies of individual algorithms on the overall data-
sets and the last row shows the number of cases in which FDSVMs
achieve performance improvement by at least one percent and sig-
nificant improvement through the t-test compared with SVM. Then
we can conclude that
� When the linear kernel is used, FDSVM1 outperforms SVM on
9 out of the 14 given datasets and has significant improve-
ment on 8 datasets through the t-test, FDSVM2 achieves bet-
ter performance on 10 datasets with significant improvement
on 8 ones, and FDSVM3 performs better on 11 datasets with
significant improvement on 7 ones, when the Gaussian kernel
is used, FDSVM1 outperforms SVM on 11 datasets with signif-
icant improvement on 10 ones, FDSVM2 performs better than
SVM with significant improvement on 9 ones, and FDSVM3
outperforms SVM on 11 datasets and achieves significant
improvement on 8 ones. Moreover, the average accuracies
on all datasets from FDSVMs are all larger than that from
the original SVM, with both the linear and the Gaussian ker-
nels. As a result, FDSVMs can achieve better generalization
performance than SVM through the incorporation of feature
discrimination.
� Table 5 also lists the datasets on which FDSVMs perform no bet-

ter than SVM, the main reason can be that the discrimination
evaluations of individual features are based on the training
samples, thus the discriminative information derived respec-
tively from the sample and the feature spaces is consistent to
some extent. SVM has made full use of the discriminative infor-
mation in the sample space, therefore partially utilized the dis-
criminative information hidden in the feature space implicitly,
as a result, the explicit incorporation of feature discrimination
may lead to no distinct performance-promotion when the dis-
criminative information in the feature space incorporated has
already been utilized in SVM implicitly, and boosted perfor-
mance otherwise.
� As shown in Table 5, different feature discrimination measures

lead to different performance promotions from SVM, thus stat-
ing that the selection of proper feature discrimination measure
is application-oriented, but it is not our focus in this paper and
deserves another exploration.
� Fig. 3 reveals the performances of SVM and FDSVMs according

to different values of g on four selected datasets, from which
we can see that when g approaches 0, the accuracies of FDSVMs
become close to those of SVM, since the (feature) weight penal-
ization matrices are all close to an identity matrix, and when g
becomes larger, the accuracies tend to increase to some maxi-
mal values, then gradually decrease and become even lower
than those of SVM, which can attribute to the exclusive domina-
tions of some better discrimination features. It is not suitable
for the ionosphere dataset with the Gaussian kernel, the reason
is that we simply set C to 1 and the range for g is not large
enough for revealing such rule.

5. Conclusions

In this paper we propose a novel feature discrimination incor-
porated Support Vector Machine (FDSVM) through utilizing not
only the discriminative information from between-class samples,
which is emphasized in the original SVM, but also the discrimina-
tion of individual features, i.e., discriminative prior information
from both the sample and the feature spaces. During the learning
of FDSVM, the feature weight components in w are respectively
penalized according to their individual feature discrimination,
and the better discrimination features can obtain more attention
and contribute more to the between-class classification, as they
usually manifest greater importance in separating data correctly.
Compared with SVM, FDSVMs are empirically validated to be able
to achieve better generalization performance in most cases while
maintain comparable efficiency.

It is worth pointing out that the proposed incorporation of fea-
ture discrimination is general and can straightforwardly be applied
to other variants of SVM or other regularized algorithms for their
further performance promotions. Moreover, any feature discrimi-
nation measures or feature importance values provided before-
hand can conveniently be used to develop FDSVM targeting to
specific applications. As a result, we will attempt to incorporate
prior feature importance combining specific applications in our
feature work, and meanwhile, search for the feature importance
in the optimization process to find out whether it can achieve bet-
ter performance at the price of efficiency.
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